Add Print()
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.h
CommitLineData
daa2ae2f 1#ifndef ALIPHOSGEOMETRY_H
2#define ALIPHOSGEOMETRY_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6ad0bfa0 6/* $Id$ */
7
b2a60966 8//_________________________________________________________________________
a3dfe79c 9// Geometry class for PHOS : singleton
10// PHOS consists of the electromagnetic calorimeter (EMCA)
11// and a charged particle veto either in the Subatech's version (PPSD)
12// or in the IHEP's one (CPV).
13// The EMCA/PPSD/CPV modules are parametrized so that any configuration
14// can be easily implemented
15// The title is used to identify the version of CPV used.
16//
b2a60966 17//*-- Author: Yves Schutz (SUBATECH)
d15a28e7 18
19// --- ROOT system ---
20
d15a28e7 21// --- AliRoot header files ---
22
daa2ae2f 23#include "AliGeometry.h"
eb92d866 24#include "AliPHOSEMCAGeometry.h"
25#include "AliPHOSCPVGeometry.h"
ed19b2e1 26#include "AliPHOSSupportGeometry.h"
daa2ae2f 27
9f616d61 28
daa2ae2f 29class AliPHOSGeometry : public AliGeometry {
30
31public:
32
e957fea8 33 AliPHOSGeometry() ;
52a36ffd 34
a8c47ab6 35 AliPHOSGeometry(const AliPHOSGeometry & geom) : AliGeometry(geom) {
e957fea8 36 Fatal("cpy ctor", "not implemented") ;
6c370def 37 }
38
daa2ae2f 39 virtual ~AliPHOSGeometry(void) ;
282c5906 40 static AliPHOSGeometry * GetInstance(const Text_t* name, const Text_t* title="") ;
daa2ae2f 41 static AliPHOSGeometry * GetInstance() ;
e8d02863 42 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrixF & gmat) const ;
1c9d8212 43 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) const ;
44 virtual Bool_t Impact(const TParticle * particle) const ;
daa2ae2f 45
8c140292 46 AliPHOSGeometry & operator = (const AliPHOSGeometry & /*rvalue*/) const {
e957fea8 47 Fatal("operator =", "nt implemented") ; return *(GetInstance()) ; }
cf0c2bc1 48
daa2ae2f 49 // General
50
2725c395 51 static TString Degre(void) { return TString("deg") ; } // a global for degree (deg)
cf0c2bc1 52
2725c395 53 static TString Radian(void){ return TString("rad") ; } // a global for radian (rad)
52a36ffd 54
fc7e2f43 55 Bool_t AbsToRelNumbering(Int_t AbsId, Int_t * RelId) const ;
710f859a 56 // converts the absolute PHOS numbering to a relative
52a36ffd 57
fc7e2f43 58 void EmcModuleCoverage(Int_t m, Double_t & tm, Double_t & tM, Double_t & pm,
710f859a 59 Double_t & pM, Option_t * opt = Radian() ) const ;
60 // calculates the angular coverage in theta and phi of a EMC module
7b7c1533 61 void EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt = Radian() ) const ;
710f859a 62 // calculates the angular coverage in theta and phi of a
63 // single crystal in a EMC module
fc7e2f43 64 void ImpactOnEmc(Double_t theta, Double_t phi, Int_t & ModuleNumber,
710f859a 65 Double_t & z, Double_t & x) const ;
7b51037f 66 void ImpactOnEmc(const TVector3& vec, Int_t & ModuleNumber,
aa35fc01 67 Double_t & z, Double_t & x) const ;
7b51037f 68 void ImpactOnEmc(const TParticle& p, Int_t & ModuleNumber,
aa35fc01 69 Double_t & z, Double_t & x) const ;
70 // calculates the impact coordinates of a neutral particle
710f859a 71 // emitted in direction theta and phi in ALICE
