]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSGeometry.cxx
Further modifications in OpenOutput and WriteCluster
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.cxx
CommitLineData
d15a28e7 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
17
d15a28e7 18//_________________________________________________________________________
b2a60966 19// Geometry class for PHOS : singleton
a3dfe79c 20// PHOS consists of the electromagnetic calorimeter (EMCA)
21// and a charged particle veto either in the Subatech's version (PPSD)
22// or in the IHEP's one (CPV).
23// The EMCA/PPSD/CPV modules are parametrized so that any configuration
24// can be easily implemented
25// The title is used to identify the version of CPV used.
b2a60966 26//
710f859a 27//*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (RRC "KI" & SUBATECH)
d15a28e7 28
29// --- ROOT system ---
30
31#include "TVector3.h"
32#include "TRotation.h"
fa7cce36 33#include "TFolder.h"
34#include "TROOT.h"
d15a28e7 35
36// --- Standard library ---
37
4410223b 38#include <stdlib.h>
d15a28e7 39
40// --- AliRoot header files ---
41
42#include "AliPHOSGeometry.h"
468794ea 43#include "AliPHOSEMCAGeometry.h"
710f859a 44#include "AliPHOSRecPoint.h"
d15a28e7 45#include "AliConst.h"
46
9ec91567 47ClassImp(AliPHOSGeometry) ;
d15a28e7 48
a4e98857 49// these initialisations are needed for a singleton
9ec91567 50AliPHOSGeometry * AliPHOSGeometry::fgGeom = 0 ;
282c5906 51Bool_t AliPHOSGeometry::fgInit = kFALSE ;
9ec91567 52
d15a28e7 53//____________________________________________________________________________
54AliPHOSGeometry::~AliPHOSGeometry(void)
55{
b2a60966 56 // dtor
57
52a36ffd 58 if (fRotMatrixArray) fRotMatrixArray->Delete() ;
59 if (fRotMatrixArray) delete fRotMatrixArray ;
fa0bc588 60 if (fPHOSAngle ) delete[] fPHOSAngle ;
52a36ffd 61}
52a36ffd 62//____________________________________________________________________________
63
64void AliPHOSGeometry::Init(void)
65{
a4e98857 66 // Initializes the PHOS parameters :
67 // IHEP is the Protvino CPV (cathode pad chambers)
68 // GPS2 is the Subatech Pre-Shower (two micromegas sandwiching a passive lead converter)
809cd394 69 // MIXT 4 PHOS modules withe the IHEP CPV and one PHOS module with the Subatech Pre-Shower
710f859a 70
809cd394 71 TString test(GetName()) ;
72 if (test != "IHEP" && test != "GPS2" && test != "MIXT") {
f1611b7c 73 Fatal("Init", "%s is not a known geometry (choose among IHEP, GPS2 and MIXT)", test.Data() ) ;
809cd394 74 }
75
710f859a 76 fgInit = kTRUE ;
77
78 fNModules = 5;
79 fAngle = 20;
80
81 fGeometryEMCA = new AliPHOSEMCAGeometry();
82
83 fGeometryCPV = new AliPHOSCPVGeometry ();
84
85 fGeometrySUPP = new AliPHOSSupportGeometry();
86
87 fPHOSAngle = new Float_t[fNModules] ;
88
89 Float_t * emcParams = fGeometryEMCA->GetEMCParams() ;
90
581e32d4 91 fPHOSParams[0] = TMath::Max((Double_t)fGeometryCPV->GetCPVBoxSize(0)/2.,
92 (Double_t)(emcParams[0]*(fGeometryCPV->GetCPVBoxSize(1)+emcParams[3]) -
710f859a 93 emcParams[1]* fGeometryCPV->GetCPVBoxSize(1))/emcParams[3] ) ;
94 fPHOSParams[1] = emcParams[1] ;
581e32d4 95 fPHOSParams[2] = TMath::Max((Double_t)emcParams[2], (Double_t)fGeometryCPV->GetCPVBoxSize(2)/2.);
710f859a 96 fPHOSParams[3] = emcParams[3] + fGeometryCPV->GetCPVBoxSize(1)/2. ;
97
98 fIPtoUpperCPVsurface = fGeometryEMCA->GetIPtoOuterCoverDistance() - fGeometryCPV->GetCPVBoxSize(1) ;
99
