Introducing a list of lists of hits -- more hits allowed for detector now
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv0.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
1cedd08a 16/*
17$Log$
18*/
19
d15a28e7 20//_________________________________________________________________________
21// Manager class for PHOS version SUBATECH
22//*-- Author : Y. Schutz SUBATECH
23//////////////////////////////////////////////////////////////////////////////
d2cf0e38 24
fe4da5cc 25// --- ROOT system ---
d15a28e7 26
fe4da5cc 27#include "TBRIK.h"
28#include "TNode.h"
29
d15a28e7 30// --- Standard library ---
31
9f616d61 32#include <cstdio>
33#include <cstring>
34#include <cstdlib>
35#include <strstream>
36#include <cassert>
d15a28e7 37
38// --- AliRoot header files ---
39
fe4da5cc 40#include "AliPHOSv0.h"
d15a28e7 41#include "AliPHOSHit.h"
42#include "AliPHOSDigit.h"
43#include "AliPHOSReconstructioner.h"
fe4da5cc 44#include "AliRun.h"
d15a28e7 45#include "AliConst.h"
fe4da5cc 46
47ClassImp(AliPHOSv0)
48
d15a28e7 49//____________________________________________________________________________
8c933dd7 50AliPHOSv0::AliPHOSv0()
fe4da5cc 51{
d15a28e7 52 fNTmpHits = 0 ;
53 fTmpHits = 0 ;
fe4da5cc 54}
d15a28e7 55
56//____________________________________________________________________________
57AliPHOSv0::AliPHOSv0(const char *name, const char *title):
58 AliPHOS(name,title)
59{
60
61 // We use 2 arrays of hits :
62 //
63 // - fHits (the "normal" one), which retains the hits associated with
64 // the current primary particle being tracked
65 // (this array is reset after each primary has been tracked).
66 //
67 // - fTmpHits, which retains all the hits of the current event. It
68 // is used for the digitization part.
69
70 fHits = new TClonesArray("AliPHOSHit",100) ;
1cedd08a 71 gAlice->AddHitList(fHits);
d15a28e7 72 fDigits = new TClonesArray("AliPHOSDigit",100) ;
73 fTmpHits= new TClonesArray("AliPHOSHit",100) ;
74
d15a28e7 75 fNTmpHits = fNhits = 0 ;
76
77 fIshunt = 1 ; // All hits are associated with primary particles
fe4da5cc 78
d15a28e7 79 // gets an instance of the geometry parameters class
80 fGeom = AliPHOSGeometry::GetInstance(title, "") ;
81
82 if (fGeom->IsInitialized() )
83 cout << "AliPHOSv0 : PHOS geometry intialized for " << fGeom->GetName() << endl ;
84 else
85 cout << "AliPHOSv0 : PHOS geometry initialization failed !" << endl ;
86}
87//____________________________________________________________________________
9f616d61 88AliPHOSv0::AliPHOSv0(AliPHOSReconstructioner & Reconstructioner, const char *name, const char *title):
d15a28e7 89 AliPHOS(name,title)
90{
91
92 // We use 2 arrays of hits :
93 //
94 // - fHits (the "normal" one), which retains the hits associated with
95 // the current primary particle being tracked
96 // (this array is reset after each primary has been tracked).
97 //
98 // - fTmpHits, which retains all the hits of the current event. It
99 // is used for the digitization part.
100
101 fHits = new TClonesArray("AliPHOSHit",100) ;
102 fDigits = new TClonesArray("AliPHOSDigit",100) ;
103 fTmpHits= new TClonesArray("AliPHOSHit",100) ;
104
d15a28e7 105 fNTmpHits = fNhits = 0 ;
106
107 fIshunt = 1 ; // All hits are associated with primary particles
108
109 // gets an instance of the geometry parameters class
110 fGeom = AliPHOSGeometry::GetInstance(title, "") ;
111
112 if (fGeom->IsInitialized() )
113 cout << "AliPHOSv0 : PHOS geometry intialized for " << fGeom->GetName() << endl ;
114 else
115 cout << "AliPHOSv0 : PHOS geometry initialization failed !" << endl ;
116
117 // Defining the PHOS Reconstructioner
118
9f616d61 119 fReconstructioner = &Reconstructioner ;
d15a28e7 120}
121
122//____________________________________________________________________________
123AliPHOSv0::~AliPHOSv0()
124{
9f616d61 125 fTmpHits->Delete() ;
d15a28e7 126 delete fTmpHits ;
9f616d61 127 fTmpHits = 0 ;
128
129 fEmcClusters->Delete() ;
130 delete fEmcClusters ;
131 fEmcClusters = 0 ;
132
133 fPpsdClusters->Delete() ;
134 delete fPpsdClusters ;
135 fPpsdClusters = 0 ;
136
137 fTrackSegments->Delete() ;
138 delete fTrackSegments ;
139 fTrackSegments = 0 ;
d15a28e7 140}
141
142//____________________________________________________________________________
143void AliPHOSv0::AddHit(Int_t track, Int_t Id, Float_t * hits)
144{
145 Int_t hitCounter ;
146 TClonesArray &ltmphits = *fTmpHits;
147 AliPHOSHit *newHit ;
148 AliPHOSHit *curHit;
149 bool already = false ;
150
151 // In any case, fills the fTmpHit TClonesArray (with "accumulated hits")
152
153 newHit = new AliPHOSHit(fIshunt, track, Id, hits) ;
154
155 for ( hitCounter = 0 ; hitCounter < fNTmpHits && !already ; hitCounter++ ) {
156 curHit = (AliPHOSHit*) ltmphits[hitCounter] ;
157 if( *curHit == *newHit ) {
158 *curHit = *curHit + *newHit ;
159 already = true ;
160 }
161 }
162
163 if ( !already ) {
164 new(ltmphits[fNTmpHits]) AliPHOSHit(*newHit) ;
165 fNTmpHits++ ;
166 }
167
168 // Please note that the fTmpHits array must survive up to the
169 // end of the events, so it does not appear e.g. in ResetHits() (
170 // which is called at the end of each primary).
