New quenching algorithm.
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.cxx
CommitLineData
d15a28e7 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
17
d15a28e7 18//_________________________________________________________________________
b2a60966 19// Geometry class for PHOS : singleton
a3dfe79c 20// PHOS consists of the electromagnetic calorimeter (EMCA)
21// and a charged particle veto either in the Subatech's version (PPSD)
22// or in the IHEP's one (CPV).
23// The EMCA/PPSD/CPV modules are parametrized so that any configuration
24// can be easily implemented
25// The title is used to identify the version of CPV used.
b2a60966 26//
710f859a 27//*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (RRC "KI" & SUBATECH)
d15a28e7 28
29// --- ROOT system ---
30
31#include "TVector3.h"
32#include "TRotation.h"
e957fea8 33#include "TParticle.h"
d15a28e7 34
35// --- Standard library ---
36
d15a28e7 37// --- AliRoot header files ---
38
39#include "AliPHOSGeometry.h"
468794ea 40#include "AliPHOSEMCAGeometry.h"
710f859a 41#include "AliPHOSRecPoint.h"
d15a28e7 42
9ec91567 43ClassImp(AliPHOSGeometry) ;
d15a28e7 44
a4e98857 45// these initialisations are needed for a singleton
9ec91567 46AliPHOSGeometry * AliPHOSGeometry::fgGeom = 0 ;
282c5906 47Bool_t AliPHOSGeometry::fgInit = kFALSE ;
9ec91567 48
d15a28e7 49//____________________________________________________________________________
e957fea8 50AliPHOSGeometry::AliPHOSGeometry() {
51 // default ctor
52 // must be kept public for root persistency purposes, but should never be called by the outside world
53 fPHOSAngle = 0 ;
54 fGeometryEMCA = 0 ;
55 fGeometrySUPP = 0 ;
56 fGeometryCPV = 0 ;
57 fgGeom = 0 ;
58 fRotMatrixArray = 0 ;
59}
60
61//____________________________________________________________________________
d15a28e7 62AliPHOSGeometry::~AliPHOSGeometry(void)
63{
b2a60966 64 // dtor
65
52a36ffd 66 if (fRotMatrixArray) fRotMatrixArray->Delete() ;
67 if (fRotMatrixArray) delete fRotMatrixArray ;
fa0bc588 68 if (fPHOSAngle ) delete[] fPHOSAngle ;
52a36ffd 69}
52a36ffd 70//____________________________________________________________________________
71
72void AliPHOSGeometry::Init(void)
73{
a4e98857 74 // Initializes the PHOS parameters :
75 // IHEP is the Protvino CPV (cathode pad chambers)
710f859a 76
809cd394 77 TString test(GetName()) ;
22b8277f 78 if (test != "IHEP" ) {
79 Fatal("Init", "%s is not a known geometry (choose among IHEP)", test.Data() ) ;
809cd394 80 }
81
710f859a 82 fgInit = kTRUE ;
83
84 fNModules = 5;
85 fAngle = 20;
86
87 fGeometryEMCA = new AliPHOSEMCAGeometry();
88
89 fGeometryCPV = new AliPHOSCPVGeometry ();
90
91 fGeometrySUPP = new AliPHOSSupportGeometry();
92
93 fPHOSAngle = new Float_t[fNModules] ;
94
95 Float_t * emcParams = fGeometryEMCA->GetEMCParams() ;
96
581e32d4 97 fPHOSParams[0] = TMath::Max((Double_t)fGeometryCPV->GetCPVBoxSize(0)/2.,
