New data member (cerenkov angle) in Cerenkov data structure.
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.h
CommitLineData
daa2ae2f 1#ifndef ALIPHOSGEOMETRY_H
2#define ALIPHOSGEOMETRY_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6ad0bfa0 6/* $Id$ */
7
b2a60966 8//_________________________________________________________________________
9// Geometry class for PHOS : singleton
10// The EMC modules are parametrized so that any configuration can be easily implemented
11// The title is used to identify the type of CPV used. So far only PPSD implemented
12//
13//*-- Author: Yves Schutz (SUBATECH)
d15a28e7 14
15// --- ROOT system ---
16
daa2ae2f 17#include "TNamed.h"
18#include "TString.h"
19#include "TObjArray.h"
20#include "TVector3.h"
d15a28e7 21
22// --- AliRoot header files ---
23
daa2ae2f 24#include "AliGeometry.h"
25#include "AliPHOSRecPoint.h"
26
9f616d61 27static const TString kDegre("deg") ;
28static const TString kRadian("rad") ;
29
daa2ae2f 30class AliPHOSGeometry : public AliGeometry {
31
32public:
33
b2a60966 34 AliPHOSGeometry() {} ; // must be kept public for root persistency purposes, but should never be called by the outside world
daa2ae2f 35 virtual ~AliPHOSGeometry(void) ;
36 static AliPHOSGeometry * GetInstance(const Text_t* name, const Text_t* title) ;
37 static AliPHOSGeometry * GetInstance() ;
38 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat) ;
39 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) ;
40
41protected:
42
43 AliPHOSGeometry(const Text_t* name, const Text_t* title) : AliGeometry(name, title) { Init() ; }
44 void Init(void) ; // steering method for PHOS and CPV
45 void InitPHOS(void) ; // defines the various PHOS geometry parameters
46 void InitPPSD(void) ; // defines the various PPSD geometry parameters
47
48public:
49
50 // General
51
b2a60966 52 Bool_t AbsToRelNumbering(const Int_t AbsId, Int_t * RelId) ; // converts the absolute PHOS numbering to a relative
9f616d61 53 void EmcModuleCoverage(const Int_t m, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt = kRadian);
b2a60966 54 // calculates the angular coverage in theta and phi of a EMC module
9f616d61 55 void EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt = kRadian) ;
56 // calculates the angular coverage in theta and phi of a
57 // single crystal in a EMC module
58 void ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & x, Double_t & z) ;
59 // calculates the impact coordinates of a neutral particle
60 // emitted in direction theta and phi in ALICE
daa2ae2f 61 void RelPosInModule(const Int_t * RelId, Float_t & y, Float_t & z) ; // gets the position of element (pad or Xtal) relative to
62 // center of PHOS module
63 void RelPosInAlice(const Int_t AbsId, TVector3 & pos) ; // gets the position of element (pad or Xtal) relative to
64 // Alice
65 Bool_t RelToAbsNumbering(const Int_t * RelId, Int_t & AbsId) ; // converts the absolute PHOS numbering to a relative
c198e326 66
daa2ae2f 67
68 ///////////// PHOS related parameters
69
70 Bool_t IsInitialized(void) const { return fInit ; }
71 Float_t GetAirFilledBoxSize(Int_t index) const { return fAirFilledBoxSize[index] ;}
72 Float_t GetCrystalHolderThickness(void) const { return fCrystalHolderThickness ; }
73 Float_t GetCrystalSize(Int_t index) const { return fXtlSize[index] ; }
74 Float_t GetCrystalSupportHeight(void) const { return fCrystalSupportHeight ; }
75 Float_t GetCrystalWrapThickness(void) const { return fCrystalWrapThickness;}
76 Float_t GetGapBetweenCrystals(void) const { return fGapBetweenCrystals ; }
77 Float_t GetIPtoCrystalSurface(void) const { return fIPtoCrystalSurface ; }
78 Float_t GetIPtoOuterCoverDistance(void) const { return fIPtoOuterCoverDistance ; }
b2a60966 79 Float_t GetIPtoPpsdUp(void) const { return (fIPtoOuterCoverDistance - fPPSDBoxSize[1] + fPPSDModuleSize[1]/2 ); }
