Inserting TMath.h where required by the new version of ROOT
[u/mrichter/AliRoot.git] / PHOS / AliPHOSEMCAGeometry.cxx
CommitLineData
2f2c3b32 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//_________________________________________________________________________
19// Geometry class for PHOS : EMCA (Electromagnetic Calorimeter)
a3dfe79c 20// Its data members provide geometry parametrization of EMCA
21// which can be changed in the constructor only.
22// Author : Yves Schutz (SUBATECH)
23// Modified : Yuri Kharlov (IHEP, Protvino)
24// 13 September 2000
85218d13 25// Modified : Dmitri Peressounko (RRC "Kurchatov Institute")
26// 6 August 2001
a3dfe79c 27
2f2c3b32 28// --- AliRoot header files ---
29
30#include "AliPHOSEMCAGeometry.h"
31
925e6570 32ClassImp(AliPHOSEMCAGeometry)
2f2c3b32 33
34//____________________________________________________________________________
3663622c 35AliPHOSEMCAGeometry::AliPHOSEMCAGeometry():
36 fAirGapLed(0.f),
37 fStripWallWidthOut(0.f),
38 fStripWallWidthIn(0.f),
39 fTyvecThickness(0.f),
40 fInnerThermoWidthX(0.f),
41 fInnerThermoWidthY(0.f),
42 fInnerThermoWidthZ(0.f),
43 fAirGapWidthX(0.f),
44 fAirGapWidthY(0.f),
45 fAirGapWidthZ(0.f),
46 fCoolerWidthX(0.f),
47 fCoolerWidthY(0.f),
48 fCoolerWidthZ(0.f),
49 fAlCoverThickness(0.f),
50 fOuterThermoWidthXUp(0.f),
51 fOuterThermoWidthXLow(0.f),
52 fOuterThermoWidthY(0.f),
53 fOuterThermoWidthZ(0.f),
54 fAlFrontCoverX(0.f),
55 fAlFrontCoverZ(0.f),
56 fFiberGlassSup2X(0.f),
57 fFiberGlassSup1X(0.f),
58 fFrameHeight(0.f),
59 fFrameThickness(0.f),
60 fAirSpaceFeeX(0.f),
61 fAirSpaceFeeZ(0.f),
62 fAirSpaceFeeY(0.f),
63 fWarmUpperThickness(0.f),
64 fWarmBottomThickness(0.f),
65 fWarmAlCoverWidthX(0.f),
66 fWarmAlCoverWidthY(0.f),
67 fWarmAlCoverWidthZ(0.f),
68 fFiberGlassSup1Y(0.f),
69 fFiberGlassSup2Y(0.f),
70 fTSupportDist(0.f),
71 fTSupport1Thickness(0.f),
72 fTSupport2Thickness(0.f),
73 fTSupport1Width(0.f),
74 fTSupport2Width(0.f),
75 fIPtoOuterCoverDistance(0.f),
76 fIPtoCrystalSurface(0.f),
77 fSupportPlateThickness(0.f),
78 fNCellsInStrip(0),
79 fNStripX(0),
80 fNStripZ(0),
81 fNTSupports(0),
82 fNPhi(0),
83 fNZ(0)
2f2c3b32 84{
85
85218d13 86
2f2c3b32 87 // Initializes the EMC parameters
85218d13 88 // Coordinate system chosen: x across beam, z along beam, y out of beam.