a83b6179 98 (Double_t)(emcParams[0] - (emcParams[1]-emcParams[0])*
99 fGeometryCPV->GetCPVBoxSize(1)/2/emcParams[3]));
710f859a 100 fPHOSParams[1] = emcParams[1] ;
581e32d4 101 fPHOSParams[2] = TMath::Max((Double_t)emcParams[2], (Double_t)fGeometryCPV->GetCPVBoxSize(2)/2.);
710f859a 102 fPHOSParams[3] = emcParams[3] + fGeometryCPV->GetCPVBoxSize(1)/2. ;
103
104 fIPtoUpperCPVsurface = fGeometryEMCA->GetIPtoOuterCoverDistance() - fGeometryCPV->GetCPVBoxSize(1) ;
105
106 Int_t index ;
107 for ( index = 0; index < fNModules; index++ )
52a36ffd 108 fPHOSAngle[index] = 0.0 ; // Module position angles are set in CreateGeometry()
710f859a 109
110 this->SetPHOSAngles() ;
111 fRotMatrixArray = new TObjArray(fNModules) ;
112
52a36ffd 113}
114
5ccb0008 115//____________________________________________________________________________
52a36ffd 116AliPHOSGeometry * AliPHOSGeometry::GetInstance()
117{
a4e98857 118 // Returns the pointer of the unique instance; singleton specific
119
809cd394 120 return static_cast<AliPHOSGeometry *>( fgGeom ) ;
52a36ffd 121}
122
123//____________________________________________________________________________
124AliPHOSGeometry * AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title)
125{
126 // Returns the pointer of the unique instance
a4e98857 127 // Creates it with the specified options (name, title) if it does not exist yet
128
52a36ffd 129 AliPHOSGeometry * rv = 0 ;
130 if ( fgGeom == 0 ) {
131 if ( strcmp(name,"") == 0 )
132 rv = 0 ;
133 else {
134 fgGeom = new AliPHOSGeometry(name, title) ;
135 if ( fgInit )
136 rv = (AliPHOSGeometry * ) fgGeom ;
137 else {
138 rv = 0 ;
139 delete fgGeom ;
140 fgGeom = 0 ;
141 }
142 }
143 }
144 else {
21cd0c07 145 if ( strcmp(fgGeom->GetName(), name) != 0 )
146 ::Error("GetInstance", "Current geometry is %s. You cannot call %s", fgGeom->GetName(), name) ;
52a36ffd 147 else
148 rv = (AliPHOSGeometry *) fgGeom ;
149 }
150 return rv ;
151}
4697edca 152
52a36ffd 153//____________________________________________________________________________
154void AliPHOSGeometry::SetPHOSAngles()
155{
a4e98857 156 // Calculates the position of the PHOS modules in ALICE global coordinate system
52a36ffd 157
a8c47ab6 158 Double_t const kRADDEG = 180.0 / TMath::Pi() ;
710f859a 159 Float_t pphi = 2 * TMath::ATan( GetOuterBoxSize(0) / ( 2.0 * GetIPtoUpperCPVsurface() ) ) ;
52a36ffd 160 pphi *= kRADDEG ;
710f859a 161 if (pphi > fAngle){
21cd0c07 162 Error("SetPHOSAngles", "PHOS modules overlap!\n pphi = %f fAngle = %f", pphi, fAngle);
710f859a 163
164 }
ed4205d8 165 pphi = fAngle;
52a36ffd 166
167 for( Int_t i = 1; i <= fNModules ; i++ ) {
ed4205d8 168 Float_t angle = pphi * ( i - fNModules / 2.0 - 0.5 ) ;
52a36ffd 169 fPHOSAngle[i-1] = - angle ;
170 }
d15a28e7 171}
172
173//____________________________________________________________________________