fe4da5cc 171
d15a28e7 172 // if (IsTreeSelected('H')) {
173 // And, if we really want raw hits tree, have the fHits array filled also
174 // TClonesArray &lhits = *fHits;
175 // new(lhits[fNhits]) AliPHOSHit(*newHit) ;
176 // fNhits++ ;
177 // }
178
179 delete newHit;
180
181}
182
183
184//____________________________________________________________________________
185void AliPHOSv0::BuildGeometry()
fe4da5cc 186{
d15a28e7 187
188 this->BuildGeometryforPHOS() ;
189 if ( ( strcmp(fGeom->GetName(), "GPS2" ) == 0 ) )
190 this->BuildGeometryforPPSD() ;
191 else
192 cout << "AliPHOSv0::BuildGeometry : no charged particle identification system installed" << endl;
193
fe4da5cc 194}
d15a28e7 195
196//____________________________________________________________________________
197void AliPHOSv0:: BuildGeometryforPHOS(void)
198{
199 // Build the PHOS geometry for the ROOT display
200
201 const Int_t kColorPHOS = kRed ;
202 const Int_t kColorXTAL = kBlue ;
203
204 Double_t const RADDEG = 180.0 / kPI ;
205
206 new TBRIK( "OuterBox", "PHOS box", "void", fGeom->GetOuterBoxSize(0)/2,
207 fGeom->GetOuterBoxSize(1)/2,
208 fGeom->GetOuterBoxSize(2)/2 );
209
210 // Textolit Wall box, position inside PHOS
211
212 new TBRIK( "TextolitBox", "PHOS Textolit box ", "void", fGeom->GetTextolitBoxSize(0)/2,
213 fGeom->GetTextolitBoxSize(1)/2,
214 fGeom->GetTextolitBoxSize(2)/2);
215
216 // Polystyrene Foam Plate
217
218 new TBRIK( "UpperFoamPlate", "PHOS Upper foam plate", "void", fGeom->GetTextolitBoxSize(0)/2,
219 fGeom->GetSecondUpperPlateThickness()/2,
220 fGeom->GetTextolitBoxSize(2)/2 ) ;
221
222 // Air Filled Box
fe4da5cc 223
d15a28e7 224 new TBRIK( "AirFilledBox", "PHOS air filled box", "void", fGeom->GetAirFilledBoxSize(0)/2,
225 fGeom->GetAirFilledBoxSize(1)/2,
226 fGeom->GetAirFilledBoxSize(2)/2 );
227
228 // Crystals Box
229
230 Float_t XTL_X = fGeom->GetCrystalSize(0) ;
231 Float_t XTL_Y = fGeom->GetCrystalSize(1) ;
232 Float_t XTL_Z = fGeom->GetCrystalSize(2) ;
233
234 Float_t XL = fGeom->GetNPhi() * ( XTL_X + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
235 Float_t YL = ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0
236 + fGeom->GetModuleBoxThickness() / 2.0 ;
237 Float_t ZL = fGeom->GetNZ() * ( XTL_Z + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
238
239 new TBRIK( "CrystalsBox", "PHOS crystals box", "void", XL, YL, ZL ) ;
240
241// position PHOS into ALICE
242
243 Float_t R = fGeom->GetIPtoOuterCoverDistance() + fGeom->GetOuterBoxSize(1) / 2.0 ;
244 Int_t number = 988 ;
245 Float_t pphi = TMath::ATan( fGeom->GetOuterBoxSize(0) / ( 2.0 * fGeom->GetIPtoOuterCoverDistance() ) ) ;
246 pphi *= RADDEG ;
247 TNode * Top = gAlice->GetGeometry()->GetNode("alice") ;
248
249 char * nodename = new char[20] ;
250 char * rotname = new char[20] ;
251
252 for( Int_t i = 1; i <= fGeom->GetNModules(); i++ ) {
253 Float_t angle = pphi * 2 * ( i - fGeom->GetNModules() / 2.0 - 0.5 ) ;
254 sprintf(rotname, "%s%d", "rot", number++) ;
255 new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0);
256 Top->cd();
257 sprintf(nodename,"%s%d", "Module", i) ;
258 Float_t X = R * TMath::Sin( angle / RADDEG ) ;
259 Float_t Y = -R * TMath::Cos( angle / RADDEG ) ;
260 TNode * OuterBoxNode = new TNode(nodename, nodename, "OuterBox", X, Y, 0, rotname ) ;
261 OuterBoxNode->SetLineColor(kColorPHOS) ;
262 fNodes->Add(OuterBoxNode) ;
263 OuterBoxNode->cd() ;
264 // now inside the outer box the textolit box
265 Y = ( fGeom->GetOuterBoxThickness(1) - fGeom->GetUpperPlateThickness() ) / 2. ;
266 sprintf(nodename,"%s%d", "TexBox", i) ;
267 TNode * TextolitBoxNode = new TNode(nodename, nodename, "TextolitBox", 0, Y, 0) ;
268 TextolitBoxNode->SetLineColor(kColorPHOS) ;
269 fNodes->Add(TextolitBoxNode) ;
270 // upper foam plate inside outre box
271 OuterBoxNode->cd() ;
272 sprintf(nodename, "%s%d", "UFPlate", i) ;
273 Y = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetSecondUpperPlateThickness() ) / 2.0 ;
274 TNode * UpperFoamPlateNode = new TNode(nodename, nodename, "UpperFoamPlate", 0, Y, 0) ;
275 UpperFoamPlateNode->SetLineColor(kColorPHOS) ;
276 fNodes->Add(UpperFoamPlateNode) ;
277 // air filled box inside textolit box (not drawn)
278 TextolitBoxNode->cd();
279 Y = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetAirFilledBoxSize(1) ) / 2.0 - fGeom->GetSecondUpperPlateThickness() ;
280 sprintf(nodename, "%s%d", "AFBox", i) ;
281 TNode * AirFilledBoxNode = new TNode(nodename, nodename, "AirFilledBox", 0, Y, 0) ;
282 fNodes->Add(AirFilledBoxNode) ;
283 // crystals box inside air filled box
284 AirFilledBoxNode->cd() ;
285 Y = fGeom->GetAirFilledBoxSize(1) / 2.0 - YL
286 - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness()
287 - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() ) ;
288 sprintf(nodename, "%s%d", "XTBox", i) ;
289 TNode * CrystalsBoxNode = new TNode(nodename, nodename, "CrystalsBox", 0, Y, 0) ;
290 CrystalsBoxNode->SetLineColor(kColorXTAL) ;
291 fNodes->Add(CrystalsBoxNode) ;
292 }
293}
294
295//____________________________________________________________________________
296void AliPHOSv0:: BuildGeometryforPPSD(void)
fe4da5cc 297{
d15a28e7 298 // Build the PPSD geometry for the ROOT display
299
300 Double_t const RADDEG = 180.0 / kPI ;
301
302 const Int_t kColorPHOS = kRed ;
303 const Int_t kColorPPSD = kGreen ;
304 const Int_t kColorGas = kBlue ;
305 const Int_t kColorAir = kYellow ;
306
307 // Box for a full PHOS module
308
309 new TBRIK( "PPSDBox", "PPSD box", "void", fGeom->GetPPSDBoxSize(0)/2,
310 fGeom->GetPPSDBoxSize(1)/2,
311 fGeom->GetPPSDBoxSize(2)/2 );
312
313 // Box containing one micromegas module
314
315 new TBRIK( "PPSDModule", "PPSD module", "void", fGeom->GetPPSDModuleSize(0)/2,
316 fGeom->GetPPSDModuleSize(1)/2,
317 fGeom->GetPPSDModuleSize(2)/2 );
318 // top lid
319
320 new TBRIK ( "TopLid", "Micromegas top lid", "void", fGeom->GetPPSDModuleSize(0)/2,
321 fGeom->GetLidThickness()/2,
322 fGeom->GetPPSDModuleSize(2)/2 ) ;