80 Float_t GetIPtoPpsdLow(void) const { return (fIPtoOuterCoverDistance - fPPSDModuleSize[1]/2 ); }
daa2ae2f 81 Float_t GetIPtoTopLidDistance(void) const { return fIPtoTopLidDistance ; }
82 Float_t GetLowerThermoPlateThickness(void) const { return fLowerThermoPlateThickness ; }
83 Float_t GetLowerTextolitPlateThickness(void) const { return fLowerTextolitPlateThickness ; }
84 Float_t GetModuleBoxThickness(void) const { return fModuleBoxThickness ; }
85 Int_t GetNPhi(void) const { return fNPhi ; }
86 Int_t GetNZ(void) const { return fNZ ; }
87 Int_t GetNModules(void) const { return fNModules ; }
88 Float_t GetOuterBoxSize(Int_t index) const { return fOuterBoxSize[index] ; }
89 Float_t GetOuterBoxThickness(Int_t index) const { return fOuterBoxThickness[index] ; }
90 Float_t GetPHOSAngle(Int_t index) const { return fPHOSAngle[index-1] ; }
91 Float_t GetPinDiodeSize(Int_t index) const { return fPinDiodeSize[index] ; }
92 Float_t GetSecondUpperPlateThickness(void) const { return fSecondUpperPlateThickness ; }
93 Float_t GetSupportPlateThickness(void) const { return fSupportPlateThickness ; }
94 Float_t GetTextolitBoxSize(Int_t index) const { return fTextolitBoxSize[index] ; }
95 Float_t GetTextolitBoxThickness(Int_t index) const { return fTextolitBoxThickness[index]; }
96 Float_t GetUpperPlateThickness(void) const { return fUpperPlateThickness ; }
97 Float_t GetUpperCoolingPlateThickness(void) const { return fUpperCoolingPlateThickness ; }
98
99private:
100
101 void SetPHOSAngles() ; // calculates the PHOS modules PHI angle
102
103public:
d15a28e7 104
daa2ae2f 105 ///////////// PPSD (PHOS PRE SHOWER DETECTOR) related parameters
106
107
108 Float_t GetAnodeThickness(void) const { return fAnodeThickness ; }
109 Float_t GetAvalancheGap(void) const { return fAvalancheGap ; }
110 Float_t GetCathodeThickness(void) const { return fCathodeThickness ; }
111 Float_t GetCompositeThickness(void) const { return fCompositeThickness ; }
112 Float_t GetConversionGap(void) const { return fConversionGap ; }
113 Float_t GetLeadConverterThickness(void) const { return fLeadConverterThickness ; }
114 Float_t GetLeadToMicro2Gap(void) const { return fLeadToMicro2Gap ; }
115 Float_t GetLidThickness(void) const { return fLidThickness ; }
116 Float_t GetMicromegas1Thickness(void) const { return fMicromegas1Thickness ; }
117 Float_t GetMicromegas2Thickness(void) const { return fMicromegas2Thickness ; }
118 Float_t GetMicromegasWallThickness(void) const { return fMicromegasWallThickness ; }
119 Float_t GetMicro1ToLeadGap(void) const { return fMicro1ToLeadGap ; }
120 Int_t GetNumberOfPadsPhi(void) const { return fNumberOfPadsPhi ; }
121 Int_t GetNumberOfPadsZ(void) const { return fNumberOfPadsZ ; }
122 Int_t GetNumberOfModulesPhi(void) const { return fNumberOfModulesPhi ; }
123 Int_t GetNumberOfModulesZ(void) const { return fNumberOfModulesZ ; }
124 Float_t GetPCThickness(void) const { return fPCThickness ; }
125 Float_t GetPhiDisplacement(void) const { return fPhiDisplacement ; }
126 Float_t GetPPSDBoxSize(Int_t index) const { return fPPSDBoxSize[index] ; }
127 Float_t GetPPSDModuleSize(Int_t index) const { return fPPSDModuleSize[index] ; }
128 Float_t GetZDisplacement(void) const { return fZDisplacement ; }
2f3366b6 129
130 void SetLeadConverterThickness(Float_t e) ; // should ultimately disappear
daa2ae2f 131
132private:
133
134 ///////////// PHOS related parameters
135
136 Float_t fAirFilledBoxSize[3] ; // Air filled box containing one module
137 Float_t fAirThickness[3] ; // Space filled with air between the module box and the Textolit box
138 Float_t fCrystalSupportHeight ; // Height of the support of the crystal
139 Float_t fCrystalWrapThickness ; // Thickness of Tyvek wrapping the crystal
140 Float_t fCrystalHolderThickness ; // Titanium holder of the crystal
