]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSModuleMisalignment.cxx
correct calculation of cluster error for Riemann fit
[u/mrichter/AliRoot.git] / PHOS / AliPHOSModuleMisalignment.cxx
CommitLineData
d7c519b2 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id: $ */
17
18#include <stdexcept>
19#include <iostream>
20
21#include <TGeoMatrix.h>
22#include <TObjArray.h>
23#include <TString.h>
24#include <TError.h>
25#include <TMath.h>
26
27#include "AliSurveyPoint.h"
28
29#include "AliPHOSModuleMisalignment.h"
30#include "AliPHOSGeometry.h"
31
32ClassImp(AliPHOSModuleMisalignment)
33
34namespace {
35
36 /*
37 Tiny vector/matrix utility stuff. Operates on doubles directly.
38 Instead of points and vectors I use arrays of doubles with size 3.
39 To make this explicit - I use references to arrays.
40 */
41
42 //___________________________________________________________________
43 void Vector(const Double_t (&p1)[3], const Double_t (&p2)[3], Double_t (&v)[3])
44 {
45 for(UInt_t i = 0; i < 3; ++i)
46 v[i] = p2[i] - p1[i];
47 }
48
49 //___________________________________________________________________
50 void MultVector(Double_t (&v)[3], Double_t m)
51 {
52 v[0] *= m;
53 v[1] *= m;
54 v[2] *= m;
55 }
56
57 /*
58 Using points name0, name1, name2 find two orthogonal vectors.
59 */
60 //___________________________________________________________________
61 void FindVectors(const Double_t (&pts)[3][3], Double_t (&v)[3][3])
62 {
63 Vector(pts[0], pts[2], v[0]);
64 //v[1] will be cross-product (v[2] x v[0]).
65 Vector(pts[0], pts[1], v[2]);
66 }
67
68 //___________________________________________________________________
69 Double_t Length(const Double_t (&v)[3])
70 {
71 return TMath::Sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
72 }
73
74 //___________________________________________________________________
75 Double_t Distance(const Double_t (&p1)[3], const Double_t (&p2)[3])
76 {
77 return TMath::Sqrt((p2[0] - p1[0]) * (p2[0] - p1[0]) +
78 (p2[1] - p1[1]) * (p2[1] - p1[1]) +
79 (p2[2] - p1[2]) * (p2[2] - p1[2]));
80 }
81
82 //______________________________________________________________________________
83 void CrossProduct(const Double_t (&v1)[3], const Double_t (&v2)[3], Double_t (&v3)[3])
84 {
85 v3[0] = v1[1] * v2[2] - v2[1] * v1[2];
86 v3[1] = v1[2] * v2[0] - v2[2] * v1[0];
87 v3[2] = v1[0] * v2[1] - v2[0] * v1[1];
88 }
89
90 //___________________________________________________________________
91 void Normalize(Double_t (&v)[3])
92 {
93 const Double_t len = Length(v);
94 if(len < 1E-10)//Threshold?
95 throw std::runtime_error("Zero len vector");
96 v[0] /= len;
97 v[1] /= len;
98 v[2] /= len;
99 }
100
101 //______________________________________________________________________________
102 void Normalize(Double_t (&v)[3][3])
103 {
104 for(UInt_t i = 0; i < 3; ++i)
105 Normalize(v[i]);
106 }
107
108
109 //___________________________________________________________________
110 void FindRotation(const Double_t (&u)[3][3], const Double_t (&v)[3][3], Double_t (&r)[9])
111 {
112 //I have orthogonal vectors and very nice rotation matrix.