323 // composite panel (top and bottom)
324
325 new TBRIK ( "TopPanel", "Composite top panel", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
326 fGeom->GetCompositeThickness()/2,
327 ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
328
329 new TBRIK ( "BottomPanel", "Composite bottom panel", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
330 fGeom->GetCompositeThickness()/2,
331 ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
332 // gas gap (conversion and avalanche)
333
334 new TBRIK ( "GasGap", "gas gap", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
335 ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() )/2,
336 ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
337
338 // anode and cathode
339
340 new TBRIK ( "Anode", "Anode", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
341 fGeom->GetAnodeThickness()/2,
342 ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
343
344 new TBRIK ( "Cathode", "Cathode", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
345 fGeom->GetCathodeThickness()/2,
346 ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
347 // PC
348
349 new TBRIK ( "PCBoard", "Printed Circuit", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
350 fGeom->GetPCThickness()/2,
351 ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
352 // Gap between Lead and top micromegas
353
354 new TBRIK ( "LeadToM", "Air Gap top", "void", fGeom->GetPPSDBoxSize(0)/2,
355 fGeom->GetMicro1ToLeadGap()/2,
356 fGeom->GetPPSDBoxSize(2)/2 ) ;
357
358// Gap between Lead and bottom micromegas
359
360 new TBRIK ( "MToLead", "Air Gap bottom", "void", fGeom->GetPPSDBoxSize(0)/2,
361 fGeom->GetLeadToMicro2Gap()/2,
362 fGeom->GetPPSDBoxSize(2)/2 ) ;
363 // Lead converter
364
365 new TBRIK ( "Lead", "Lead converter", "void", fGeom->GetPPSDBoxSize(0)/2,
366 fGeom->GetLeadConverterThickness()/2,
367 fGeom->GetPPSDBoxSize(2)/2 ) ;
368
369 // position PPSD into ALICE
370
371 char * nodename = new char[20] ;
372 char * rotname = new char[20] ;
373
374 Float_t R = fGeom->GetIPtoTopLidDistance() + fGeom->GetPPSDBoxSize(1) / 2.0 ;
375 Int_t number = 988 ;
376 TNode * Top = gAlice->GetGeometry()->GetNode("alice") ;
377
378 for( Int_t i = 1; i <= fGeom->GetNModules(); i++ ) { // the number of PHOS modules
379 Float_t angle = fGeom->GetPHOSAngle(i) ;
380 sprintf(rotname, "%s%d", "rotg", number++) ;
381 new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0);
382 Top->cd();
383 sprintf(nodename, "%s%d", "Moduleg", i) ;
384 Float_t X = R * TMath::Sin( angle / RADDEG ) ;
385 Float_t Y = -R * TMath::Cos( angle / RADDEG ) ;
386 TNode * PPSDBoxNode = new TNode(nodename , nodename ,"PPSDBox", X, Y, 0, rotname ) ;
387 PPSDBoxNode->SetLineColor(kColorPPSD) ;
388 fNodes->Add(PPSDBoxNode) ;
389 PPSDBoxNode->cd() ;
390 // inside the PPSD box:
391 // 1. fNumberOfModulesPhi x fNumberOfModulesZ top micromegas
392 X = ( fGeom->GetPPSDBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. ;
393 for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { // the number of micromegas modules in phi per PHOS module
394 Float_t Z = ( fGeom->GetPPSDBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. ;
395 TNode * Micro1Node ;
396 for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { // the number of micromegas modules in z per PHOS module
397 Y = ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas1Thickness() ) / 2. ;
398 sprintf(nodename, "%s%d%d%d", "Mic1", i, iphi, iz) ;
399 Micro1Node = new TNode(nodename, nodename, "PPSDModule", X, Y, Z) ;
400 Micro1Node->SetLineColor(kColorPPSD) ;
401 fNodes->Add(Micro1Node) ;
402 // inside top micromegas
403 Micro1Node->cd() ;
404 // a. top lid
405 Y = ( fGeom->GetMicromegas1Thickness() - fGeom->GetLidThickness() ) / 2. ;
406 sprintf(nodename, "%s%d%d%d", "Lid", i, iphi, iz) ;
407 TNode * TopLidNode = new TNode(nodename, nodename, "TopLid", 0, Y, 0) ;
408 TopLidNode->SetLineColor(kColorPPSD) ;
409 fNodes->Add(TopLidNode) ;
410 // b. composite panel
411 Y = Y - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
412 sprintf(nodename, "%s%d%d%d", "CompU", i, iphi, iz) ;
413 TNode * CompUpNode = new TNode(nodename, nodename, "TopPanel", 0, Y, 0) ;
414 CompUpNode->SetLineColor(kColorPPSD) ;
415 fNodes->Add(CompUpNode) ;
416 // c. anode
417 Y = Y - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ;
418 sprintf(nodename, "%s%d%d%d", "Ano", i, iphi, iz) ;
419 TNode * AnodeNode = new TNode(nodename, nodename, "Anode", 0, Y, 0) ;
420 AnodeNode->SetLineColor(kColorPHOS) ;
421 fNodes->Add(AnodeNode) ;
422 // d. gas
423 Y = Y - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ;
424 sprintf(nodename, "%s%d%d%d", "GGap", i, iphi, iz) ;
425 TNode * GGapNode = new TNode(nodename, nodename, "GasGap", 0, Y, 0) ;
426 GGapNode->SetLineColor(kColorGas) ;
427 fNodes->Add(GGapNode) ;
428 // f. cathode
429 Y = Y - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ;
430 sprintf(nodename, "%s%d%d%d", "Cathode", i, iphi, iz) ;
431 TNode * CathodeNode = new TNode(nodename, nodename, "Cathode", 0, Y, 0) ;
432 CathodeNode->SetLineColor(kColorPHOS) ;
433 fNodes->Add(CathodeNode) ;
434 // g. printed circuit
435 Y = Y - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ;
436 sprintf(nodename, "%s%d%d%d", "PC", i, iphi, iz) ;
437 TNode * PCNode = new TNode(nodename, nodename, "PCBoard", 0, Y, 0) ;
438 PCNode->SetLineColor(kColorPPSD) ;
439 fNodes->Add(PCNode) ;
440 // h. composite panel
441 Y = Y - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
442 sprintf(nodename, "%s%d%d%d", "CompDown", i, iphi, iz) ;
443 TNode * CompDownNode = new TNode(nodename, nodename, "BottomPanel", 0, Y, 0) ;
444 CompDownNode->SetLineColor(kColorPPSD) ;
445 fNodes->Add(CompDownNode) ;
446 Z = Z - fGeom->GetPPSDModuleSize(2) ;
447 PPSDBoxNode->cd() ;
448 } // end of Z module loop
449 X = X - fGeom->GetPPSDModuleSize(0) ;
450 PPSDBoxNode->cd() ;
451 } // end of phi module loop
452 // 2. air gap
