]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/MUONmassPlot_ESD.C
Moving lib*.pkg
[u/mrichter/AliRoot.git] / MUON / MUONmassPlot_ESD.C
CommitLineData
5473f16a 1#if !defined(__CINT__) || defined(__MAKECINT__)
2// ROOT includes
3#include "TBranch.h"
4#include "TClonesArray.h"
5#include "TLorentzVector.h"
6#include "TFile.h"
7#include "TH1.h"
8#include "TParticle.h"
9#include "TTree.h"
10#include <Riostream.h>
11
12// STEER includes
13#include "AliRun.h"
14#include "AliRunLoader.h"
15#include "AliHeader.h"
16#include "AliLoader.h"
17#include "AliStack.h"
18#include "AliESD.h"
19
20// MUON includes
21#include "AliESDMuonTrack.h"
22#endif
23//
24// Macro MUONmassPlot.C for ESD
25// Ch. Finck, Subatech, April. 2004
26//
27
28// macro to make invariant mass plots
29// for combinations of 2 muons with opposite charges,
30// from root file "MUON.tracks.root" containing the result of track reconstruction.
31// Histograms are stored on the "MUONmassPlot.root" file.
32// introducing TLorentzVector for parameter calculations (Pt, P,rap,etc...)
33// using Invariant Mass for rapidity.
34
35// Arguments:
36// FirstEvent (default 0)
37// LastEvent (default 0)
38// ResType (default 553)
39// 553 for Upsilon, anything else for J/Psi
40// Chi2Cut (default 100)
41// to keep only tracks with chi2 per d.o.f. < Chi2Cut
42// PtCutMin (default 1)
43// to keep only tracks with transverse momentum > PtCutMin
44// PtCutMax (default 10000)
45// to keep only tracks with transverse momentum < PtCutMax
46// massMin (default 9.17 for Upsilon)
47// & massMax (default 9.77 for Upsilon)
48// to calculate the reconstruction efficiency for resonances with invariant mass
49// massMin < mass < massMax.
50
51// Add parameters and histograms for analysis
52
53Bool_t MUONmassPlot(char* filename = "galice.root", Int_t FirstEvent = 0, Int_t LastEvent = 10000,
54 char* esdFileName = "AliESDs.root", Int_t ResType = 553,
55 Float_t Chi2Cut = 100., Float_t PtCutMin = 1., Float_t PtCutMax = 10000.,
56 Float_t massMin = 9.17,Float_t massMax = 9.77)
57{
58 cout << "MUONmassPlot " << endl;
59 cout << "FirstEvent " << FirstEvent << endl;
60 cout << "LastEvent " << LastEvent << endl;
61 cout << "ResType " << ResType << endl;
62 cout << "Chi2Cut " << Chi2Cut << endl;
63 cout << "PtCutMin " << PtCutMin << endl;
64 cout << "PtCutMax " << PtCutMax << endl;
65 cout << "massMin " << massMin << endl;
66 cout << "massMax " << massMax << endl;
67
68
69 //Reset ROOT and connect tree file
70 gROOT->Reset();
71
72
73 // File for histograms and histogram booking
74 TFile *histoFile = new TFile("MUONmassPlot.root", "RECREATE");
75 TH1F *hPtMuon = new TH1F("hPtMuon", "Muon Pt (GeV/c)", 100, 0., 20.);
76 TH1F *hPMuon = new TH1F("hPMuon", "Muon P (GeV/c)", 100, 0., 200.);
77 TH1F *hChi2PerDof = new TH1F("hChi2PerDof", "Muon track chi2/d.o.f.", 100, 0., 20.);
78 TH1F *hInvMassAll = new TH1F("hInvMassAll", "Mu+Mu- invariant mass (GeV/c2)", 480, 0., 12.);
79 TH1F *hInvMassRes;
80
81 if (ResType == 553) {
82 hInvMassRes = new TH1F("hInvMassRes", "Mu+Mu- invariant mass (GeV/c2) around Upsilon", 60, 8., 11.);
83 } else {
84 hInvMassRes = new TH1F("hInvMassRes", "Mu+Mu- invariant mass (GeV/c2) around J/Psi", 80, 0., 5.);
