]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/MUONmassPlot_ESD.C
AliMpReader splitted into AliMpMotifReader and AliMpSectorReader
[u/mrichter/AliRoot.git] / MUON / MUONmassPlot_ESD.C
CommitLineData
5473f16a 1#if !defined(__CINT__) || defined(__MAKECINT__)
2// ROOT includes
48d6b312 3#include "TTree.h"
5473f16a 4#include "TBranch.h"
5#include "TClonesArray.h"
6#include "TLorentzVector.h"
7#include "TFile.h"
8#include "TH1.h"
ac3c5325 9#include "TH2.h"
5473f16a 10#include "TParticle.h"
11#include "TTree.h"
12#include <Riostream.h>
13
14// STEER includes
15#include "AliRun.h"
16#include "AliRunLoader.h"
17#include "AliHeader.h"
18#include "AliLoader.h"
19#include "AliStack.h"
cb75342e 20#include "AliMagF.h"
5473f16a 21#include "AliESD.h"
22
23// MUON includes
24#include "AliESDMuonTrack.h"
25#endif
26//
27// Macro MUONmassPlot.C for ESD
28// Ch. Finck, Subatech, April. 2004
29//
30
31// macro to make invariant mass plots
32// for combinations of 2 muons with opposite charges,
33// from root file "MUON.tracks.root" containing the result of track reconstruction.
34// Histograms are stored on the "MUONmassPlot.root" file.
35// introducing TLorentzVector for parameter calculations (Pt, P,rap,etc...)
36// using Invariant Mass for rapidity.
37
38// Arguments:
39// FirstEvent (default 0)
40// LastEvent (default 0)
41// ResType (default 553)
42// 553 for Upsilon, anything else for J/Psi
43// Chi2Cut (default 100)
44// to keep only tracks with chi2 per d.o.f. < Chi2Cut
45// PtCutMin (default 1)
46// to keep only tracks with transverse momentum > PtCutMin
47// PtCutMax (default 10000)
48// to keep only tracks with transverse momentum < PtCutMax
49// massMin (default 9.17 for Upsilon)
50// & massMax (default 9.77 for Upsilon)
51// to calculate the reconstruction efficiency for resonances with invariant mass
52// massMin < mass < massMax.
53
54// Add parameters and histograms for analysis
55
56Bool_t MUONmassPlot(char* filename = "galice.root", Int_t FirstEvent = 0, Int_t LastEvent = 10000,
57 char* esdFileName = "AliESDs.root", Int_t ResType = 553,
58 Float_t Chi2Cut = 100., Float_t PtCutMin = 1., Float_t PtCutMax = 10000.,
59 Float_t massMin = 9.17,Float_t massMax = 9.77)
60{
61 cout << "MUONmassPlot " << endl;
62 cout << "FirstEvent " << FirstEvent << endl;
63 cout << "LastEvent " << LastEvent << endl;
64 cout << "ResType " << ResType << endl;
65 cout << "Chi2Cut " << Chi2Cut << endl;
66 cout << "PtCutMin " << PtCutMin << endl;
67 cout << "PtCutMax " << PtCutMax << endl;
68 cout << "massMin " << massMin << endl;
69 cout << "massMax " << massMax << endl;
70
71
72 //Reset ROOT and connect tree file
73 gROOT->Reset();
74
5473f16a 75 // File for histograms and histogram booking
76 TFile *histoFile = new TFile("MUONmassPlot.root", "RECREATE");
77 TH1F *hPtMuon = new TH1F("hPtMuon", "Muon Pt (GeV/c)", 100, 0., 20.);
ac3c5325 78 TH1F *hPtMuonPlus = new TH1F("hPtMuonPlus", "Muon+ Pt (GeV/c)", 100, 0., 20.);
79 TH1F *hPtMuonMinus = new TH1F("hPtMuonMinus", "Muon- Pt (GeV/c)", 100, 0., 20.);
5473f16a 80 TH1F *hPMuon = new TH1F("hPMuon", "Muon P (GeV/c)", 100, 0., 200.);