453 PPSDBoxNode->cd() ;
454 Y = ( fGeom->GetPPSDBoxSize(1) - 2 * fGeom->GetMicromegas1Thickness() - fGeom->GetMicro1ToLeadGap() ) / 2. ;
455 sprintf(nodename, "%s%d", "GapUp", i) ;
456 TNode * GapUpNode = new TNode(nodename, nodename, "LeadToM", 0, Y, 0) ;
457 GapUpNode->SetLineColor(kColorAir) ;
458 fNodes->Add(GapUpNode) ;
459 // 3. lead converter
460 Y = Y - fGeom->GetMicro1ToLeadGap() / 2. - fGeom->GetLeadConverterThickness() / 2. ;
461 sprintf(nodename, "%s%d", "LeadC", i) ;
462 TNode * LeadCNode = new TNode(nodename, nodename, "Lead", 0, Y, 0) ;
463 LeadCNode->SetLineColor(kColorPPSD) ;
464 fNodes->Add(LeadCNode) ;
465 // 4. air gap
466 Y = Y - fGeom->GetLeadConverterThickness() / 2. - fGeom->GetLeadToMicro2Gap() / 2. ;
467 sprintf(nodename, "%s%d", "GapDown", i) ;
468 TNode * GapDownNode = new TNode(nodename, nodename, "MToLead", 0, Y, 0) ;
469 GapDownNode->SetLineColor(kColorAir) ;
470 fNodes->Add(GapDownNode) ;
471 // 5. fNumberOfModulesPhi x fNumberOfModulesZ bottom micromegas
472 X = ( fGeom->GetPPSDBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. - fGeom->GetPhiDisplacement() ;
473 for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) {
474 Float_t Z = ( fGeom->GetPPSDBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. - fGeom->GetZDisplacement() ;;
475 TNode * Micro2Node ;
476 for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) {
477 Y = - ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas2Thickness() ) / 2. ;
478 sprintf(nodename, "%s%d%d%d", "Mic2", i, iphi, iz) ;
479 Micro2Node = new TNode(nodename, nodename, "PPSDModule", X, Y, Z) ;
480 Micro2Node->SetLineColor(kColorPPSD) ;
481 fNodes->Add(Micro2Node) ;
482 // inside bottom micromegas
483 Micro2Node->cd() ;
484 // a. top lid
485 Y = ( fGeom->GetMicromegas2Thickness() - fGeom->GetLidThickness() ) / 2. ;
486 sprintf(nodename, "%s%d", "Lidb", i) ;
487 TNode * TopLidbNode = new TNode(nodename, nodename, "TopLid", 0, Y, 0) ;
488 TopLidbNode->SetLineColor(kColorPPSD) ;
489 fNodes->Add(TopLidbNode) ;
490 // b. composite panel
491 Y = Y - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
492 sprintf(nodename, "%s%d", "CompUb", i) ;
493 TNode * CompUpbNode = new TNode(nodename, nodename, "TopPanel", 0, Y, 0) ;
494 CompUpbNode->SetLineColor(kColorPPSD) ;
495 fNodes->Add(CompUpbNode) ;
496 // c. anode
497 Y = Y - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ;
498 sprintf(nodename, "%s%d", "Anob", i) ;
499 TNode * AnodebNode = new TNode(nodename, nodename, "Anode", 0, Y, 0) ;
500 AnodebNode->SetLineColor(kColorPPSD) ;
501 fNodes->Add(AnodebNode) ;
502 // d. conversion gas
503 Y = Y - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ;
504 sprintf(nodename, "%s%d", "GGapb", i) ;
505 TNode * GGapbNode = new TNode(nodename, nodename, "GasGap", 0, Y, 0) ;
506 GGapbNode->SetLineColor(kColorGas) ;
507 fNodes->Add(GGapbNode) ;
508 // f. cathode
509 Y = Y - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ;
510 sprintf(nodename, "%s%d", "Cathodeb", i) ;
511 TNode * CathodebNode = new TNode(nodename, nodename, "Cathode", 0, Y, 0) ;
512 CathodebNode->SetLineColor(kColorPPSD) ;
513 fNodes->Add(CathodebNode) ;
514 // g. printed circuit
515 Y = Y - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ;
516 sprintf(nodename, "%s%d", "PCb", i) ;
517 TNode * PCbNode = new TNode(nodename, nodename, "PCBoard", 0, Y, 0) ;
518 PCbNode->SetLineColor(kColorPPSD) ;
519 fNodes->Add(PCbNode) ;
520 // h. composite pane
521 Y = Y - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
522 sprintf(nodename, "%s%d", "CompDownb", i) ;
523 TNode * CompDownbNode = new TNode(nodename, nodename, "BottomPanel", 0, Y, 0) ;
524 CompDownbNode->SetLineColor(kColorPPSD) ;
525 fNodes->Add(CompDownbNode) ;
526 Z = Z - fGeom->GetPPSDModuleSize(2) ;
527 PPSDBoxNode->cd() ;
528 } // end of Z module loop
529 X = X - fGeom->GetPPSDModuleSize(0) ;
530 PPSDBoxNode->cd() ;
531 } // end of phi module loop
532 } // PHOS modules
533 delete rotname ;
534 delete nodename ;
fe4da5cc 535}
536
d15a28e7 537//____________________________________________________________________________
fe4da5cc 538void AliPHOSv0::CreateGeometry()
539{
d15a28e7 540
541 AliPHOSv0 *PHOS_tmp = (AliPHOSv0*)gAlice->GetModule("PHOS") ;
542
543 if ( PHOS_tmp == NULL ) {
544
545 fprintf(stderr, "PHOS detector not found!\n") ;
546 return;
fe4da5cc 547
d15a28e7 548 }
549
550 // Get pointer to the array containing media indeces
551 Int_t *IDTMED = fIdtmed->GetArray() - 699 ;
552
553 Float_t BigBox[3] ;
554 BigBox[0] = fGeom->GetOuterBoxSize(0) / 2.0 ;
555 BigBox[1] = ( fGeom->GetOuterBoxSize(1) + fGeom->GetPPSDBoxSize(1) ) / 2.0 ;
556 BigBox[2] = fGeom->GetOuterBoxSize(2) / 2.0 ;
557
558 gMC->Gsvolu("PHOS", "BOX ", IDTMED[798], BigBox, 3) ;
559
560 this->CreateGeometryforPHOS() ;
561 if ( strcmp( fGeom->GetName(), "GPS2") == 0 )
562 this->CreateGeometryforPPSD() ;
563 else
564 cout << "AliPHOSv0::CreateGeometry : no charged particle identification system installed" << endl;
565
566 // --- Position PHOS mdules in ALICE setup ---
567
568 Int_t IDROTM[99] ;
569 Double_t const RADDEG = 180.0 / kPI ;
570
571 for( Int_t i = 1; i <= fGeom->GetNModules(); i++ ) {
572
573 Float_t angle = fGeom->GetPHOSAngle(i) ;
574 AliMatrix(IDROTM[i-1], 90.0, angle, 90.0, 90.0+angle, 0.0, 0.0) ;
575
576 Float_t R = fGeom->GetIPtoOuterCoverDistance() + ( fGeom->GetOuterBoxSize(1) + fGeom->GetPPSDBoxSize(1) ) / 2.0 ;
577
578 Float_t XP1 = R * TMath::Sin( angle / RADDEG ) ;
579 Float_t YP1 = -R * TMath::Cos( angle / RADDEG ) ;
580
581 gMC->Gspos("PHOS", i, "ALIC", XP1, YP1, 0.0, IDROTM[i-1], "ONLY") ;
582
583 } // for GetNModules
584
fe4da5cc 585}
d15a28e7 586
587//____________________________________________________________________________
588void AliPHOSv0::CreateGeometryforPHOS()
589{
590 // Get pointer to the array containing media indeces
591 Int_t *IDTMED = fIdtmed->GetArray() - 699 ;
592
593 // ---
594 // --- Define PHOS box volume, fPUFPill with thermo insulating foam ---