113 //V = R * U, R = V * U ^ t
114 r[0] = v[0][0] * u[0][0] + v[1][0] * u[1][0] + v[2][0] * u[2][0];
115 r[1] = v[0][0] * u[0][1] + v[1][0] * u[1][1] + v[2][0] * u[2][1];
116 r[2] = v[0][0] * u[0][2] + v[1][0] * u[1][2] + v[2][0] * u[2][2];
117
118 r[3] = v[0][1] * u[0][0] + v[1][1] * u[1][0] + v[2][1] * u[2][0];
119 r[4] = v[0][1] * u[0][1] + v[1][1] * u[1][1] + v[2][1] * u[2][1];
120 r[5] = v[0][1] * u[0][2] + v[1][1] * u[1][2] + v[2][1] * u[2][2];
121
122 r[6] = v[0][2] * u[0][0] + v[1][2] * u[1][0] + v[2][2] * u[2][0];
123 r[7] = v[0][2] * u[0][1] + v[1][2] * u[1][1] + v[2][2] * u[2][1];
124 r[8] = v[0][2] * u[0][2] + v[1][2] * u[1][2] + v[2][2] * u[2][2];
125 }
126
127 //___________________________________________________________________
128 void Rotate(const Double_t (&r)[9], const Double_t (&u)[3], Double_t (&v)[3])
129 {
130 v[0] = r[0] * u[0] + r[1] * u[1] + r[2] * u[2];
131 v[1] = r[3] * u[0] + r[4] * u[1] + r[5] * u[2];
132 v[2] = r[6] * u[0] + r[7] * u[1] + r[8] * u[2];
133 }
134
135 //___________________________________________________________________
136 void Rotate(const Double_t (&r)[9], const Double_t (&u)[3][3], Double_t (&v)[3][3])
137 {
138 for(UInt_t i = 0; i < 3; ++i)
139 Rotate(r, u[i], v[i]);
140 }
141
142 /*
143 PrintVector, PrintMatrix, Translate are used in "debug" mode only.
144 */
145 //___________________________________________________________________
146 void PrintVector(const Double_t (&v)[3])
147 {
148 std::cout<<v[0]<<' '<<v[1]<<' '<<v[2]<<std::endl;
149 }
150
151 //___________________________________________________________________
152 void PrintMatrix(const Double_t (&u)[3][3])
153 {
154 for(UInt_t i = 0; i < 3; ++i)
155 PrintVector(u[i]);
156 }
157
158 //___________________________________________________________________
159 void Translate(const Double_t (&t)[3], const Double_t (&u)[3], Double_t (&v)[3])
160 {
161 for(UInt_t i = 0; i < 3; ++i)
162 v[i] = u[i] + t[i];
163 }
164
165 //___________________________________________________________________
166 void Translate(const Double_t (&t)[3], const Double_t (&u)[3][3], Double_t (&v)[3][3])
167 {
168 for(UInt_t i = 0; i < 3; ++i)
169 Translate(t, u[i], v[i]);
170 }
171
172}
173
174//______________________________________________________________________________
175AliPHOSModuleMisalignment::
176AliPHOSModuleMisalignment(const AliPHOSGeometry & geom, Bool_t debug)
177 : fDebug(debug),
178 fAngles(),
179 fCenters(),
180 fModule(),
181 fU(),
182 fV()
183{
184 //Ctor.
185 //Extract ideal module transformations from AliPHOSGeometry.
186
187 //Angles.
188 for (UInt_t module = 0; module < kModules; ++module)
189 for (UInt_t axis = 0; axis < 3; ++axis)
190 for (UInt_t angle = 0; angle < 2; ++angle)
191 fAngles[module][axis][angle] = geom.GetModuleAngle(module, axis, angle);
192 //Translations.
193 for (UInt_t module = 0; module < kModules; ++module)
194 for (UInt_t axis = 0; axis < 3; ++axis)
195 fCenters[module][axis] = geom.GetModuleCenter(module, axis);
196 //Points, will be rotated/translated using module angle/center.
197 fModule[0][0] = -geom.GetNPhi() / 2. * geom.GetCellStep() + geom.GetCellStep() / 2.;
198 fModule[0][1] = -geom.GetNZ() / 2. * geom.GetCellStep() + geom.GetCellStep() / 2.;
199 fModule[0][2] = -22.61;//This number is hardcoded, AliPHOSGeometry does not have it,
200 //only 460. but this is result of transformation applied already.