85 }
86
87 TH1F *hNumberOfTrack = new TH1F("hNumberOfTrack","nb of track /evt ",20,-0.5,19.5);
88 TH1F *hRapMuon = new TH1F("hRapMuon"," Muon Rapidity",50,-4.5,-2);
89 TH1F *hRapResonance = new TH1F("hRapResonance"," Resonance Rapidity",50,-4.5,-2);
90 TH1F *hPtResonance = new TH1F("hPtResonance", "Resonance Pt (GeV/c)", 100, 0., 20.);
91
92
93 // settings
94 Int_t EventInMass = 0;
95 Float_t muonMass = 0.105658389;
96// Float_t UpsilonMass = 9.46037;
97// Float_t JPsiMass = 3.097;
98
99 Double_t thetaX, thetaY, pYZ;
100 Double_t fPxRec1, fPyRec1, fPzRec1, fE1;
101 Double_t fPxRec2, fPyRec2, fPzRec2, fE2;
102 Int_t fCharge, fCharge2;
103
104 Int_t ntrackhits, nevents;
105 Double_t fitfmin;
106
107
108 TLorentzVector fV1, fV2, fVtot;
109
110 // open run loader and load gAlice, kinematics and header
111 AliRunLoader* runLoader = AliRunLoader::Open(filename);
112 if (!runLoader) {
113 Error("MUONmass_ESD", "getting run loader from file %s failed",
114 filename);
115 return kFALSE;
116 }
117
118 runLoader->LoadgAlice();
119 gAlice = runLoader->GetAliRun();
120 if (!gAlice) {
121 Error("MUONmass_ESD", "no galice object found");
122 return kFALSE;
123 }
124
125
126 // open the ESD file
127 TFile* esdFile = TFile::Open(esdFileName);
128 if (!esdFile || !esdFile->IsOpen()) {
129 Error("MUONmass_ESD", "opening ESD file %s failed", esdFileName);
130 return kFALSE;
131 }
132
133 runLoader->LoadHeader();
134 nevents = runLoader->GetNumberOfEvents();
135
136 // Loop over events
137 for (Int_t iEvent = FirstEvent; iEvent <= TMath::Min(LastEvent, nevents - 1); iEvent++) {
138
139 // get current event
140 runLoader->GetEvent(iEvent);
141
142 // get the event summary data
143 char esdName[256];
144 sprintf(esdName, "ESD%d", iEvent);
145 AliESD* esd = (AliESD*) esdFile->Get(esdName);
146 if (!esd) {
147 Error("MUONmass_ESD", "no ESD object found for event %d", iEvent);
148 return kFALSE;
149 }
150
151 Int_t nTracks = (Int_t)esd->GetNumberOfMuonTracks() ; //
152
153 // printf("\n Nb of events analysed: %d\r",iEvent);
154 // cout << " number of tracks: " << nrectracks <<endl;
155
156 // loop over all reconstructed tracks (also first track of combination)
157 for (Int_t iTrack = 0; iTrack < nTracks; iTrack++) {
158
159 AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack);
160
161 thetaX = muonTrack->GetThetaX();
162 thetaY = muonTrack->GetThetaY();
163
164 pYZ = 1./TMath::Abs(muonTrack->GetInverseBendingMomentum());
165 fPzRec1 = - pYZ / TMath::Sqrt(1.0 + TMath::Tan(thetaY)*TMath::Tan(thetaX));
166 fPxRec1 = fPzRec1 * TMath::Tan(thetaX);
167 fPyRec1 = fPzRec1 * TMath::Tan(thetaY);
168 fCharge = Int_t(TMath::Sign(1.,muonTrack->GetInverseBendingMomentum()));
169
170 fE1 = TMath::Sqrt(muonMass * muonMass + fPxRec1 * fPxRec1 + fPyRec1 * fPyRec1 + fPzRec1 * fPzRec1);
171 fV1.SetPxPyPzE(fPxRec1, fPyRec1, fPzRec1, fE1);
172
173 ntrackhits = muonTrack->GetNHit();
174 fitfmin = muonTrack->GetChi2();
175
176 // transverse momentum
177 Float_t pt1 = fV1.Pt();
178
179 // total momentum
180 Float_t p1 = fV1.P();
181
182 // Rapidity
183 Float_t rapMuon1 = fV1.Rapidity();
184
185 // chi2 per d.o.f.