595 // --- Foam Thermo Insulating outer cover dimensions ---
596 // --- Put it in BigBox = PHOS
597
598 Float_t DPHOS[3] ;
599 DPHOS[0] = fGeom->GetOuterBoxSize(0) / 2.0 ;
600 DPHOS[1] = fGeom->GetOuterBoxSize(1) / 2.0 ;
601 DPHOS[2] = fGeom->GetOuterBoxSize(2) / 2.0 ;
602
603 gMC->Gsvolu("EMCA", "BOX ", IDTMED[706], DPHOS, 3) ;
604
605 Float_t YO = - fGeom->GetPPSDBoxSize(1) / 2.0 ;
606
607 gMC->Gspos("EMCA", 1, "PHOS", 0.0, YO, 0.0, 0, "ONLY") ;
608
609 // ---
610 // --- Define Textolit Wall box, position inside EMCA ---
611 // --- Textolit Wall box dimentions ---
612
613
614 Float_t DPTXW[3];
615 DPTXW[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ;
616 DPTXW[1] = fGeom->GetTextolitBoxSize(1) / 2.0 ;
617 DPTXW[2] = fGeom->GetTextolitBoxSize(2) / 2.0 ;
618
619 gMC->Gsvolu("PTXW", "BOX ", IDTMED[707], DPTXW, 3);
620
621 YO = ( fGeom->GetOuterBoxThickness(1) - fGeom->GetUpperPlateThickness() ) / 2. ;
622
623 gMC->Gspos("PTXW", 1, "EMCA", 0.0, YO, 0.0, 0, "ONLY") ;
624
625 // ---
626 // --- Define Upper Polystyrene Foam Plate, place inside PTXW ---
627 // --- immediately below Foam Thermo Insulation Upper plate ---
628
629 // --- Upper Polystyrene Foam plate thickness ---
630
631 Float_t DPUFP[3] ;
632 DPUFP[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ;
633 DPUFP[1] = fGeom->GetSecondUpperPlateThickness() / 2. ;
634 DPUFP[2] = fGeom->GetTextolitBoxSize(2) /2.0 ;
635
636 gMC->Gsvolu("PUFP", "BOX ", IDTMED[703], DPUFP, 3) ;
637
638 YO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetSecondUpperPlateThickness() ) / 2.0 ;
639
640 gMC->Gspos("PUFP", 1, "PTXW", 0.0, YO, 0.0, 0, "ONLY") ;
641
642 // ---
643 // --- Define air-filled box, place inside PTXW ---
644 // --- Inner AIR volume dimensions ---
fe4da5cc 645
d15a28e7 646
647 Float_t DPAIR[3] ;
648 DPAIR[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
649 DPAIR[1] = fGeom->GetAirFilledBoxSize(1) / 2.0 ;
650 DPAIR[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
651
652 gMC->Gsvolu("PAIR", "BOX ", IDTMED[798], DPAIR, 3) ;
653
654 YO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetAirFilledBoxSize(1) ) / 2.0 - fGeom->GetSecondUpperPlateThickness() ;
655
656 gMC->Gspos("PAIR", 1, "PTXW", 0.0, YO, 0.0, 0, "ONLY") ;
657
658// --- Dimensions of PbWO4 crystal ---
659
660 Float_t XTL_X = fGeom->GetCrystalSize(0) ;
661 Float_t XTL_Y = fGeom->GetCrystalSize(1) ;
662 Float_t XTL_Z = fGeom->GetCrystalSize(2) ;
663
664 Float_t DPTCB[3] ;
665 DPTCB[0] = fGeom->GetNPhi() * ( XTL_X + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
666 DPTCB[1] = ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0
667 + fGeom->GetModuleBoxThickness() / 2.0 ;
668 DPTCB[2] = fGeom->GetNZ() * ( XTL_Z + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
669
670 gMC->Gsvolu("PTCB", "BOX ", IDTMED[706], DPTCB, 3) ;
671
672 YO = fGeom->GetAirFilledBoxSize(1) / 2.0 - DPTCB[1]
673 - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness()
674 - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() ) ;
675
676 gMC->Gspos("PTCB", 1, "PAIR", 0.0, YO, 0.0, 0, "ONLY") ;
677
678 // ---
679 // --- Define Crystal BLock filled with air, position it inside PTCB ---
680 Float_t DPCBL[3] ;
681
682 DPCBL[0] = fGeom->GetNPhi() * ( XTL_X + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ;
683 DPCBL[1] = ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ;
684 DPCBL[2] = fGeom->GetNZ() * ( XTL_Z + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ;
685
686 gMC->Gsvolu("PCBL", "BOX ", IDTMED[798], DPCBL, 3) ;
687
688 // --- Divide PCBL in X (phi) and Z directions --
689 gMC->Gsdvn("PROW", "PCBL", Int_t (fGeom->GetNPhi()), 1) ;
690 gMC->Gsdvn("PCEL", "PROW", Int_t (fGeom->GetNZ()), 3) ;
691
692 YO = -fGeom->GetModuleBoxThickness() / 2.0 ;
693
694 gMC->Gspos("PCBL", 1, "PTCB", 0.0, YO, 0.0, 0, "ONLY") ;
695
696 // ---
697 // --- Define STeel (actually, it's titanium) Cover volume, place inside PCEL
698 Float_t DPSTC[3] ;
699
700 DPSTC[0] = ( XTL_X + 2 * fGeom->GetCrystalWrapThickness() ) / 2.0 ;
701 DPSTC[1] = ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ;
702 DPSTC[2] = ( XTL_Z + 2 * fGeom->GetCrystalWrapThickness() + 2 * fGeom->GetCrystalHolderThickness() ) / 2.0 ;
703
704 gMC->Gsvolu("PSTC", "BOX ", IDTMED[704], DPSTC, 3) ;
705
706 gMC->Gspos("PSTC", 1, "PCEL", 0.0, 0.0, 0.0, 0, "ONLY") ;
707
708 // ---
709 // --- Define Tyvek volume, place inside PSTC ---
710 Float_t DPPAP[3] ;
711
712 DPPAP[0] = XTL_X / 2.0 + fGeom->GetCrystalWrapThickness() ;
713 DPPAP[1] = ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ;
714 DPPAP[2] = XTL_Z / 2.0 + fGeom->GetCrystalWrapThickness() ;
715
716 gMC->Gsvolu("PPAP", "BOX ", IDTMED[702], DPPAP, 3) ;
717
718 YO = ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0
719 - ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ;
720
721 gMC->Gspos("PPAP", 1, "PSTC", 0.0, YO, 0.0, 0, "ONLY") ;
722
723 // ---
724 // --- Define PbWO4 crystal volume, place inside PPAP ---
725 Float_t DPXTL[3] ;
726
727 DPXTL[0] = XTL_X / 2.0 ;
728 DPXTL[1] = XTL_Y / 2.0 ;
729 DPXTL[2] = XTL_Z / 2.0 ;
730
731 gMC->Gsvolu("PXTL", "BOX ", IDTMED[699], DPXTL, 3) ;
732
733 YO = ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 - XTL_Y / 2.0 - fGeom->GetCrystalWrapThickness() ;
734
735 gMC->Gspos("PXTL", 1, "PPAP", 0.0, YO, 0.0, 0, "ONLY") ;
736
737 // ---
738 // --- Define crystal support volume, place inside PPAP ---
739 Float_t DPSUP[3] ;
740
741 DPSUP[0] = XTL_X / 2.0 + fGeom->GetCrystalWrapThickness() ;
742 DPSUP[1] = fGeom->GetCrystalSupportHeight() / 2.0 ;
743 DPSUP[2] = XTL_Z / 2.0 + fGeom->GetCrystalWrapThickness() ;
744
745 gMC->Gsvolu("PSUP", "BOX ", IDTMED[798], DPSUP, 3) ;
746
747 YO = fGeom->GetCrystalSupportHeight() / 2.0 - ( XTL_Y + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ;
748
749 gMC->Gspos("PSUP", 1, "PPAP", 0.0, YO, 0.0, 0, "ONLY") ;
750
751 // ---
752 // --- Define PIN-diode volume and position it inside crystal support ---