201 fModule[1][0] = fModule[0][0];
202 fModule[1][1] = -fModule[0][1] - geom.GetCellStep();
203 fModule[1][2] = -22.61;
204
205 fModule[2][0] = -fModule[0][0] - 7 * geom.GetCellStep();
206 fModule[2][1] = fModule[0][1];
207 fModule[2][2] = -22.61;
208}
209
210//______________________________________________________________________________
211AliPHOSModuleMisalignment::~AliPHOSModuleMisalignment()
212{
213}
214
215//______________________________________________________________________________
216void AliPHOSModuleMisalignment::
217DeltaTransformation(UInt_t module, const TObjArray * points,
218 const TString & name0, const TString & name1,
219 const TString & name2, TGeoHMatrix * delta)
220{
221 //Find delta transformation to misalign module. Global transformation.
222 const AliSurveyPoint * pt0 = static_cast<AliSurveyPoint *>(points->FindObject(name0));
223 const AliSurveyPoint * pt1 = static_cast<AliSurveyPoint *>(points->FindObject(name1));
224 const AliSurveyPoint * pt2 = static_cast<AliSurveyPoint *>(points->FindObject(name2));
225
226 if (!pt0 || !pt1 || !pt2) {
227 Warning("AliPHOSModuleData::DeltaTransformation",
228 "One of points not found in TObjArray");
229 return;
230 }
231
232 //Transform fModule using angle and translation for module number "module".
233 //fU.
234 FindIdealModule(module);
235 //Extract coordinates from survey.
236 //fV.
237 FindRealModule(pt0, pt1, pt2);
238 //Find delta, using ideal module (fU) and survey data (fV).
239 FindDelta(delta);
240}
241
242//______________________________________________________________________________
243void AliPHOSModuleMisalignment::FindIdealModule(UInt_t module)
244{
245 //Ideal module described by fU.
246 TGeoHMatrix matrix;
247 //Rotation.
248 const TGeoRotation r("",
249 fAngles[module][0][0], fAngles[module][0][1],
250 fAngles[module][1][0], fAngles[module][1][1],
251 fAngles[module][2][0], fAngles[module][2][1]);
252 matrix.SetRotation(r.GetRotationMatrix());
253 //Translation.
254 matrix.SetDx(fCenters[module][0]);
255 matrix.SetDy(fCenters[module][1]);
256 matrix.SetDz(fCenters[module][2]);
257 //Find ideal module's points.
258 matrix.LocalToMaster(fModule[0], fU[0]);
259 matrix.LocalToMaster(fModule[1], fU[1]);
260 matrix.LocalToMaster(fModule[2], fU[2]);
261}
262
263//______________________________________________________________________________
264void AliPHOSModuleMisalignment::FindRealModule(const AliSurveyPoint * pt0,
265 const AliSurveyPoint * pt1,
266 const AliSurveyPoint * pt2)
267{
268 //Real module - fV.
269 //Survey is in millimeters.
270 //AliPHOSGeometry is in centimeters.
271 const Double_t scale = 0.1;
272
273 fV[0][0] = pt0->GetX() * scale;
274 fV[0][1] = pt0->GetY() * scale;
275 fV[0][2] = pt0->GetZ() * scale;
276
277 fV[1][0] = pt1->GetX() * scale;
278 fV[1][1] = pt1->GetY() * scale;
279 fV[1][2] = pt1->GetZ() * scale;
280
281 fV[2][0] = pt2->GetX() * scale;
282 fV[2][1] = pt2->GetY() * scale;
283 fV[2][2] = pt2->GetZ() * scale;
284}
285
286//______________________________________________________________________________
287void AliPHOSModuleMisalignment::FindDelta(TGeoHMatrix * delta)const
288{
289 //Find rotation and translation wich can
290 //convert fU into fV (ideal module points into points from survey).
291 Double_t u[3][3] = {};
292 FindVectors(fU, u);
293 //Find cross product u2 x u0 and save it in u[2].