186 Float_t ch1 = fitfmin / (2.0 * ntrackhits - 5);
187// printf(" px %f py %f pz %f NHits %d Norm.chi2 %f charge %d\n",
188// fPxRec1, fPyRec1, fPzRec1, ntrackhits, ch1, fCharge);
189
190 // condition for good track (Chi2Cut and PtCut)
191
192 if ((ch1 < Chi2Cut) && (pt1 > PtCutMin) && (pt1 < PtCutMax)) {
193
194 // fill histos hPtMuon and hChi2PerDof
195 hPtMuon->Fill(pt1);
196 hPMuon->Fill(p1);
197 hChi2PerDof->Fill(ch1);
198 hRapMuon->Fill(rapMuon1);
199
200 // loop over second track of combination
201 for (Int_t iTrack2 = iTrack + 1; iTrack2 < nTracks; iTrack2++) {
202
203 AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack2);
204
205 thetaX = muonTrack->GetThetaX();
206 thetaY = muonTrack->GetThetaY();
207
208 pYZ = 1./TMath::Abs(muonTrack->GetInverseBendingMomentum());
209 fPzRec2 = - pYZ / TMath::Sqrt(1.0 + TMath::Tan(thetaY)*TMath::Tan(thetaX));
210 fPxRec2 = fPzRec2 * TMath::Tan(thetaX);
211 fPyRec2 = fPzRec2 * TMath::Tan(thetaY);
212 fCharge2 = Int_t(TMath::Sign(1.,muonTrack->GetInverseBendingMomentum()));
213
214 fE2 = TMath::Sqrt(muonMass * muonMass + fPxRec2 * fPxRec2 + fPyRec2 * fPyRec2 + fPzRec2 * fPzRec2);
215 fV2.SetPxPyPzE(fPxRec2, fPyRec2, fPzRec2, fE2);
216
217 ntrackhits = muonTrack->GetNHit();
218 fitfmin = muonTrack->GetChi2();
219
220 // transverse momentum
221 Float_t pt2 = fV2.Pt();
222
223 // chi2 per d.o.f.
224 Float_t ch2 = fitfmin / (2.0 * ntrackhits - 5);
225
226 // condition for good track (Chi2Cut and PtCut)
227 if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax)) {
228
229 // condition for opposite charges
230 if ((fCharge * fCharge2) == -1) {
231
232 // invariant mass
233 fVtot = fV1 + fV2;
234 Float_t invMass = fVtot.M();
235
236 // fill histos hInvMassAll and hInvMassRes
237 hInvMassAll->Fill(invMass);
238 hInvMassRes->Fill(invMass);
239
240 if (invMass > massMin && invMass < massMax) {
241 EventInMass++;
242 hRapResonance->Fill(fVtot.Rapidity());
243 hPtResonance->Fill(fVtot.Pt());
244 }
245
246 } // if (fCharge * fCharge2) == -1)
247 } // if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax))
248 } // for (Int_t iTrack2 = iTrack + 1; iTrack2 < iTrack; iTrack2++)
249 } // if (ch1 < Chi2Cut) && (pt1 > PtCutMin)&& (pt1 < PtCutMax) )
250 } // for (Int_t iTrack = 0; iTrack < nrectracks; iTrack++)
251
252 hNumberOfTrack->Fill(nTracks);
253 } // for (Int_t iEvent = FirstEvent;
254
255 histoFile->Write();
256 histoFile->Close();
257
258 cout << "MUONmassPlot " << endl;
259 cout << "FirstEvent " << FirstEvent << endl;
260 cout << "LastEvent " << LastEvent << endl;
261 cout << "ResType " << ResType << endl;
262 cout << "Chi2Cut " << Chi2Cut << endl;
263 cout << "PtCutMin " << PtCutMin << endl;
264 cout << "PtCutMax " << PtCutMax << endl;
265 cout << "massMin " << massMin << endl;
266 cout << "massMax " << massMax << endl;
267 cout << "EventInMass " << EventInMass << endl;
268
269 return kTRUE;
270}
271