100 Int_t index ;
101 for ( index = 0; index < fNModules; index++ )
52a36ffd 102 fPHOSAngle[index] = 0.0 ; // Module position angles are set in CreateGeometry()
710f859a 103
104 this->SetPHOSAngles() ;
105 fRotMatrixArray = new TObjArray(fNModules) ;
106
52a36ffd 107}
108
109//____________________________________________________________________________
110AliPHOSGeometry * AliPHOSGeometry::GetInstance()
111{
a4e98857 112 // Returns the pointer of the unique instance; singleton specific
113
809cd394 114 return static_cast<AliPHOSGeometry *>( fgGeom ) ;
52a36ffd 115}
116
117//____________________________________________________________________________
118AliPHOSGeometry * AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title)
119{
120 // Returns the pointer of the unique instance
a4e98857 121 // Creates it with the specified options (name, title) if it does not exist yet
122
52a36ffd 123 AliPHOSGeometry * rv = 0 ;
124 if ( fgGeom == 0 ) {
125 if ( strcmp(name,"") == 0 )
126 rv = 0 ;
127 else {
128 fgGeom = new AliPHOSGeometry(name, title) ;
129 if ( fgInit )
130 rv = (AliPHOSGeometry * ) fgGeom ;
131 else {
132 rv = 0 ;
133 delete fgGeom ;
134 fgGeom = 0 ;
135 }
136 }
137 }
138 else {
21cd0c07 139 if ( strcmp(fgGeom->GetName(), name) != 0 )
140 ::Error("GetInstance", "Current geometry is %s. You cannot call %s", fgGeom->GetName(), name) ;
52a36ffd 141 else
142 rv = (AliPHOSGeometry *) fgGeom ;
143 }
144 return rv ;
145}
4697edca 146
52a36ffd 147//____________________________________________________________________________
148void AliPHOSGeometry::SetPHOSAngles()
149{
a4e98857 150 // Calculates the position of the PHOS modules in ALICE global coordinate system
52a36ffd 151
152 Double_t const kRADDEG = 180.0 / kPI ;
710f859a 153 Float_t pphi = 2 * TMath::ATan( GetOuterBoxSize(0) / ( 2.0 * GetIPtoUpperCPVsurface() ) ) ;
52a36ffd 154 pphi *= kRADDEG ;
710f859a 155 if (pphi > fAngle){
21cd0c07 156 Error("SetPHOSAngles", "PHOS modules overlap!\n pphi = %f fAngle = %f", pphi, fAngle);
710f859a 157
158 }
ed4205d8 159 pphi = fAngle;
52a36ffd 160
161 for( Int_t i = 1; i <= fNModules ; i++ ) {
ed4205d8 162 Float_t angle = pphi * ( i - fNModules / 2.0 - 0.5 ) ;
52a36ffd 163 fPHOSAngle[i-1] = - angle ;
164 }
d15a28e7 165}
166
167//____________________________________________________________________________
7b7c1533 168Bool_t AliPHOSGeometry::AbsToRelNumbering(const Int_t AbsId, Int_t * relid) const
d15a28e7 169{
b2a60966 170 // Converts the absolute numbering into the following array/
171 // relid[0] = PHOS Module number 1:fNModules
172 // relid[1] = 0 if PbW04
710f859a 173 // = -1 if CPV
174 // relid[2] = Row number inside a PHOS module
175 // relid[3] = Column number inside a PHOS module
d15a28e7 176
177 Bool_t rv = kTRUE ;
92862013 178 Float_t id = AbsId ;
d15a28e7 179
710f859a 180 Int_t phosmodulenumber = (Int_t)TMath:: Ceil( id / GetNCristalsInModule() ) ;
d15a28e7 181
710f859a 182 if ( phosmodulenumber > GetNModules() ) { // it is a CPV pad
183
184 id -= GetNPhi() * GetNZ() * GetNModules() ;
185 Float_t nCPV = GetNumberOfCPVPadsPhi() * GetNumberOfCPVPadsZ() ;
186 relid[0] = (Int_t) TMath::Ceil( id / nCPV ) ;
187 relid[1] = -1 ;
188 id -= ( relid[0] - 1 ) * nCPV ;
189 relid[2] = (Int_t) TMath::Ceil( id / GetNumberOfCPVPadsZ() ) ;
190 relid[3] = (Int_t) ( id - ( relid[2] - 1 ) * GetNumberOfCPVPadsZ() ) ;
d15a28e7 191 }