294 CrossProduct(u[2], u[0], u[1]);
295 /*
296 const Double_t lenXideal = Length(u[0]);
297 const Double_t lenZideal = Length(u[2]);
298 */
299 Double_t v[3][3] = {};
300 FindVectors(fV, v);
301 //Find cross product (v2 x v0) and save it in v[2].
302 CrossProduct(v[2], v[0], v[1]);
303 /*
304 const Double_t lenXreal = Length(v[0]);
305 const Double_t lenZreal = Length(v[2]);
306 */
307 //Now, find rotation matrix.
308 //1. Normalize vectors in u and v.
309 try {
310 Normalize(u);
311 Normalize(v);
312 } catch (const std::exception & e) {
313 //One of lengths is zero (in principle, impossible, just to be neat).
314 Error("AliPHOSModuleMisalignment::FindDelta",
315 "\tone of vectors from ideal or real\n\tpoints have zero size\n"
316 "\tzero misalignment will be created");
317 return;
318 }
319
320 //2. Rotation matrix.
321 Double_t r[9] = {};
322 FindRotation(u, v, r);
323 delta->SetRotation(r);
324
325#if 1
326
327 //3. Now, rotate fU and look, what translation I have to add.
328 Double_t idealRotated[3] = {};
329 Rotate(r, fU[0], idealRotated);
330
331 delta->SetDx(fV[0][0] - idealRotated[0]);
332 delta->SetDy(fV[0][1] - idealRotated[1]);
333 delta->SetDz(fV[0][2] - idealRotated[2]);
334
335 if (fDebug) {
336 const Double_t shifts[3] =
337 {fV[0][0] - idealRotated[0],
338 fV[0][1] - idealRotated[1],
339 fV[0][2] - idealRotated[2]};
340
341 Double_t test1[3][3] = {};
342 Rotate(r, fU, test1);
343 Double_t test2[3][3] = {};
344 Translate(shifts, test1, test2);
345 std::cout<<"ideal:\n";
346 PrintMatrix(fU);
347 std::cout<<"misaligned:\n";
348 PrintMatrix(test2);
349 std::cout<<"real:\n";
350 PrintMatrix(fV);
351 }
352
353#endif
354
355#if 0
356 //3. Now, rotate fU and look, what translation I have to add.
357 Double_t idealRotated[3][3] = {};
358 Rotate(r, fU, idealRotated);
359 //Because of measurement errors, distances
360 //between points has errors. I can try to split
361 //this difference (and make "final errors" smaller).
362 Double_t zShift[3] = {};
363 Vector(fV[0], fV[1], zShift);
364 Normalize(zShift);
365
366 Double_t xShift[3] = {};
367 Vector(fV[0], fV[2], xShift);
368 Normalize(xShift);
369
370 MultVector(zShift, 0.5 * (lenZreal - lenZideal));
371 MultVector(xShift, 0.5 * (lenXreal - lenXideal));
372
373 Double_t pt1[3] = {};
374 Translate(zShift, fV[0], pt1);
375 Double_t pt2[3] = {};
376 Translate(xShift, pt1, pt2);
377
378 Double_t shifts[] = {pt2[0] - idealRotated[0][0],
379 pt2[1] - idealRotated[0][1],
380 pt2[2] - idealRotated[0][2]};
381
382 delta->SetDx(shifts[0]);
383 delta->SetDy(shifts[1]);
384 delta->SetDz(shifts[2]);
385
386 if (fDebug) {
387 Double_t idealTr[3][3] = {};
388 Translate(shifts, idealRotated, idealTr);
389
390 std::cout<<"misaligned:\n";
391 PrintMatrix(idealTr);
392 std::cout<<"ideal1 "<<Distance(idealTr[0], idealTr[1])<<std::endl;
393 std::cout<<"ideal2 "<<Distance(idealTr[0], idealTr[2])<<std::endl;
394 std::cout<<"real:\n";
395 PrintMatrix(fV);
396 std::cout<<"real1 "<<Distance(fV[0], fV[1])<<std::endl;
397 std::cout<<"real2 "<<Distance(fV[0], fV[2])<<std::endl;
398 }
399#endif
400}