fc7e2f43 174Bool_t AliPHOSGeometry::AbsToRelNumbering(Int_t AbsId, Int_t * relid) const
d15a28e7 175{
b2a60966 176 // Converts the absolute numbering into the following array/
177 // relid[0] = PHOS Module number 1:fNModules
178 // relid[1] = 0 if PbW04
710f859a 179 // = -1 if CPV
180 // relid[2] = Row number inside a PHOS module
181 // relid[3] = Column number inside a PHOS module
d15a28e7 182
183 Bool_t rv = kTRUE ;
92862013 184 Float_t id = AbsId ;
d15a28e7 185
710f859a 186 Int_t phosmodulenumber = (Int_t)TMath:: Ceil( id / GetNCristalsInModule() ) ;
d15a28e7 187
710f859a 188 if ( phosmodulenumber > GetNModules() ) { // it is a CPV pad
189
190 id -= GetNPhi() * GetNZ() * GetNModules() ;
191 Float_t nCPV = GetNumberOfCPVPadsPhi() * GetNumberOfCPVPadsZ() ;
192 relid[0] = (Int_t) TMath::Ceil( id / nCPV ) ;
193 relid[1] = -1 ;
194 id -= ( relid[0] - 1 ) * nCPV ;
195 relid[2] = (Int_t) TMath::Ceil( id / GetNumberOfCPVPadsZ() ) ;
196 relid[3] = (Int_t) ( id - ( relid[2] - 1 ) * GetNumberOfCPVPadsZ() ) ;
d15a28e7 197 }
710f859a 198 else { // it is a PW04 crystal
d15a28e7 199
92862013 200 relid[0] = phosmodulenumber ;
201 relid[1] = 0 ;
202 id -= ( phosmodulenumber - 1 ) * GetNPhi() * GetNZ() ;
710f859a 203 relid[2] = (Int_t)TMath::Ceil( id / GetNZ() ) ;
204 relid[3] = (Int_t)( id - ( relid[2] - 1 ) * GetNZ() ) ;
d15a28e7 205 }
206 return rv ;
207}
52a36ffd 208
9f616d61 209//____________________________________________________________________________
fc7e2f43 210void AliPHOSGeometry::EmcModuleCoverage(Int_t mod, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt) const
9f616d61 211{
a4e98857 212 // calculates the angular coverage in theta and phi of one EMC (=PHOS) module
9f616d61 213
214 Double_t conv ;
cf0c2bc1 215 if ( opt == Radian() )
9f616d61 216 conv = 1. ;
cf0c2bc1 217 else if ( opt == Degre() )
9f616d61 218 conv = 180. / TMath::Pi() ;
219 else {
21cd0c07 220 Warning("EmcModuleCoverage", "%s unknown option; result in radian", opt) ;
9f616d61 221 conv = 1. ;
222 }
223
710f859a 224 Float_t phi = GetPHOSAngle(mod) * (TMath::Pi() / 180.) ;
225 Float_t y0 = GetIPtoCrystalSurface() ;
88cb7938 226 Float_t * strip = fGeometryEMCA->GetStripHalfSize() ;
227 Float_t x0 = fGeometryEMCA->GetNStripX()*strip[0] ;
228 Float_t z0 = fGeometryEMCA->GetNStripZ()*strip[2] ;
229 Double_t angle = TMath::ATan( x0 / y0 ) ;
710f859a 230 phi = phi + 1.5 * TMath::Pi() ; // to follow the convention of the particle generator(PHOS is between 220 and 320 deg.)
92862013 231 Double_t max = phi - angle ;
232 Double_t min = phi + angle ;
233 pM = TMath::Max(max, min) * conv ;
234 pm = TMath::Min(max, min) * conv ;
9f616d61 235
88cb7938 236 angle = TMath::ATan( z0 / y0 ) ;
92862013 237 max = TMath::Pi() / 2. + angle ; // to follow the convention of the particle generator(PHOS is at 90 deg.)