89 // Reference point for all volumes incide module is
90 // center of module in x,z on the upper surface of support beam
2f2c3b32 91
85218d13 92 //Distance from IP to surface of the crystals
93 fIPtoCrystalSurface = 460.0 ;
2f2c3b32 94
2f2c3b32 95
85218d13 96 //CRYSTAL
97
98 fCrystalHalfSize[0] = 2.2 /2 ; //Half-Sizes of crystall
99 fCrystalHalfSize[1] = 18.0 /2 ;
100 fCrystalHalfSize[2] = 2.2 /2 ;
101
102 //APD + preamplifier
2f2c3b32 103
50abc6f8 104 //fPinDiodeSize[0] = 1.71 ; //Values of ame PIN diode
9f418137 105 //fPinDiodeSize[1] = 0.0280 ; // OHO 0.0280 is the depth of active layer
50abc6f8 106 //fPinDiodeSize[2] = 1.61 ;
107
85218d13 108 fPinDiodeHalfSize[0] = 0.5000 /2 ; // APD 5 mm side
109 fPinDiodeHalfSize[1] = 0.0100 /2 ; // APD bulk thickness
110 fPinDiodeHalfSize[2] = 0.5000 /2 ; // APD 5 mm side
111
112 fPreampHalfSize[0] = 1.5 / 2 ; // Preamplifier
113 fPreampHalfSize[1] = 0.5 / 2 ;
114 fPreampHalfSize[2] = 1.5 / 2 ;
115
116 //STRIP
117
118 fNCellsInStrip = 8 ; //Number of crystals in strip
119 fNStripX = 8 ; //Number of strips acros beam
120 fNStripZ = 56 ; //Number of strips along beam
121
122 fStripWallWidthOut = 0.01 ; // Side to another strip
123 fStripWallWidthIn = 0.02 ; // Side betveen crystals in one strip
124
125 fTyvecThickness = 0.01 ; //Thickness of the tyvec
126
127 fAirGapLed = 1.5 - 2 * fPreampHalfSize[1] - 2 * fPinDiodeHalfSize[1] ; // Air gap before crystalls for LED system
128 // Note, that Cell in Strip 1.5 longer then crystall
129
130 //---Now calculate thechnical sizes for GEANT implementation
131
132 fWrappedHalfSize[0] = (2*fTyvecThickness + 2*fCrystalHalfSize[0])/2 ; //This will be size of crystall
133 fWrappedHalfSize[1] = fCrystalHalfSize[1] ; //wrapped into tyvec
134 fWrappedHalfSize[2] = (2*fTyvecThickness + 2*fCrystalHalfSize[2])/2 ; //
135
136 fAirCellHalfSize[0] = fWrappedHalfSize[0] ; //This is HALF-size of one cell
137 fAirCellHalfSize[1] = (fAirGapLed + 2*fPreampHalfSize[1] +
138 2*fPinDiodeHalfSize[1] + 2*fWrappedHalfSize[1])/2 ; //in strip
139 fAirCellHalfSize[2] = fWrappedHalfSize[2] ; //
140
141 fSupportPlateHalfSize[0] = ( (fNCellsInStrip-1)*fStripWallWidthIn + 2* fStripWallWidthOut +
142 fNCellsInStrip * (2 * fTyvecThickness + 2*fCrystalHalfSize[0]) )/2 ;
143 fSupportPlateHalfSize[1] = 6.0 /2 ;
144 fSupportPlateHalfSize[2] = ( 2 * fTyvecThickness + 2*fCrystalHalfSize[0] + 2*fStripWallWidthOut )/2 ;
145
146 fSupportPlateThickness = 0.3 ;
147 fSupportPlateInHalfSize[0] = fSupportPlateHalfSize[0] ; //Half-sizes of the air
148 fSupportPlateInHalfSize[1] = fSupportPlateHalfSize[1]-fSupportPlateThickness ; //box in the support plate
149 fSupportPlateInHalfSize[2] = fSupportPlateHalfSize[2]-fSupportPlateThickness/2 ;
150
151 fStripHalfSize[0]= fSupportPlateHalfSize[0] ;
152 fStripHalfSize[1]= ( 2*fSupportPlateHalfSize[1] + 2*fAirCellHalfSize[1] )/2;
153 fStripHalfSize[2]= fSupportPlateHalfSize[2] ;
154
155 // ------- Inner hermoinsulation ---------------
156 fInnerThermoWidthX = 2.0 ; // Width of the innerthermoinsulation across the beam
157 fInnerThermoWidthY = 2.0 ; // Width of the upper cover of innerthermoinsulation