710f859a 192 else { // it is a PW04 crystal
d15a28e7 193
92862013 194 relid[0] = phosmodulenumber ;
195 relid[1] = 0 ;
196 id -= ( phosmodulenumber - 1 ) * GetNPhi() * GetNZ() ;
710f859a 197 relid[2] = (Int_t)TMath::Ceil( id / GetNZ() ) ;
198 relid[3] = (Int_t)( id - ( relid[2] - 1 ) * GetNZ() ) ;
d15a28e7 199 }
200 return rv ;
201}
52a36ffd 202
9f616d61 203//____________________________________________________________________________
7b7c1533 204void AliPHOSGeometry::EmcModuleCoverage(const Int_t mod, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt) const
9f616d61 205{
a4e98857 206 // calculates the angular coverage in theta and phi of one EMC (=PHOS) module
9f616d61 207
208 Double_t conv ;
cf0c2bc1 209 if ( opt == Radian() )
9f616d61 210 conv = 1. ;
cf0c2bc1 211 else if ( opt == Degre() )
9f616d61 212 conv = 180. / TMath::Pi() ;
213 else {
21cd0c07 214 Warning("EmcModuleCoverage", "%s unknown option; result in radian", opt) ;
9f616d61 215 conv = 1. ;
216 }
217
710f859a 218 Float_t phi = GetPHOSAngle(mod) * (TMath::Pi() / 180.) ;
219 Float_t y0 = GetIPtoCrystalSurface() ;
5868a791 220 Float_t x0 = GetCellStep()*GetNPhi() ;
221 Float_t z0 = GetCellStep()*GetNZ();
222 Double_t angle = TMath::ATan( x0 / y0 / 2 ) ;
710f859a 223 phi = phi + 1.5 * TMath::Pi() ; // to follow the convention of the particle generator(PHOS is between 220 and 320 deg.)
92862013 224 Double_t max = phi - angle ;
225 Double_t min = phi + angle ;
226 pM = TMath::Max(max, min) * conv ;
227 pm = TMath::Min(max, min) * conv ;
9f616d61 228
5868a791 229 angle = TMath::ATan( z0 / y0 / 2 ) ;
92862013 230 max = TMath::Pi() / 2. + angle ; // to follow the convention of the particle generator(PHOS is at 90 deg.)
231 min = TMath::Pi() / 2. - angle ;
232 tM = TMath::Max(max, min) * conv ;
233 tm = TMath::Min(max, min) * conv ;
9f616d61 234
235}
236
237//____________________________________________________________________________
7b7c1533 238void AliPHOSGeometry::EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt) const
9f616d61 239{
a4e98857 240 // calculates the angular coverage in theta and phi of a single crystal in a EMC(=PHOS) module
9f616d61 241
242 Double_t conv ;
cf0c2bc1 243 if ( opt == Radian() )
9f616d61 244 conv = 1. ;
cf0c2bc1 245 else if ( opt == Degre() )
9f616d61 246 conv = 180. / TMath::Pi() ;
247 else {
21cd0c07 248 Warning("EmcXtalCoverage", "%s unknown option; result in radian", opt) ;
9f616d61 249 conv = 1. ;
250 }
251
710f859a 252 Float_t y0 = GetIPtoCrystalSurface() ;
92862013 253 theta = 2 * TMath::ATan( GetCrystalSize(2) / (2 * y0) ) * conv ;
254 phi = 2 * TMath::ATan( GetCrystalSize(0) / (2 * y0) ) * conv ;
9f616d61 255}
256
257
258//____________________________________________________________________________
52a36ffd 259void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat) const
d15a28e7 260{
a4e98857 261 // Calculates the coordinates of a RecPoint and the error matrix in the ALICE global coordinate system
b2a60966 262
d15a28e7 263 AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
92862013 264 TVector3 localposition ;
d15a28e7 265
266 tmpPHOS->GetLocalPosition(gpos) ;
267
268
269 if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
710f859a 270 { gpos.SetY( - GetIPtoCrystalSurface()) ;
d15a28e7 271
272 }
273 else
710f859a 274 { // it is a CPV
275 gpos.SetY(- GetIPtoUpperCPVsurface() ) ;
d15a28e7 276 }
277