fc7e2f43 72 Bool_t IsInEMC(Int_t id) const { if (id > GetNModules() * GetNCristalsInModule() ) return kFALSE; return kTRUE; }
710f859a 73 void RelPosInModule(const Int_t * RelId, Float_t & y, Float_t & z) const ;
74 // gets the position of element (pad or Xtal) relative to
75 // center of PHOS module
fc7e2f43 76 void RelPosInAlice(Int_t AbsId, TVector3 & pos) const ;
710f859a 77 // gets the position of element (pad or Xtal) relative to Alice
78 Bool_t RelToAbsNumbering(const Int_t * RelId, Int_t & AbsId) const ;
79 // converts the absolute PHOS numbering to a relative
5d0435dd 80 void RelPosToAbsId(Int_t module, Double_t x, Double_t z, Int_t & AbsId) const;
842988a5 81 // converts local PHOS-module (x, z) coordinates to absId
88cb7938 82
710f859a 83 Bool_t IsInitialized(void) const { return fgInit ; }
c198e326 84
52a36ffd 85 // Return general PHOS parameters
710f859a 86 Int_t GetNModules(void) const { return fNModules ; }
87 Float_t GetPHOSAngle(Int_t index) const { return fPHOSAngle[index-1] ; }
88 Float_t* GetPHOSParams(void) { return fPHOSParams;} //Half-sizes of PHOS trapecoid
89 Float_t GetIPtoUpperCPVsurface(void) const { return fIPtoUpperCPVsurface ; }
90 Float_t GetOuterBoxSize(Int_t index) const { return 2.*fPHOSParams[index]; }
91 Float_t GetCrystalSize(Int_t index) const { return fGeometryEMCA->GetCrystalSize(index) ; }
66c3e8ff 92 Float_t GetCellStep(void) const { return 2*(fGeometryEMCA->GetAirCellHalfSize()[0] +
93 fGeometryEMCA->GetStripWallWidthOut()) ;}
710f859a 94
95 // Return EMCA geometry parameters
96
97 AliPHOSEMCAGeometry * GetEMCAGeometry() const {return fGeometryEMCA ;}
98 Float_t GetIPtoCrystalSurface(void) const { return fGeometryEMCA->GetIPtoCrystalSurface() ; }
99 Float_t GetIPtoOuterCoverDistance(void) const { return fGeometryEMCA->GetIPtoOuterCoverDistance() ; }
100 Int_t GetNPhi(void) const { return fGeometryEMCA->GetNPhi() ; }
101 Int_t GetNZ(void) const { return fGeometryEMCA->GetNZ() ; }
102 Int_t GetNCristalsInModule(void) const { return fGeometryEMCA->GetNPhi() * fGeometryEMCA->GetNZ() ; }
103
104 // Return CPV geometry parameters
ed4205d8 105 Int_t GetNumberOfCPVLayers(void) const { return fGeometryCPV ->GetNumberOfCPVLayers(); }
ed4205d8 106 Float_t GetCPVActiveSize(Int_t index) const { return fGeometryCPV->GetCPVActiveSize(index); }
107 Int_t GetNumberOfCPVChipsPhi(void) const { return fGeometryCPV->GetNumberOfCPVChipsPhi(); }
108 Int_t GetNumberOfCPVChipsZ(void) const { return fGeometryCPV->GetNumberOfCPVChipsZ(); }
109 Int_t GetNumberOfCPVPadsPhi(void) const { return fGeometryCPV->GetNumberOfCPVPadsPhi(); }
110 Int_t GetNumberOfCPVPadsZ(void) const { return fGeometryCPV->GetNumberOfCPVPadsZ(); }
111 Float_t GetPadSizePhi(void) const { return fGeometryCPV->GetCPVPadSizePhi(); }
112 Float_t GetPadSizeZ(void) const { return fGeometryCPV->GetCPVPadSizeZ(); }
113 Float_t GetGassiplexChipSize(Int_t index) const { return fGeometryCPV->GetGassiplexChipSize(index); }
114 Float_t GetCPVGasThickness(void) const { return fGeometryCPV->GetCPVGasThickness(); }
115 Float_t GetCPVTextoliteThickness(void) const { return fGeometryCPV->GetCPVTextoliteThickness(); }
116 Float_t GetCPVCuNiFoilThickness(void) const { return fGeometryCPV->GetCPVCuNiFoilThickness(); }
117 Float_t GetFTPosition(Int_t index) const { return fGeometryCPV->GetFTPosition(index); }