158 fInnerThermoWidthZ = 2.0 ; // Width of the innerthermoinsulation along the beam
159
160 fInnerThermoHalfSize[0] = (2 * fStripHalfSize[0] * fNStripX + 2 * fInnerThermoWidthX ) /2 ;
161 fInnerThermoHalfSize[1] = (2 * fStripHalfSize[1] + fInnerThermoWidthY ) /2 ;
162 fInnerThermoHalfSize[2] = (2 * fStripHalfSize[2] * fNStripZ + 2 * fInnerThermoWidthZ ) /2 ;
163
164 // ------- Air gap between inner thermoinsulation and passive coller ---------
165
166 fAirGapWidthX = 0.2 ; // Width of the air gap across the beam
167 fAirGapWidthY = 0.2 ; // Width of the upper air gap
168 fAirGapWidthZ = 0.2 ; // Width of the air gap along the beam
169
170 fAirGapHalfSize[0] = (2 * fInnerThermoHalfSize[0] + 2 * fAirGapWidthX ) /2 ;
171 fAirGapHalfSize[1] = (2 * fInnerThermoHalfSize[1] + fAirGapWidthY ) /2 ;
172 fAirGapHalfSize[2] = (2 * fInnerThermoHalfSize[2] + 2 * fAirGapWidthZ ) /2 ;
2f2c3b32 173
85218d13 174 // ------- Passive Cooler ------------------------
175
176 fCoolerWidthX = 2.0 ; // Width of the passive coller across the beam
177 fCoolerWidthY = 0.3 ; // Width of the upper cover of cooler
178 fCoolerWidthZ = 2.0 ; // Width of the passive cooler along the beam
179
180 fCoolerHalfSize[0] = (2 * fAirGapHalfSize[0] + 2 * fCoolerWidthX ) /2 ;
181 fCoolerHalfSize[1] = (2 * fAirGapHalfSize[1] + fCoolerWidthY ) /2 ;
182 fCoolerHalfSize[2] = (2 * fAirGapHalfSize[2] + 2 * fCoolerWidthZ ) /2 ;
183
184 // ------- Outer thermoinsulation and Al cover -------------------------------
2f2c3b32 185
85218d13 186 fAlCoverThickness = 0.1 ; //Thickness of the Al cover of the module
187
188 fOuterThermoWidthXUp = 156.0 - fAlCoverThickness ;
189 //width of the upper surface of the PHOS module accross the beam
190 fOuterThermoWidthY = 6.0 ; // with of the upper cover of outer thermoinsulation
191 fOuterThermoWidthZ = 6.0 ; //width of the thermoinsulation along the beam
192
193 fAlFrontCoverX = 6.0 ; //Width of Al strip around fiberglass window: across
194 fAlFrontCoverZ = 6.0 ; //and along the beam
195
196
197 // Calculate distance from IP to upper cover
597e6309 198 fIPtoOuterCoverDistance = fIPtoCrystalSurface - fAirGapLed - fInnerThermoWidthY - fAirGapWidthY -
85218d13 199 fCoolerWidthY - fOuterThermoWidthY - fAlCoverThickness ;
200
201 Float_t tanA = fOuterThermoWidthXUp / (2.*fIPtoOuterCoverDistance) ;
202 // tan(a) where A = angle between IP to center and IP to side across beam
203
204 fOuterThermoWidthXLow = fOuterThermoWidthXUp +
205 2 * (2* fCoolerHalfSize[1] + fOuterThermoWidthY) * tanA
206 - fAlCoverThickness ;
207 //width of the lower surface of the COOL section accross the beam
208
209
210 fOuterThermoParams[0] = fOuterThermoWidthXUp / 2 ; // half-length along x at the z surface positioned at -DZ;
211 fOuterThermoParams[1] = fOuterThermoWidthXLow/ 2 ; // half-length along x at the z surface positioned at +DZ;
212 fOuterThermoParams[2] = ( 2 * fCoolerHalfSize[2] + 2 * fOuterThermoWidthZ ) / 2 ;
213 // `half-length along the y-axis' in out case this is z axis
214 fOuterThermoParams[3] = ( 2* fCoolerHalfSize[1] + fOuterThermoWidthY) /2 ;