92862013 278 Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
279 Double_t const kRADDEG = 180.0 / kPI ;
280 Float_t rphi = phi / kRADDEG ;
d15a28e7 281
92862013 282 TRotation rot ;
283 rot.RotateZ(-rphi) ; // a rotation around Z by angle
d15a28e7 284
92862013 285 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
286 gpos.Transform(rot) ; // rotate the baby
6ad0bfa0 287
d15a28e7 288}
289
290//____________________________________________________________________________
5cda30f6 291void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) const
d15a28e7 292{
a4e98857 293 // Calculates the coordinates of a RecPoint in the ALICE global coordinate system
b2a60966 294
d15a28e7 295 AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
92862013 296 TVector3 localposition ;
d15a28e7 297 tmpPHOS->GetLocalPosition(gpos) ;
298
299
300 if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
710f859a 301 { gpos.SetY( - GetIPtoCrystalSurface() ) ;
d15a28e7 302 }
303 else
710f859a 304 { // it is a CPV
305 gpos.SetY(- GetIPtoUpperCPVsurface() ) ;
d15a28e7 306 }
307
92862013 308 Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
309 Double_t const kRADDEG = 180.0 / kPI ;
310 Float_t rphi = phi / kRADDEG ;
d15a28e7 311
92862013 312 TRotation rot ;
313 rot.RotateZ(-rphi) ; // a rotation around Z by angle
d15a28e7 314
92862013 315 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
316 gpos.Transform(rot) ; // rotate the baby
d15a28e7 317}
318
319//____________________________________________________________________________
7b7c1533 320void AliPHOSGeometry::ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & z, Double_t & x) const
d15a28e7 321{
a4e98857 322 // calculates the impact coordinates on PHOS of a neutral particle
323 // emitted in the direction theta and phi in the ALICE global coordinate system
d15a28e7 324
52a36ffd 325 // searches for the PHOS EMC module
326 ModuleNumber = 0 ;
327 Double_t tm, tM, pm, pM ;
328 Int_t index = 1 ;
329 while ( ModuleNumber == 0 && index <= GetNModules() ) {
330 EmcModuleCoverage(index, tm, tM, pm, pM) ;
331 if ( (theta >= tm && theta <= tM) && (phi >= pm && phi <= pM ) )
332 ModuleNumber = index ;
333 index++ ;
d15a28e7 334 }
52a36ffd 335 if ( ModuleNumber != 0 ) {
336 Float_t phi0 = GetPHOSAngle(ModuleNumber) * (TMath::Pi() / 180.) + 1.5 * TMath::Pi() ;
710f859a 337 Float_t y0 = GetIPtoCrystalSurface() ;
52a36ffd 338 Double_t angle = phi - phi0;
339 x = y0 * TMath::Tan(angle) ;
340 angle = theta - TMath::Pi() / 2 ;
341 z = y0 * TMath::Tan(angle) ;
d15a28e7 342 }
d15a28e7 343}
344
1c9d8212 345Bool_t AliPHOSGeometry::Impact(const TParticle * particle) const
346{
347 Bool_t In=kFALSE;
348 Int_t ModuleNumber=0;
349 Double_t z,x;
350 ImpactOnEmc(particle->Theta(),particle->Phi(),ModuleNumber,z,x);
351 if(ModuleNumber) In=kTRUE;
352 else In=kFALSE;
353 return In;
354}
355
d15a28e7 356//____________________________________________________________________________
7b7c1533 357Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * relid, Int_t & AbsId) const
d15a28e7 358{
b2a60966 359 // Converts the relative numbering into the absolute numbering
ed4205d8 360 // EMCA crystals:
361 // AbsId = from 1 to fNModules * fNPhi * fNZ
ed4205d8 362 // CPV pad:
363 // AbsId = from N(total PHOS crystals) + 1
364 // to NCPVModules * fNumberOfCPVPadsPhi * fNumberOfCPVPadsZ
d15a28e7 365
366 Bool_t rv = kTRUE ;
710f859a 367