141 Float_t fGapBetweenCrystals ; // Total Gap between two adjacent crystals
142 Bool_t fInit ; // Tells if geometry has been succesfully set up
143 Float_t fIPtoOuterCoverDistance ; // Distances from interaction point to outer cover
144 Float_t fIPtoCrystalSurface ; // Distances from interaction point to Xtal surface
145 Float_t fModuleBoxThickness ; // Thickness of the thermo insulating box containing one crystals module
146 Float_t fLowerTextolitPlateThickness ; // Thickness of lower textolit plate
147 Float_t fLowerThermoPlateThickness ; // Thickness of lower thermo insulating plate
148 Int_t fNModules ; // Number of modules constituing PHOS
149 Int_t fNPhi ; // Number of crystal units in X (phi) direction
150 Int_t fNZ ; // Number of crystal units in Z direction
151 Float_t fOuterBoxSize[3] ; // Size of the outer thermo insulating foam box
152 Float_t fOuterBoxThickness[3] ; // Thickness of the outer thermo insulating foam box
4697edca 153 Float_t * fPHOSAngle ; //[fNModules] Position angles of modules
daa2ae2f 154 Float_t fPinDiodeSize[3] ; // Size of the PIN Diode
155 TObjArray * fRotMatrixArray ; // Liste of rotation matrices (one per phos module)
156 Float_t fSecondUpperPlateThickness ; // Thickness of upper polystyrene foam plate
157 Float_t fSupportPlateThickness ; // Thickness of the Aluminium support plate
158 Float_t fUpperCoolingPlateThickness ; // Thickness of the upper cooling plate
159 Float_t fUpperPlateThickness ; // Thickness of the uper thermo insulating foam plate
160 Float_t fTextolitBoxSize[3] ; // Size of the Textolit box inside the insulating foam box
161 Float_t fTextolitBoxThickness[3] ; // Thicknesses of th Textolit box
162 Float_t fXtlSize[3] ; // PWO4 crystal dimensions
163
164
165 ///////////// PPSD (PHOS PRE SHOWER DETECTOR) related parameters
166
167 Float_t fAnodeThickness ; // Thickness of the copper layer which makes the anode
168 Float_t fAvalancheGap ; // Thickness of the gas in the avalanche stage
169 Float_t fCathodeThickness ; // Thickeness of composite material ensuring rigidity of cathode
170 Float_t fCompositeThickness ; // Thickeness of composite material ensuring rigidity of anode
171 Float_t fConversionGap ; // Thickness of the gas in the conversion stage
172 Float_t fIPtoTopLidDistance ; // Distance from interaction point to top lid of PPSD
173 Float_t fLeadConverterThickness ; // Thickness of the Lead converter
174 Float_t fLeadToMicro2Gap ; // Thickness of the air gap between the Lead and Micromegas 2
175 Float_t fLidThickness ; // Thickness of top lid
176 Float_t fMicromegas1Thickness ; // Thickness of the first downstream Micromegas
177 Float_t fMicromegas2Thickness ; // Thickness of the second downstream Micromegas
178 Float_t fMicromegasWallThickness ; // Thickness of the Micromegas leak tight box
179 Float_t fMicro1ToLeadGap ; // Thickness of the air gap between Micromegas 1 and the Lead
180 Int_t fNumberOfPadsPhi ; // Number of pads on a micromegas module ;
181 Int_t fNumberOfPadsZ ; // Number of pads on a micromegas module ;
182 Int_t fNumberOfModulesPhi ; // Number of micromegas modules in phi
183 Int_t fNumberOfModulesZ ; // Number of micromegas modules in z
184 Float_t fPCThickness ; // Thickness of the printed circuit board of the anode
185 Float_t fPhiDisplacement ; // Phi displacement of micromegas1 with respect to micromegas2
186 Float_t fPPSDBoxSize[3] ; // Size of large box which contains PPSD; matches PHOS module size
187 Float_t fPPSDModuleSize[3] ; // Size of an individual micromegas module
188 Float_t fZDisplacement ; // Z displacement of micromegas1 with respect to micromegas2
189
190 static AliPHOSGeometry * fGeom ; // pointer to the unique instance of the singleton
191
b2a60966 192 ClassDef(AliPHOSGeometry,1) // PHOS geometry class
daa2ae2f 193
194} ;
195
196#endif // AliPHOSGEOMETRY_H