215 // `half-length along the z-axis' in our case this is y axis
216
217 fAlCoverParams[0] = fOuterThermoParams[0] + fAlCoverThickness ;
218 fAlCoverParams[1] = fOuterThermoParams[1] + fAlCoverThickness ;
219 fAlCoverParams[2] = fOuterThermoParams[2] + fAlCoverThickness ;
220 fAlCoverParams[3] = fOuterThermoParams[3] + fAlCoverThickness /2 ;
221
222
223 fFiberGlassHalfSize[0] = fAlCoverParams[0] - fAlFrontCoverX ;
224 fFiberGlassHalfSize[1] = fAlCoverParams[2] - fAlFrontCoverZ ; //Note, here other ref. system
225 fFiberGlassHalfSize[2] = fAlCoverThickness / 2 ;
226
227
228 //============Now warm section======================
229 //Al Cover
230 fWarmAlCoverWidthX = 2 * fAlCoverParams[1] ; //Across beam
231 fWarmAlCoverWidthY = 159.0 ; //along beam
232
233 //T-support
234 fTSupport1Thickness = 3.5 ;
235 fTSupport2Thickness = 5.0 ;
236 fTSupport1Width = 10.6 ;
237 fTSupport2Width = 3.1 ;
238 fNTSupports = fNStripX + 1 ;
239 fTSupportDist = 7.48 ;
240
241 //Air space for FEE
242 fAirSpaceFeeX = 148.6 ; //Across beam
243 fAirSpaceFeeY = 135.0 ; //along beam
244 fAirSpaceFeeZ = 19.0 ; //out of beam
245
246 //thermoinsulation
247 fWarmBottomThickness = 4.0 ;
248 fWarmUpperThickness = 4.0 ;
249
250 //Frame
251 fFrameThickness = 5.0 ;
252 fFrameHeight = 15.0 ;
253
254 //Fiberglass support
255 fFiberGlassSup1X = 6.0 ;
256 fFiberGlassSup1Y = 4.0 + fWarmUpperThickness ;
257
258 fFiberGlassSup2X = 3.0 ;
259 fFiberGlassSup2Y = fFrameHeight ;
260
261 //Now calculate Half-sizes
262
263 fWarmAlCoverWidthZ = fAirSpaceFeeZ + fWarmBottomThickness + fWarmUpperThickness +
264 fTSupport1Thickness + fTSupport2Thickness ;
265
266
267 fWarmAlCoverHalfSize[0] = fWarmAlCoverWidthX / 2 ;
268 fWarmAlCoverHalfSize[1] = fWarmAlCoverWidthY / 2 ;
269 fWarmAlCoverHalfSize[2] = fWarmAlCoverWidthZ / 2 ;
270
2f2c3b32 271
85218d13 272 fWarmThermoHalfSize[0] = fWarmAlCoverHalfSize[0] - fAlCoverThickness ;
273 fWarmThermoHalfSize[1] = fWarmAlCoverHalfSize[1] - fAlCoverThickness ;
274 fWarmThermoHalfSize[2] = fWarmAlCoverHalfSize[2] - fAlCoverThickness /2 ;
275
276
277 //T-support
278 fTSupport1HalfSize[0] = fTSupport1Width /2 ; //Across beam
279 fTSupport1HalfSize[1] = (fAirSpaceFeeY + 2*fFiberGlassSup1X) /2 ; //along beam
280 fTSupport1HalfSize[2] = fTSupport1Thickness /2; //out of beam
281
282 fTSupport2HalfSize[0] = fTSupport2Width /2; //Across beam
283 fTSupport2HalfSize[1] = fTSupport1HalfSize[1] ; //along beam
284 fTSupport2HalfSize[2] = fTSupport2Thickness /2; //out of beam
285
286 //cables
287 fTCables1HalfSize[0] = (2*fTSupport1HalfSize[0]*fNTSupports + (fNTSupports-1)* fTSupportDist) / 2 ; //Across beam
288 fTCables1HalfSize[1] = fTSupport1HalfSize[1] ; //along beam
289 fTCables1HalfSize[2] = fTSupport1HalfSize[2] ; //out of beam
290
291 fTCables2HalfSize[0] = fTCables1HalfSize[0] ; //Across beam
292 fTCables2HalfSize[1] = fTSupport2HalfSize[1] ; //along beam
293 fTCables2HalfSize[2] = fTSupport2HalfSize[2] ; //out of beam
294
295 //frame: we define two frames along beam ...Z and across beam ...X
296 fFrameXHalfSize[0] = (fAirSpaceFeeX + 2 * fFiberGlassSup2X + 2* fFrameThickness) /2 ;