238 min = TMath::Pi() / 2. - angle ;
239 tM = TMath::Max(max, min) * conv ;
240 tm = TMath::Min(max, min) * conv ;
9f616d61 241
242}
243
244//____________________________________________________________________________
7b7c1533 245void AliPHOSGeometry::EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt) const
9f616d61 246{
a4e98857 247 // calculates the angular coverage in theta and phi of a single crystal in a EMC(=PHOS) module
9f616d61 248
249 Double_t conv ;
cf0c2bc1 250 if ( opt == Radian() )
9f616d61 251 conv = 1. ;
cf0c2bc1 252 else if ( opt == Degre() )
9f616d61 253 conv = 180. / TMath::Pi() ;
254 else {
21cd0c07 255 Warning("EmcXtalCoverage", "%s unknown option; result in radian", opt) ;
9f616d61 256 conv = 1. ;
257 }
258
710f859a 259 Float_t y0 = GetIPtoCrystalSurface() ;
92862013 260 theta = 2 * TMath::ATan( GetCrystalSize(2) / (2 * y0) ) * conv ;
261 phi = 2 * TMath::ATan( GetCrystalSize(0) / (2 * y0) ) * conv ;
9f616d61 262}
263
264
265//____________________________________________________________________________
4c7fd00f 266void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & /*gmat*/) const
d15a28e7 267{
a4e98857 268 // Calculates the coordinates of a RecPoint and the error matrix in the ALICE global coordinate system
b2a60966 269
d15a28e7 270 AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
92862013 271 TVector3 localposition ;
d15a28e7 272
273 tmpPHOS->GetLocalPosition(gpos) ;
274
275
276 if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
710f859a 277 { gpos.SetY( - GetIPtoCrystalSurface()) ;
d15a28e7 278
279 }
280 else
710f859a 281 { // it is a CPV
282 gpos.SetY(- GetIPtoUpperCPVsurface() ) ;
d15a28e7 283 }
284
92862013 285 Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
a8c47ab6 286 Double_t const kRADDEG = 180.0 / TMath::Pi() ;
92862013 287 Float_t rphi = phi / kRADDEG ;
d15a28e7 288
92862013 289 TRotation rot ;
290 rot.RotateZ(-rphi) ; // a rotation around Z by angle
d15a28e7 291
92862013 292 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
293 gpos.Transform(rot) ; // rotate the baby
6ad0bfa0 294
d15a28e7 295}
296
297//____________________________________________________________________________
5cda30f6 298void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) const
d15a28e7 299{
a4e98857 300 // Calculates the coordinates of a RecPoint in the ALICE global coordinate system
b2a60966 301
d15a28e7 302 AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
92862013 303 TVector3 localposition ;
d15a28e7 304 tmpPHOS->GetLocalPosition(gpos) ;
305
306
307 if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
710f859a 308 { gpos.SetY( - GetIPtoCrystalSurface() ) ;
d15a28e7 309 }
310 else
710f859a 311 { // it is a CPV
312 gpos.SetY(- GetIPtoUpperCPVsurface() ) ;
d15a28e7 313 }
314
92862013 315 Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
a8c47ab6 316 Double_t const kRADDEG = 180.0 / TMath::Pi() ;
92862013 317 Float_t rphi = phi / kRADDEG ;
d15a28e7 318
92862013 319 TRotation rot ;
320 rot.RotateZ(-rphi) ; // a rotation around Z by angle
d15a28e7 321
92862013 322 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
323 gpos.Transform(rot) ; // rotate the baby
d15a28e7 324}
325
326//____________________________________________________________________________
aa35fc01 327void AliPHOSGeometry::ImpactOnEmc(Double_t theta, Double_t phi, Int_t & moduleNumber, Double_t & z, Double_t & x) const
d15a28e7 328{