81 TH1F *hChi2PerDof = new TH1F("hChi2PerDof", "Muon track chi2/d.o.f.", 100, 0., 20.);
82 TH1F *hInvMassAll = new TH1F("hInvMassAll", "Mu+Mu- invariant mass (GeV/c2)", 480, 0., 12.);
ac3c5325 83 TH1F *hInvMassBg = new TH1F("hInvMassBg", "Mu+Mu- invariant mass BG(GeV/c2)", 480, 0., 12.);
84TH2F *hInvMassAll_vs_Pt = new TH2F("hInvMassAll_vs_Pt","hInvMassAll_vs_Pt",480,0.,12.,80,0.,20.);
85TH2F *hInvMassBgk_vs_Pt = new TH2F("hInvMassBgk_vs_Pt","hInvMassBgk_vs_Pt",480,0.,12.,80,0.,20.);
86TH1F *hInvMassRes;
5473f16a 87
88 if (ResType == 553) {
89 hInvMassRes = new TH1F("hInvMassRes", "Mu+Mu- invariant mass (GeV/c2) around Upsilon", 60, 8., 11.);
90 } else {
91 hInvMassRes = new TH1F("hInvMassRes", "Mu+Mu- invariant mass (GeV/c2) around J/Psi", 80, 0., 5.);
92 }
93
94 TH1F *hNumberOfTrack = new TH1F("hNumberOfTrack","nb of track /evt ",20,-0.5,19.5);
95 TH1F *hRapMuon = new TH1F("hRapMuon"," Muon Rapidity",50,-4.5,-2);
96 TH1F *hRapResonance = new TH1F("hRapResonance"," Resonance Rapidity",50,-4.5,-2);
97 TH1F *hPtResonance = new TH1F("hPtResonance", "Resonance Pt (GeV/c)", 100, 0., 20.);
ac3c5325 98 TH2F *hThetaPhiPlus = new TH2F("hThetaPhiPlus", "Theta vs Phi +", 760, -190., 190., 400, 160., 180.);
99 TH2F *hThetaPhiMinus = new TH2F("hThetaPhiMinus", "Theta vs Phi -", 760, -190., 190., 400, 160., 180.);
5473f16a 100
101
102 // settings
103 Int_t EventInMass = 0;
104 Float_t muonMass = 0.105658389;
105// Float_t UpsilonMass = 9.46037;
106// Float_t JPsiMass = 3.097;
107
108 Double_t thetaX, thetaY, pYZ;
109 Double_t fPxRec1, fPyRec1, fPzRec1, fE1;
110 Double_t fPxRec2, fPyRec2, fPzRec2, fE2;
111 Int_t fCharge, fCharge2;
112
113 Int_t ntrackhits, nevents;
114 Double_t fitfmin;
115
116
117 TLorentzVector fV1, fV2, fVtot;
cb75342e 118
119 // set off mag field
120 AliMagF::SetReadField(kFALSE);
121
5473f16a 122 // open run loader and load gAlice, kinematics and header
123 AliRunLoader* runLoader = AliRunLoader::Open(filename);
124 if (!runLoader) {
125 Error("MUONmass_ESD", "getting run loader from file %s failed",
126 filename);
127 return kFALSE;
128 }
129
5473f16a 130 if (!gAlice) {
131 Error("MUONmass_ESD", "no galice object found");
132 return kFALSE;
133 }
134
135
136 // open the ESD file
137 TFile* esdFile = TFile::Open(esdFileName);
138 if (!esdFile || !esdFile->IsOpen()) {
139 Error("MUONmass_ESD", "opening ESD file %s failed", esdFileName);
140 return kFALSE;
141 }
142
48d6b312 143 AliESD* esd = new AliESD();
144 TTree* tree = (TTree*) esdFile->Get("esdTree");
145 if (!tree) {
146 Error("CheckESD", "no ESD tree found");
147 return kFALSE;
148 }
149 tree->SetBranchAddress("ESD", &esd);
150
5473f16a 151 runLoader->LoadHeader();
152 nevents = runLoader->GetNumberOfEvents();
153
154 // Loop over events
155 for (Int_t iEvent = FirstEvent; iEvent <= TMath::Min(LastEvent, nevents - 1); iEvent++) {
156
157 // get current event
158 runLoader->GetEvent(iEvent);
48d6b312 159
5473f16a 160 // get the event summary data
48d6b312 161 tree->GetEvent(iEvent);
5473f16a 162 if (!esd) {