118 Float_t GetCPVFrameSize(Int_t index) const { return fGeometryCPV->GetCPVFrameSize(index); }
710f859a 119 Float_t GetCPVBoxSize(Int_t index) const { return fGeometryCPV ->GetCPVBoxSize(index); }
120 Float_t GetIPtoCPVDistance(void) const { return GetIPtoOuterCoverDistance() -
121 GetCPVBoxSize(1) - 1.0; }
7b51037f 122 void GetModuleCenter(TVector3& center, const char *det, Int_t module) const;
123 void Global2Local(TVector3& localPosition,
124 const TVector3& globalPosition,
125 Int_t module) const;
52a36ffd 126
710f859a 127 // Return PHOS' support geometry parameters
ed19b2e1 128
129 Float_t GetRailOuterSize(Int_t index) const { return fGeometrySUPP->GetRailOuterSize(index); }
130 Float_t GetRailPart1 (Int_t index) const { return fGeometrySUPP->GetRailPart1 (index); }
131 Float_t GetRailPart2 (Int_t index) const { return fGeometrySUPP->GetRailPart2 (index); }
132 Float_t GetRailPart3 (Int_t index) const { return fGeometrySUPP->GetRailPart3 (index); }
133 Float_t GetRailPos (Int_t index) const { return fGeometrySUPP->GetRailPos (index); }
710f859a 134 Float_t GetRailLength (void) const { return fGeometrySUPP->GetRailLength (); }
135 Float_t GetDistanceBetwRails(void) const { return fGeometrySUPP->GetDistanceBetwRails(); }
136 Float_t GetRailsDistanceFromIP(void) const { return fGeometrySUPP->GetRailsDistanceFromIP();}
ed19b2e1 137 Float_t GetRailRoadSize (Int_t index) const { return fGeometrySUPP->GetRailRoadSize (index); }
710f859a 138 Float_t GetCradleWallThickness(void) const { return fGeometrySUPP->GetCradleWallThickness();}
ed19b2e1 139 Float_t GetCradleWall (Int_t index) const { return fGeometrySUPP->GetCradleWall (index); }
140 Float_t GetCradleWheel (Int_t index) const { return fGeometrySUPP->GetCradleWheel (index); }
daa2ae2f 141
6c370def 142protected:
143
aafe457d 144 AliPHOSGeometry(const Text_t* name, const Text_t* title="") : AliGeometry(name, title) {
6c370def 145 // ctor only for internal usage (singleton)
146 Init() ;
52a36ffd 147 }
148 void Init(void) ; // steering method for PHOS and PPSD/CPV
6c370def 149
daa2ae2f 150private:
6c370def 151
eb92d866 152 Int_t fNModules ; // Number of modules constituing PHOS
ed4205d8 153 Float_t fAngle ; // Position angles between modules
eb92d866 154 Float_t *fPHOSAngle ; //[fNModules] Position angles of modules
710f859a 155 Float_t fPHOSParams[4] ; // Half-sizes of PHOS trapecoid
156 Float_t fIPtoUpperCPVsurface; // Minimal distance from IP to PHOS
eb92d866 157 TObjArray *fRotMatrixArray ; // Liste of rotation matrices (one per phos module)
158 AliPHOSEMCAGeometry *fGeometryEMCA ; // Geometry object for Electromagnetic calorimeter
ed4205d8 159 AliPHOSCPVGeometry *fGeometryCPV ; // Geometry object for CPV (IHEP)
ed19b2e1 160 AliPHOSSupportGeometry *fGeometrySUPP ; // Geometry object for PHOS support
52a36ffd 161
ed4205d8 162 void SetPHOSAngles(); // calculates the PHOS modules PHI angle
daa2ae2f 163
88714635 164 static AliPHOSGeometry * fgGeom ; // pointer to the unique instance of the singleton
52a36ffd 165 static Bool_t fgInit ; // Tells if geometry has been succesfully set up
daa2ae2f 166
52a36ffd 167 ClassDef(AliPHOSGeometry,1) // PHOS geometry class
daa2ae2f 168
169} ;
170
171#endif // AliPHOSGEOMETRY_H