753 // --- right behind PbWO4 crystal
754
755 // --- PIN-diode dimensions ---
756
757
758 Float_t DPPIN[3] ;
759 DPPIN[0] = fGeom->GetPinDiodeSize(0) / 2.0 ;
760 DPPIN[1] = fGeom->GetPinDiodeSize(1) / 2.0 ;
761 DPPIN[2] = fGeom->GetPinDiodeSize(2) / 2.0 ;
762
763 gMC->Gsvolu("PPIN", "BOX ", IDTMED[705], DPPIN, 3) ;
764
765 YO = fGeom->GetCrystalSupportHeight() / 2.0 - fGeom->GetPinDiodeSize(1) / 2.0 ;
766
767 gMC->Gspos("PPIN", 1, "PSUP", 0.0, YO, 0.0, 0, "ONLY") ;
768
769 // ---
770 // --- Define Upper Cooling Panel, place it on top of PTCB ---
771 Float_t DPUCP[3] ;
772 // --- Upper Cooling Plate thickness ---
773
774 DPUCP[0] = DPTCB[0] ;
775 DPUCP[1] = fGeom->GetUpperCoolingPlateThickness() ;
776 DPUCP[2] = DPTCB[2] ;
777
778 gMC->Gsvolu("PUCP", "BOX ", IDTMED[701], DPUCP,3) ;
779
780 YO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetUpperCoolingPlateThickness() ) / 2.
781 - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness()
782 - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() - fGeom->GetUpperCoolingPlateThickness() ) ;
783
784 gMC->Gspos("PUCP", 1, "PAIR", 0.0, YO, 0.0, 0, "ONLY") ;
785
786 // ---
787 // --- Define Al Support Plate, position it inside PAIR ---
788 // --- right beneath PTCB ---
789 // --- Al Support Plate thickness ---
790
791 Float_t DPASP[3] ;
792 DPASP[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
793 DPASP[1] = fGeom->GetSupportPlateThickness() / 2.0 ;
794 DPASP[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
795
796 gMC->Gsvolu("PASP", "BOX ", IDTMED[701], DPASP, 3) ;
797
798 YO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetSupportPlateThickness() ) / 2.
799 - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance()
800 - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() + DPCBL[1] * 2 ) ;
801
802 gMC->Gspos("PASP", 1, "PAIR", 0.0, YO, 0.0, 0, "ONLY") ;
803
804 // ---
805 // --- Define Thermo Insulating Plate, position it inside PAIR ---
806 // --- right beneath PASP ---
807 // --- Lower Thermo Insulating Plate thickness ---
808
809 Float_t DPTIP[3] ;
810 DPTIP[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
811 DPTIP[1] = fGeom->GetLowerThermoPlateThickness() / 2.0 ;
812 DPTIP[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
813
814 gMC->Gsvolu("PTIP", "BOX ", IDTMED[706], DPTIP, 3) ;
815
816 YO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerThermoPlateThickness() ) / 2.
817 - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness()
818 - fGeom->GetSecondUpperPlateThickness() + DPCBL[1] * 2 + fGeom->GetSupportPlateThickness() ) ;
819
820 gMC->Gspos("PTIP", 1, "PAIR", 0.0, YO, 0.0, 0, "ONLY") ;
821
822 // ---
823 // --- Define Textolit Plate, position it inside PAIR ---
824 // --- right beneath PTIP ---
825 // --- Lower Textolit Plate thickness ---
826
827 Float_t DPTXP[3] ;
828 DPTXP[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
829 DPTXP[1] = fGeom->GetLowerTextolitPlateThickness() / 2.0 ;
830 DPTXP[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
831
832 gMC->Gsvolu("PTXP", "BOX ", IDTMED[707], DPTXP, 3) ;
833
834 YO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerTextolitPlateThickness() ) / 2.
835 - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness()
836 - fGeom->GetSecondUpperPlateThickness() + DPCBL[1] * 2 + fGeom->GetSupportPlateThickness()
837 + fGeom->GetLowerThermoPlateThickness() ) ;
838
839 gMC->Gspos("PTXP", 1, "PAIR", 0.0, YO, 0.0, 0, "ONLY") ;
840
841}
842
843//____________________________________________________________________________
844void AliPHOSv0::CreateGeometryforPPSD()
fe4da5cc 845{
d15a28e7 846 // Get pointer to the array containing media indeces
847 Int_t *IDTMED = fIdtmed->GetArray() - 699 ;
848
849 // The box containing all PPSD's for one PHOS module filled with air
850 Float_t PPSD[3] ;
851 PPSD[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
852 PPSD[1] = fGeom->GetPPSDBoxSize(1) / 2.0 ;
853 PPSD[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
fe4da5cc 854
d15a28e7 855 gMC->Gsvolu("PPSD", "BOX ", IDTMED[798], PPSD, 3) ;
856
857 Float_t YO = fGeom->GetOuterBoxSize(1) / 2.0 ;
858
859 gMC->Gspos("PPSD", 1, "PHOS", 0.0, YO, 0.0, 0, "ONLY") ;
860
861 // Now we build a micromegas module
862 // The box containing the whole module filled with epoxy (FR4)
863
864 Float_t MPPSD[3] ;
865 MPPSD[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ;
866 MPPSD[1] = fGeom->GetPPSDModuleSize(1) / 2.0 ;
867 MPPSD[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ;
868
869 gMC->Gsvolu("MPPS", "BOX ", IDTMED[708], MPPSD, 3) ;
870
871 // Inside MPPSD :
872 // 1. The Top Lid made of epoxy (FR4)
873
874 Float_t TLPPSD[3] ;
875 TLPPSD[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ;
876 TLPPSD[1] = fGeom->GetLidThickness() / 2.0 ;
877 TLPPSD[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ;
878
879 gMC->Gsvolu("TLPS", "BOX ", IDTMED[708], TLPPSD, 3) ;
880
881 Float_t Y0 = ( fGeom->GetMicromegas1Thickness() - fGeom->GetLidThickness() ) / 2. ;
882
883 gMC->Gspos("TLPS", 1, "MPPS", 0.0, Y0, 0.0, 0, "ONLY") ;
884
885 // 2. the upper panel made of composite material
886
887 Float_t UPPPSD[3] ;
888 UPPPSD[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
889 UPPPSD[1] = fGeom->GetCompositeThickness() / 2.0 ;
890 UPPPSD[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
891
892 gMC->Gsvolu("UPPS", "BOX ", IDTMED[709], UPPPSD, 3) ;
893
894 Y0 = Y0 - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
895
896 gMC->Gspos("UPPS", 1, "MPPS", 0.0, Y0, 0.0, 0, "ONLY") ;
897
898 // 3. the anode made of Copper
899
900 Float_t ANPPSD[3] ;
901 ANPPSD[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
902 ANPPSD[1] = fGeom->GetAnodeThickness() / 2.0 ;
903 ANPPSD[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
904
905 gMC->Gsvolu("ANPS", "BOX ", IDTMED[710], ANPPSD, 3) ;
906
907 Y0 = Y0 - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ;
908