a4e98857 329 // calculates the impact coordinates on PHOS of a neutral particle
330 // emitted in the direction theta and phi in the ALICE global coordinate system
d15a28e7 331
52a36ffd 332 // searches for the PHOS EMC module
aa35fc01 333
334 moduleNumber = 0 ;
52a36ffd 335 Double_t tm, tM, pm, pM ;
336 Int_t index = 1 ;
aa35fc01 337 while ( moduleNumber == 0 && index <= GetNModules() ) {
52a36ffd 338 EmcModuleCoverage(index, tm, tM, pm, pM) ;
88cb7938 339 if ( (theta >= tm && theta <= tM) && (phi >= pm && phi <= pM ) )
aa35fc01 340 moduleNumber = index ;
52a36ffd 341 index++ ;
d15a28e7 342 }
aa35fc01 343 if ( moduleNumber != 0 ) {
344 Float_t phi0 = GetPHOSAngle(moduleNumber) * (TMath::Pi() / 180.) + 1.5 * TMath::Pi() ;
710f859a 345 Float_t y0 = GetIPtoCrystalSurface() ;
88cb7938 346 Double_t angle = phi - phi0;
52a36ffd 347 x = y0 * TMath::Tan(angle) ;
348 angle = theta - TMath::Pi() / 2 ;
349 z = y0 * TMath::Tan(angle) ;
d15a28e7 350 }
d15a28e7 351}
352
e957fea8 353//____________________________________________________________________________
aa35fc01 354void AliPHOSGeometry::ImpactOnEmc(TVector3 vec, Int_t & moduleNumber, Double_t & z, Double_t & x) const
355{
356 // calculates the impact coordinates on PHOS of a neutral particle
357 // emitted in the direction theta and phi in the ALICE global coordinate system
358 // searches for the PHOS EMC module
359
360 TParticle p ;
361 p.SetMomentum(vec.X(), vec.Y(), vec.Z(), 0.) ;
362
363 ImpactOnEmc(p, moduleNumber, z, x) ;
364}
365
366//____________________________________________________________________________
367void AliPHOSGeometry::ImpactOnEmc(TParticle p, Int_t & moduleNumber, Double_t & z, Double_t & x) const
368{
369 // calculates the impact coordinates on PHOS of a neutral particle
370 // emitted in the direction theta and phi in the ALICE global coordinate system
371
372 // searches for the PHOS EMC module
373 Double_t theta = p.Theta() ;
374 Double_t phi = p.Phi() ;
375
376 ImpactOnEmc(theta, phi, moduleNumber, z, x) ;
377}
378
379//____________________________________________________________________________
1c9d8212 380Bool_t AliPHOSGeometry::Impact(const TParticle * particle) const
381{
e957fea8 382 // Tells if a particle enters PHOS
383 Bool_t in=kFALSE;
384 Int_t moduleNumber=0;
1c9d8212 385 Double_t z,x;
e957fea8 386 ImpactOnEmc(particle->Theta(),particle->Phi(),moduleNumber,z,x);
387 if(moduleNumber)
388 in=kTRUE;
389 else
390 in=kFALSE;
391 return in;
1c9d8212 392}
393
d15a28e7 394//____________________________________________________________________________
7b7c1533 395Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * relid, Int_t & AbsId) const
d15a28e7 396{
b2a60966 397 // Converts the relative numbering into the absolute numbering
ed4205d8 398 // EMCA crystals:
399 // AbsId = from 1 to fNModules * fNPhi * fNZ
ed4205d8 400 // CPV pad:
401 // AbsId = from N(total PHOS crystals) + 1
402 // to NCPVModules * fNumberOfCPVPadsPhi * fNumberOfCPVPadsZ
d15a28e7 403
404 Bool_t rv = kTRUE ;
710f859a 405
406 if ( relid[1] == 0 ) { // it is a Phos crystal
52a36ffd 407 AbsId =
710f859a 408 ( relid[0] - 1 ) * GetNPhi() * GetNZ() // the offset of PHOS modules
409 + ( relid[2] - 1 ) * GetNZ() // the offset along phi
410 + relid[3] ; // the offset along z
d15a28e7 411 }
710f859a 412 else { // it is a CPV pad
413 AbsId = GetNPhi() * GetNZ() * GetNModules() // the offset to separate EMCA crystals from CPV pads