48d6b312 163 Error("CheckESD", "no ESD object found for event %d", iEvent);
5473f16a 164 return kFALSE;
165 }
166
48d6b312 167 Int_t nTracks = (Int_t)esd->GetNumberOfMuonTracks() ;
5473f16a 168
169 // printf("\n Nb of events analysed: %d\r",iEvent);
48d6b312 170 // cout << " number of tracks: " << nTracks <<endl;
5473f16a 171
172 // loop over all reconstructed tracks (also first track of combination)
173 for (Int_t iTrack = 0; iTrack < nTracks; iTrack++) {
174
175 AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack);
176
177 thetaX = muonTrack->GetThetaX();
178 thetaY = muonTrack->GetThetaY();
179
180 pYZ = 1./TMath::Abs(muonTrack->GetInverseBendingMomentum());
d3c448a1 181 fPzRec1 = - pYZ / TMath::Sqrt(1.0 + TMath::Tan(thetaY)*TMath::Tan(thetaY));
5473f16a 182 fPxRec1 = fPzRec1 * TMath::Tan(thetaX);
183 fPyRec1 = fPzRec1 * TMath::Tan(thetaY);
184 fCharge = Int_t(TMath::Sign(1.,muonTrack->GetInverseBendingMomentum()));
185
186 fE1 = TMath::Sqrt(muonMass * muonMass + fPxRec1 * fPxRec1 + fPyRec1 * fPyRec1 + fPzRec1 * fPzRec1);
187 fV1.SetPxPyPzE(fPxRec1, fPyRec1, fPzRec1, fE1);
188
189 ntrackhits = muonTrack->GetNHit();
190 fitfmin = muonTrack->GetChi2();
191
192 // transverse momentum
193 Float_t pt1 = fV1.Pt();
194
195 // total momentum
196 Float_t p1 = fV1.P();
197
198 // Rapidity
199 Float_t rapMuon1 = fV1.Rapidity();
200
201 // chi2 per d.o.f.
202 Float_t ch1 = fitfmin / (2.0 * ntrackhits - 5);
203// printf(" px %f py %f pz %f NHits %d Norm.chi2 %f charge %d\n",
204// fPxRec1, fPyRec1, fPzRec1, ntrackhits, ch1, fCharge);
205
206 // condition for good track (Chi2Cut and PtCut)
207
208 if ((ch1 < Chi2Cut) && (pt1 > PtCutMin) && (pt1 < PtCutMax)) {
209
210 // fill histos hPtMuon and hChi2PerDof
211 hPtMuon->Fill(pt1);
212 hPMuon->Fill(p1);
213 hChi2PerDof->Fill(ch1);
214 hRapMuon->Fill(rapMuon1);
ac3c5325 215 if (fCharge > 0) {
216 hPtMuonPlus->Fill(pt1);
217 hThetaPhiPlus->Fill(TMath::ATan2(fPyRec1,fPxRec1)*180./TMath::Pi(),TMath::ATan2(pt1,fPzRec1)*180./3.1415);
218 } else {
219 hPtMuonMinus->Fill(pt1);
220 hThetaPhiMinus->Fill(TMath::ATan2(fPyRec1,fPxRec1)*180./TMath::Pi(),TMath::ATan2(pt1,fPzRec1)*180./3.1415);
221 }
5473f16a 222 // loop over second track of combination
223 for (Int_t iTrack2 = iTrack + 1; iTrack2 < nTracks; iTrack2++) {
224
225 AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack2);
226
227 thetaX = muonTrack->GetThetaX();
228 thetaY = muonTrack->GetThetaY();
229
230 pYZ = 1./TMath::Abs(muonTrack->GetInverseBendingMomentum());
d3c448a1 231 fPzRec2 = - pYZ / TMath::Sqrt(1.0 + TMath::Tan(thetaY)*TMath::Tan(thetaY));
5473f16a 232 fPxRec2 = fPzRec2 * TMath::Tan(thetaX);
233 fPyRec2 = fPzRec2 * TMath::Tan(thetaY);
234 fCharge2 = Int_t(TMath::Sign(1.,muonTrack->GetInverseBendingMomentum()));
235
236 fE2 = TMath::Sqrt(muonMass * muonMass + fPxRec2 * fPxRec2 + fPyRec2 * fPyRec2 + fPzRec2 * fPzRec2);
237 fV2.SetPxPyPzE(fPxRec2, fPyRec2, fPzRec2, fE2);
238
239 ntrackhits = muonTrack->GetNHit();
240 fitfmin = muonTrack->GetChi2();
241
242 // transverse momentum
243 Float_t pt2 = fV2.Pt();
244
245 // chi2 per d.o.f.