909 gMC->Gspos("ANPS", 1, "MPPS", 0.0, Y0, 0.0, 0, "ONLY") ;
910
911 // 4. the conversion gap + avalanche gap filled with gas
912
913 Float_t GGPPSD[3] ;
914 GGPPSD[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
915 GGPPSD[1] = ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2.0 ;
916 GGPPSD[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
917
918 gMC->Gsvolu("GGPS", "BOX ", IDTMED[715], GGPPSD, 3) ;
919
920 // --- Divide GGPP in X (phi) and Z directions --
921 gMC->Gsdvn("GROW", "GGPS", fGeom->GetNumberOfPadsPhi(), 1) ;
922 gMC->Gsdvn("GCEL", "GROW", fGeom->GetNumberOfPadsZ() , 3) ;
923
924 Y0 = Y0 - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ;
925
926 gMC->Gspos("GGPS", 1, "MPPS", 0.0, Y0, 0.0, 0, "ONLY") ;
927
928
929 // 6. the cathode made of Copper
930
931 Float_t CAPPSD[3] ;
932 CAPPSD[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
933 CAPPSD[1] = fGeom->GetCathodeThickness() / 2.0 ;
934 CAPPSD[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
935
936 gMC->Gsvolu("CAPS", "BOX ", IDTMED[710], CAPPSD, 3) ;
937
938 Y0 = Y0 - ( fGeom->GetAvalancheGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ;
939
940 gMC->Gspos("CAPS", 1, "MPPS", 0.0, Y0, 0.0, 0, "ONLY") ;
941
942 // 7. the printed circuit made of G10
943
944 Float_t PCPPSD[3] ;
945 PCPPSD[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2,.0 ;
946 PCPPSD[1] = fGeom->GetPCThickness() / 2.0 ;
947 PCPPSD[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
948
949 gMC->Gsvolu("PCPS", "BOX ", IDTMED[711], CAPPSD, 3) ;
950
951 Y0 = Y0 - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ;
952
953 gMC->Gspos("PCPS", 1, "MPPS", 0.0, Y0, 0.0, 0, "ONLY") ;
954
955 // 8. the lower panel made of composite material
956
957 Float_t LPPPSD[3] ;
958 LPPPSD[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
959 LPPPSD[1] = fGeom->GetCompositeThickness() / 2.0 ;
960 LPPPSD[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
961
962 gMC->Gsvolu("LPPS", "BOX ", IDTMED[709], LPPPSD, 3) ;
963
964 Y0 = Y0 - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
965
966 gMC->Gspos("LPPS", 1, "MPPS", 0.0, Y0, 0.0, 0, "ONLY") ;
967
968 // Position the fNumberOfModulesPhi x fNumberOfModulesZ modules (MPPSD) inside PPSD to cover a PHOS module
969 // the top and bottom one's (which are assumed identical) :
970
971 Float_t Yt = ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas1Thickness() ) / 2. ;
972 Float_t Yb = - ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas2Thickness() ) / 2. ;
973
974 Int_t CopyNumbertop = 0 ;
975 Int_t CopyNumberbot = fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() ;
976
977 Float_t X = ( fGeom->GetPPSDBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. ;
978
979 for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { // the number of micromegas modules in phi per PHOS module
980 Float_t Z = ( fGeom->GetPPSDBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. ;
981
982 for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { // the number of micromegas modules in z per PHOS module
983 gMC->Gspos("MPPS", ++CopyNumbertop, "PPSD", X, Yt, Z, 0, "ONLY") ;
984 gMC->Gspos("MPPS", ++CopyNumberbot, "PPSD", X, Yb, Z, 0, "ONLY") ;
985 Z = Z - fGeom->GetPPSDModuleSize(2) ;
986 } // end of Z module loop
987 X = X - fGeom->GetPPSDModuleSize(0) ;
988 } // end of phi module loop
989
990 // The Lead converter between two air gaps
991 // 1. Upper air gap
992
993 Float_t UAPPSD[3] ;
994 UAPPSD[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
995 UAPPSD[1] = fGeom->GetMicro1ToLeadGap() / 2.0 ;
996 UAPPSD[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
997
998 gMC->Gsvolu("UAPPSD", "BOX ", IDTMED[798], UAPPSD, 3) ;
999
1000 Y0 = ( fGeom->GetPPSDBoxSize(1) - 2 * fGeom->GetMicromegas1Thickness() - fGeom->GetMicro1ToLeadGap() ) / 2. ;
1001
1002 gMC->Gspos("UAPPSD", 1, "PPSD", 0.0, Y0, 0.0, 0, "ONLY") ;
1003
1004 // 2. Lead converter
1005
1006 Float_t LCPPSD[3] ;
1007 LCPPSD[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
1008 LCPPSD[1] = fGeom->GetLeadConverterThickness() / 2.0 ;
1009 LCPPSD[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
1010
1011 gMC->Gsvolu("LCPPSD", "BOX ", IDTMED[712], LCPPSD, 3) ;
1012
1013 Y0 = Y0 - fGeom->GetMicro1ToLeadGap() / 2. - fGeom->GetLeadConverterThickness() / 2. ;
1014
1015 gMC->Gspos("LCPPSD", 1, "PPSD", 0.0, Y0, 0.0, 0, "ONLY") ;
1016
1017 // 3. Lower air gap
1018
1019 Float_t LAPPSD[3] ;
1020 LAPPSD[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
1021 LAPPSD[1] = fGeom->GetLeadToMicro2Gap() / 2.0 ;
1022 LAPPSD[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
1023
1024 gMC->Gsvolu("LAPPSD", "BOX ", IDTMED[798], LAPPSD, 3) ;
fe4da5cc 1025
d15a28e7 1026 Y0 = Y0 - fGeom->GetLeadConverterThickness() / 2. - fGeom->GetLeadToMicro2Gap() / 2. ;
1027
1028 gMC->Gspos("LAPPSD", 1, "PPSD", 0.0, Y0, 0.0, 0, "ONLY") ;
1029
fe4da5cc 1030}
1031
d15a28e7 1032//___________________________________________________________________________
1033Int_t AliPHOSv0::Digitize(Float_t Energy){
9f616d61 1034 Float_t fB = 100000000. ;
d15a28e7 1035 Float_t fA = 0. ;
1036 Int_t chan = Int_t(fA + Energy*fB ) ;
1037 return chan ;
1038}
1039//___________________________________________________________________________
1040void AliPHOSv0::FinishEvent()
fe4da5cc 1041{
d15a28e7 1042 cout << "//_____________________________________________________" << endl ;
1043 cout << "<I> AliPHOSv0::FinishEvent() -- Starting digitalization" << endl ;
1044 Int_t i ;
1045 TClonesArray &lDigits = *fDigits ;
1046 AliPHOSHit * Hit ;
1047 AliPHOSDigit * Digit ;
fe4da5cc 1048
d15a28e7 1049 for ( i = 0 ; i < fNTmpHits ; i++ ) {
1050 Hit = (AliPHOSHit*)fTmpHits->At(i) ;
d15a28e7 1051 Digit = new AliPHOSDigit(Hit->GetId(),Digitize(Hit->GetEnergy())) ;
1052 new(lDigits[fNdigits]) AliPHOSDigit(* Digit) ;
1053 fNdigits++; delete Digit ;
fe4da5cc 1054 }
d15a28e7 1055
1056 // Reset the array of all the "accumulated hits" of this event.