297 fFrameXHalfSize[1] = fFrameThickness /2 ;
298 fFrameXHalfSize[2] = fFrameHeight /2 ;
299
300 fFrameXPosition[0] = 0 ;
301 fFrameXPosition[1] = fAirSpaceFeeY /2 + fFiberGlassSup2X + fFrameXHalfSize[1] ;
302 fFrameXPosition[2] = fWarmThermoHalfSize[2] - fFrameHeight/ 2 - fWarmBottomThickness ;
303
304 fFrameZHalfSize[0] = fFrameThickness /2 ;
305 fFrameZHalfSize[1] = (fAirSpaceFeeY + 2 * fFiberGlassSup2X) /2 ;
306 fFrameZHalfSize[2] = fFrameHeight /2 ;
307
308 fFrameZPosition[0] = fAirSpaceFeeX /2 + fFiberGlassSup2X + fFrameZHalfSize[0] ;
309 fFrameZPosition[1] = 0 ;
310 fFrameZPosition[2] = fWarmThermoHalfSize[2] - fFrameHeight/ 2 - fWarmBottomThickness ;
311
312 //Fiberglass support define 4 fiber glass supports 2 along Z and 2 along X
2f2c3b32 313
85218d13 314 fFGupXHalfSize[0] = fFrameXHalfSize[0] ;
315 fFGupXHalfSize[1] = fFiberGlassSup1X /2 ;
316 fFGupXHalfSize[2] = fFiberGlassSup1Y /2;
317
318 fFGupXPosition[0] = 0 ;
319 fFGupXPosition[1] = fAirSpaceFeeY /2 + fFGupXHalfSize[1] ;
320 fFGupXPosition[2] = fWarmThermoHalfSize[2] - fFrameHeight - fWarmBottomThickness - fFGupXHalfSize[2] ;
321
322 fFGupZHalfSize[0] = fFiberGlassSup1X /2 ;
323 fFGupZHalfSize[1] = fAirSpaceFeeY /2 ;
324 fFGupZHalfSize[2] = fFiberGlassSup1Y /2;
325
326 fFGupZPosition[0] = fAirSpaceFeeX /2 + fFGupZHalfSize[0] ;
327 fFGupZPosition[1] = 0 ;
328 fFGupZPosition[2] = fWarmThermoHalfSize[2] - fFrameHeight - fWarmBottomThickness - fFGupXHalfSize[2] ;
329
330 fFGlowXHalfSize[0] = fFrameXHalfSize[0] - 2*fFrameZHalfSize[0] ;
331 fFGlowXHalfSize[1] = fFiberGlassSup2X /2 ;
332 fFGlowXHalfSize[2] = fFrameXHalfSize[2] ;
333
334 fFGlowXPosition[0] = 0 ;
335 fFGlowXPosition[1] = fAirSpaceFeeY /2 + fFGlowXHalfSize[1] ;
336 fFGlowXPosition[2] = fWarmThermoHalfSize[2] - fWarmBottomThickness - fFGlowXHalfSize[2] ;
337
338 fFGlowZHalfSize[0] = fFiberGlassSup2X /2 ;
339 fFGlowZHalfSize[1] = fAirSpaceFeeY /2 ;
340 fFGlowZHalfSize[2] = fFrameZHalfSize[2] ;
341
342 fFGlowZPosition[0] = fAirSpaceFeeX /2 + fFGlowZHalfSize[0] ;
343 fFGlowZPosition[1] = 0 ;
344 fFGlowZPosition[2] = fWarmThermoHalfSize[2] - fWarmBottomThickness - fFGlowXHalfSize[2] ;
345
346
347 // --- Air Gap for FEE ----
348
349 fFEEAirHalfSize[0] = fAirSpaceFeeX /2 ;
350 fFEEAirHalfSize[1] = fAirSpaceFeeY /2;
351 fFEEAirHalfSize[2] = fAirSpaceFeeZ /2;
352
353 fFEEAirPosition[0] = 0 ;
354 fFEEAirPosition[1] = 0 ;
355 fFEEAirPosition[2] = fWarmThermoHalfSize[2] - fWarmBottomThickness - fFEEAirHalfSize[2] ;
356
357 // --- Calculate the oveol dimentions of the EMC module
2f2c3b32 358
85218d13 359 fEMCParams[3] = fAlCoverParams[3] + fWarmAlCoverHalfSize[2] ; //Size out of beam
360 fEMCParams[0] = fAlCoverParams[0] ; //Upper size across the beam
361 fEMCParams[1] = (fAlCoverParams[1] - fAlCoverParams[0])*fEMCParams[3]/fAlCoverParams[3]
362 + fAlCoverParams[0] ; //Lower size across the beam
363 fEMCParams[2] = fWarmAlCoverHalfSize[1] ; // Size along the beam
364
365 fNPhi = fNStripX * fNCellsInStrip ; //Number of crystalls across beam
366 fNZ = fNStripZ ; //number of crystals along beam
2f2c3b32 367}
85218d13 368