368 if ( relid[1] == 0 ) { // it is a Phos crystal
52a36ffd 369 AbsId =
710f859a 370 ( relid[0] - 1 ) * GetNPhi() * GetNZ() // the offset of PHOS modules
371 + ( relid[2] - 1 ) * GetNZ() // the offset along phi
372 + relid[3] ; // the offset along z
d15a28e7 373 }
710f859a 374 else { // it is a CPV pad
375 AbsId = GetNPhi() * GetNZ() * GetNModules() // the offset to separate EMCA crystals from CPV pads
376 + ( relid[0] - 1 ) * GetNumberOfCPVPadsPhi() * GetNumberOfCPVPadsZ() // the pads offset of PHOS modules
377 + ( relid[2] - 1 ) * GetNumberOfCPVPadsZ() // the pads offset of a CPV row
52a36ffd 378 + relid[3] ; // the column number
379 }
380
d15a28e7 381 return rv ;
382}
383
384//____________________________________________________________________________
5868a791 385void AliPHOSGeometry::RelPosToAbsId(const Int_t module , const Double_t x, const Double_t z, Int_t & AbsId)const{
386 // Converts local PHOS-module (x, z) coordinates to absId
d15a28e7 387
5868a791 388 if(!module){
389 AbsId = 0 ;
390 return ;
391 }
392
393 Int_t relid[4] ;
394 relid[0] = module ;
395 relid[1] = 0 ;
396 relid[2] = static_cast<Int_t>(TMath::Ceil(GetNPhi()/2.+ x/GetCellStep()));
397 relid[3] = static_cast<Int_t>(TMath::Ceil(GetNZ()/2. - z/GetCellStep())) ;
398
399 RelToAbsNumbering(relid,AbsId) ;
400
401}
402//____________________________________________________________________________
7b7c1533 403void AliPHOSGeometry::RelPosInAlice(const Int_t id, TVector3 & pos ) const
d15a28e7 404{
a4e98857 405 // Converts the absolute numbering into the global ALICE coordinate system
b2a60966 406
ed4205d8 407
408 Int_t relid[4] ;
409
410 AbsToRelNumbering(id , relid) ;
411
412 Int_t phosmodule = relid[0] ;
413
414 Float_t y0 = 0 ;
415
710f859a 416 if ( relid[1] == 0 ) // it is a PbW04 crystal
417 y0 = - GetIPtoCrystalSurface() ;
418 else
419 y0 = - GetIPtoUpperCPVsurface() ;
420
ed4205d8 421 Float_t x, z ;
422 RelPosInModule(relid, x, z) ;
423
424 pos.SetX(x) ;
425 pos.SetZ(z) ;
710f859a 426 pos.SetY(y0) ;
ed4205d8 427
428 Float_t phi = GetPHOSAngle( phosmodule) ;
429 Double_t const kRADDEG = 180.0 / kPI ;
430 Float_t rphi = phi / kRADDEG ;
431
432 TRotation rot ;
433 rot.RotateZ(-rphi) ; // a rotation around Z by angle
434
435 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
436
437 pos.Transform(rot) ; // rotate the baby
d15a28e7 438}
439
440//____________________________________________________________________________
7b7c1533 441void AliPHOSGeometry::RelPosInModule(const Int_t * relid, Float_t & x, Float_t & z) const
d15a28e7 442{
b2a60966 443 // Converts the relative numbering into the local PHOS-module (x, z) coordinates
52a36ffd 444 // Note: sign of z differs from that in the previous version (Yu.Kharlov, 12 Oct 2000)
b2a60966 445
786222b3 446 Int_t row = relid[2] ; //offset along x axis
447 Int_t column = relid[3] ; //offset along z axis
d15a28e7 448
ed4205d8 449
66c3e8ff 450 if ( relid[1] == 0 ) { // its a PbW04 crystal
451 x = - ( GetNPhi()/2. - row + 0.5 ) * GetCellStep() ; // position of Xtal with respect
452 z = ( GetNZ() /2. - column + 0.5 ) * GetCellStep() ; // of center of PHOS module
52a36ffd 453 }
454 else {
710f859a 455 x = - ( GetNumberOfCPVPadsPhi()/2. - row - 0.5 ) * GetPadSizePhi() ; // position of pad with respect
456 z = ( GetNumberOfCPVPadsZ() /2. - column - 0.5 ) * GetPadSizeZ() ; // of center of PHOS module
52a36ffd 457 }
2f3366b6 458}