1057 fNTmpHits = 0 ;
1058 fTmpHits->Delete();
fe4da5cc 1059}
d15a28e7 1060
1061//____________________________________________________________________________
1062void AliPHOSv0::Init(void)
1063{
1064
1065 Int_t i;
1066
1067 printf("\n");
1068 for(i=0;i<35;i++) printf("*");
1069 printf(" PHOS_INIT ");
1070 for(i=0;i<35;i++) printf("*");
1071 printf("\n");
1072
1073 // Here the PHOS initialisation code (if any!)
1074
1075 for(i=0;i<80;i++) printf("*");
1076 printf("\n");
1077
1078}
1079
1080//___________________________________________________________________________
1081void AliPHOSv0::MakeBranch(Option_t* opt)
1082{
1083 //
1084 // Create a new branch in the current Root Tree
1085 // The branch of fHits is automatically split
1086 //
1087 AliDetector::MakeBranch(opt) ;
1088
1089 char branchname[10];
1090 sprintf(branchname,"%s",GetName());
1091 char *D = strstr(opt,"D");
1092
1093 if (fDigits && gAlice->TreeD() && D) {
1094 gAlice->TreeD()->Branch(branchname,&fDigits, fBufferSize);
1095 printf("* AliPHOS::MakeBranch * Making Branch %s for digits\n",branchname);
1096 }
1097}
d15a28e7 1098
9f616d61 1099//_____________________________________________________________________________
1100void AliPHOSv0::Reconstruction(AliPHOSReconstructioner & Reconstructioner)
d15a28e7 1101{
9f616d61 1102 // reinitializes the existing RecPoint Lists and steers the reconstruction processes
d15a28e7 1103
9f616d61 1104 fReconstructioner = &Reconstructioner ;
1105 cout << "Hola1" << endl;
1106 if (fEmcClusters) {
1107 fEmcClusters->Delete() ;
1108 delete fEmcClusters ;
1109 fEmcClusters = 0 ;
d15a28e7 1110
9f616d61 1111 }
1112 fEmcClusters= new RecPointsList("AliPHOSEmcRecPoint", 100) ;
1113
1114 cout << "Hola2" << endl;
1115 if (fPpsdClusters) {
1116 fPpsdClusters->Delete() ;
1117 delete fPpsdClusters ;
1118 fPpsdClusters = 0 ;
1119 }
1120 fPpsdClusters = new RecPointsList("AliPHOSPpsdRecPoint", 100) ;
1121
1122
1123 cout << "Hola3" << endl;
1124 if (fTrackSegments) {
1125 fTrackSegments->Print("");
1126 fTrackSegments->Delete() ;
1127 delete fTrackSegments ;
1128 fTrackSegments = 0 ;
1129 }
1130 fTrackSegments = new TObjArray(100) ;
1131
1132 cout << "Hola4" << endl;
d15a28e7 1133 fReconstructioner->Make(fDigits, fEmcClusters, fPpsdClusters, fTrackSegments);
9f616d61 1134 cout << "Hola5" << endl;
d15a28e7 1135}
1136
1137//____________________________________________________________________________
1138void AliPHOSv0::StepManager(void)
1139{
1140 Int_t RelId[4] ; // (box, layer, row, column) indices
1141 Float_t xyze[4] ; // position wrt MRS and energy deposited
1142 TLorentzVector pos ;
1143 Int_t copy;
1144
1145 TString name = fGeom->GetName() ;
1146
1147 if ( name == "GPS2" ) { // the CPV is a PPSD
1148 if( gMC->CurrentVolID(copy) == gMC->VolId("GCEL") )
1149 // if( strcmp ( gMC->CurrentVolName(), "GCEL" ) == 0 ) // We are inside a gas cell
1150 {
1151 gMC->TrackPosition(pos) ;
1152 xyze[0] = pos[0] ;
1153 xyze[1] = pos[1] ;
1154 xyze[2] = pos[2] ;
1155 xyze[3] = gMC->Edep() ;
1156
1157 if ( xyze[3] != 0 ) { // there is deposited energy
1158 gMC->CurrentVolOffID(5, RelId[0]) ; // get the PHOS Module number
1159 gMC->CurrentVolOffID(3, RelId[1]) ; // get the Micromegas Module number
1160 // 1-> Geom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() upper
1161 // > fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() lower
1162 gMC->CurrentVolOffID(1, RelId[2]) ; // get the row number of the cell
1163 gMC->CurrentVolID(RelId[3]) ; // get the column number
1164
1165 // get the absolute Id number
1166
1167 Int_t AbsId ;
1168 fGeom->RelToAbsNumbering(RelId,AbsId) ;
1169
1170 // add current hit to the hit list
1171 AddHit(gAlice->CurrentTrack(), AbsId, xyze);
1172
1173 } // there is deposited energy
1174 } // We are inside the gas of the CPV
1175 } // GPS2 configuration
1176
1177 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") )
1178 // if( strcmp ( gMC->CurrentVolName(), "PXTL" ) == 0 ) { // We are inside a PWO crystal
1179 {
1180 gMC->TrackPosition(pos) ;
1181 xyze[0] = pos[0] ;
1182 xyze[1] = pos[1] ;
1183 xyze[2] = pos[2] ;
1184 xyze[3] = gMC->Edep() ;
1185
1186 if ( xyze[3] != 0 ) {
1187 gMC->CurrentVolOffID(10, RelId[0]) ; // get the PHOS module number ;
1188 RelId[1] = 0 ; // means PW04
1189 gMC->CurrentVolOffID(4, RelId[2]) ; // get the row number inside the module
1190 gMC->CurrentVolOffID(3, RelId[3]) ; // get the cell number inside the module
1191
1192 // get the absolute Id number
1193
1194 Int_t AbsId ;
1195 fGeom->RelToAbsNumbering(RelId,AbsId) ;
1196
1197 // add current hit to the hit list
1198
1199 AddHit(gAlice->CurrentTrack(), AbsId, xyze);
1200
1201 } // there is deposited energy
1202 } // we are inside a PHOS Xtal
1203}
1204