246 Float_t ch2 = fitfmin / (2.0 * ntrackhits - 5);
247
248 // condition for good track (Chi2Cut and PtCut)
249 if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax)) {
250
251 // condition for opposite charges
252 if ((fCharge * fCharge2) == -1) {
253
254 // invariant mass
255 fVtot = fV1 + fV2;
256 Float_t invMass = fVtot.M();
257
258 // fill histos hInvMassAll and hInvMassRes
259 hInvMassAll->Fill(invMass);
260 hInvMassRes->Fill(invMass);
ac3c5325 261 hInvMassAll_vs_Pt->Fill(invMass,fVtot.Pt());
5473f16a 262 if (invMass > massMin && invMass < massMax) {
263 EventInMass++;
264 hRapResonance->Fill(fVtot.Rapidity());
265 hPtResonance->Fill(fVtot.Pt());
266 }
267
268 } // if (fCharge * fCharge2) == -1)
269 } // if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax))
270 } // for (Int_t iTrack2 = iTrack + 1; iTrack2 < iTrack; iTrack2++)
271 } // if (ch1 < Chi2Cut) && (pt1 > PtCutMin)&& (pt1 < PtCutMax) )
272 } // for (Int_t iTrack = 0; iTrack < nrectracks; iTrack++)
273
274 hNumberOfTrack->Fill(nTracks);
48d6b312 275 // esdFile->Delete();
5473f16a 276 } // for (Int_t iEvent = FirstEvent;
277
ac3c5325 278// Loop over events for bg event
279
280 Double_t thetaPlus, phiPlus;
281 Double_t thetaMinus, phiMinus;
282 Float_t PtMinus, PtPlus;
283
284 for (Int_t iEvent = 0; iEvent < hInvMassAll->Integral(); iEvent++) {
285
286 hThetaPhiPlus->GetRandom2(phiPlus, thetaPlus);
287 hThetaPhiMinus->GetRandom2(phiMinus,thetaMinus);
288 PtPlus = hPtMuonPlus->GetRandom();
289 PtMinus = hPtMuonMinus->GetRandom();
290
291 fPxRec1 = PtPlus * TMath::Cos(TMath::Pi()/180.*phiPlus);
292 fPyRec1 = PtPlus * TMath::Sin(TMath::Pi()/180.*phiPlus);
293 fPzRec1 = PtPlus / TMath::Tan(TMath::Pi()/180.*thetaPlus);
294
295 fE1 = TMath::Sqrt(muonMass * muonMass + fPxRec1 * fPxRec1 + fPyRec1 * fPyRec1 + fPzRec1 * fPzRec1);
296 fV1.SetPxPyPzE(fPxRec1, fPyRec1, fPzRec1, fE1);
297
298 fPxRec2 = PtMinus * TMath::Cos(TMath::Pi()/180.*phiMinus);
299 fPyRec2 = PtMinus * TMath::Sin(TMath::Pi()/180.*phiMinus);
300 fPzRec2 = PtMinus / TMath::Tan(TMath::Pi()/180.*thetaMinus);
301
302 fE2 = TMath::Sqrt(muonMass * muonMass + fPxRec2 * fPxRec2 + fPyRec2 * fPyRec2 + fPzRec2 * fPzRec2);
303 fV2.SetPxPyPzE(fPxRec2, fPyRec2, fPzRec2, fE2);
304
305 // invariant mass
306 fVtot = fV1 + fV2;
307
308 // fill histos hInvMassAll and hInvMassRes
309 hInvMassBg->Fill(fVtot.M());
310 hInvMassBgk_vs_Pt->Fill( fVtot.M(), fVtot.Pt() );
311 }
312
5473f16a 313 histoFile->Write();
314 histoFile->Close();
315
316 cout << "MUONmassPlot " << endl;
317 cout << "FirstEvent " << FirstEvent << endl;
318 cout << "LastEvent " << LastEvent << endl;
319 cout << "ResType " << ResType << endl;
320 cout << "Chi2Cut " << Chi2Cut << endl;
321 cout << "PtCutMin " << PtCutMin << endl;
322 cout << "PtCutMax " << PtCutMax << endl;
323 cout << "massMin " << massMin << endl;
324 cout << "massMax " << massMax << endl;
325 cout << "EventInMass " << EventInMass << endl;
326
327 return kTRUE;
328}
329