414 + ( relid[0] - 1 ) * GetNumberOfCPVPadsPhi() * GetNumberOfCPVPadsZ() // the pads offset of PHOS modules
415 + ( relid[2] - 1 ) * GetNumberOfCPVPadsZ() // the pads offset of a CPV row
52a36ffd 416 + relid[3] ; // the column number
417 }
418
d15a28e7 419 return rv ;
420}
421
422//____________________________________________________________________________
423
fc7e2f43 424void AliPHOSGeometry::RelPosInAlice(Int_t id, TVector3 & pos ) const
d15a28e7 425{
a4e98857 426 // Converts the absolute numbering into the global ALICE coordinate system
b2a60966 427
ed4205d8 428
429 Int_t relid[4] ;
430
431 AbsToRelNumbering(id , relid) ;
432
433 Int_t phosmodule = relid[0] ;
434
435 Float_t y0 = 0 ;
436
710f859a 437 if ( relid[1] == 0 ) // it is a PbW04 crystal
438 y0 = - GetIPtoCrystalSurface() ;
439 else
440 y0 = - GetIPtoUpperCPVsurface() ;
441
ed4205d8 442 Float_t x, z ;
443 RelPosInModule(relid, x, z) ;
444
445 pos.SetX(x) ;
446 pos.SetZ(z) ;
710f859a 447 pos.SetY(y0) ;
ed4205d8 448
449 Float_t phi = GetPHOSAngle( phosmodule) ;
a8c47ab6 450 Double_t const kRADDEG = 180.0 / TMath::Pi() ;
ed4205d8 451 Float_t rphi = phi / kRADDEG ;
452
453 TRotation rot ;
454 rot.RotateZ(-rphi) ; // a rotation around Z by angle
455
456 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
457
458 pos.Transform(rot) ; // rotate the baby
d15a28e7 459}
460
461//____________________________________________________________________________
7b7c1533 462void AliPHOSGeometry::RelPosInModule(const Int_t * relid, Float_t & x, Float_t & z) const
d15a28e7 463{
b2a60966 464 // Converts the relative numbering into the local PHOS-module (x, z) coordinates
52a36ffd 465 // Note: sign of z differs from that in the previous version (Yu.Kharlov, 12 Oct 2000)
b2a60966 466
786222b3 467 Int_t row = relid[2] ; //offset along x axis
468 Int_t column = relid[3] ; //offset along z axis
d15a28e7 469
ed4205d8 470
66c3e8ff 471 if ( relid[1] == 0 ) { // its a PbW04 crystal
472 x = - ( GetNPhi()/2. - row + 0.5 ) * GetCellStep() ; // position of Xtal with respect
4a76d472 473 z = - ( GetNZ() /2. - column + 0.5 ) * GetCellStep() ; // of center of PHOS module
52a36ffd 474 }
475 else {
710f859a 476 x = - ( GetNumberOfCPVPadsPhi()/2. - row - 0.5 ) * GetPadSizePhi() ; // position of pad with respect
4a76d472 477 z = - ( GetNumberOfCPVPadsZ() /2. - column - 0.5 ) * GetPadSizeZ() ; // of center of PHOS module
52a36ffd 478 }
2f3366b6 479}
aa0b9641 480
481//____________________________________________________________________________
482
483TVector3 AliPHOSGeometry::GetCpvModuleCenter(Int_t module) const
484{
485 // Returns a position of the center of the CPV module
395f4eea 486 Float_t rCPV = GetIPtoCPVDistance();
487 Float_t angle = GetPHOSAngle(module); // (40,20,0,-20,-40) degrees
488 angle *= TMath::Pi()/180;
489 angle += 3*TMath::Pi()/2.;
aa0b9641 490 return TVector3(rCPV*TMath::Cos(angle), rCPV*TMath::Sin(angle), 0.);
491}
492
493//____________________________________________________________________________
494
495TVector3 AliPHOSGeometry::Global2LocalCpv(TVector3 globalPosition, Int_t module) const
496{
497 // Transforms a global position of the CPV point to the local coordinate system
395f4eea 498 Float_t angle = GetPHOSAngle(module); // (40,20,0,-20,-40) degrees
499 angle *= TMath::Pi()/180;
500 angle += 3*TMath::Pi()/2.;
aa0b9641 501 globalPosition.RotateZ(-angle);
395f4eea 502 return TVector3(globalPosition.Y(),globalPosition.X(),globalPosition.Z());
aa0b9641 503}