4c039060 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
b2a60966 |
16 | /* $Id$ */ |
17 | |
d15a28e7 |
18 | //_________________________________________________________________________ |
b2a60966 |
19 | // Implementation version v0 of PHOS Manager class |
20 | // Layout EMC + PPSD has name GPS2 |
21 | // |
22 | //*-- Author: Yves Schutz (SUBATECH) |
23 | |
d2cf0e38 |
24 | |
fe4da5cc |
25 | // --- ROOT system --- |
d15a28e7 |
26 | |
fe4da5cc |
27 | #include "TBRIK.h" |
28 | #include "TNode.h" |
0869cea5 |
29 | #include "TRandom.h" |
fe4da5cc |
30 | |
d15a28e7 |
31 | // --- Standard library --- |
32 | |
de9ec31b |
33 | #include <stdio.h> |
34 | #include <string.h> |
35 | #include <stdlib.h> |
36 | #include <strstream.h> |
d15a28e7 |
37 | |
38 | // --- AliRoot header files --- |
39 | |
fe4da5cc |
40 | #include "AliPHOSv0.h" |
d15a28e7 |
41 | #include "AliPHOSHit.h" |
42 | #include "AliPHOSDigit.h" |
43 | #include "AliPHOSReconstructioner.h" |
fe4da5cc |
44 | #include "AliRun.h" |
d15a28e7 |
45 | #include "AliConst.h" |
fe4da5cc |
46 | |
47 | ClassImp(AliPHOSv0) |
48 | |
d15a28e7 |
49 | //____________________________________________________________________________ |
8c933dd7 |
50 | AliPHOSv0::AliPHOSv0() |
fe4da5cc |
51 | { |
b2a60966 |
52 | // ctor |
d15a28e7 |
53 | fNTmpHits = 0 ; |
54 | fTmpHits = 0 ; |
fe4da5cc |
55 | } |
d15a28e7 |
56 | |
57 | //____________________________________________________________________________ |
58 | AliPHOSv0::AliPHOSv0(const char *name, const char *title): |
59 | AliPHOS(name,title) |
60 | { |
b2a60966 |
61 | // ctor : title is used to identify the layout |
62 | // GPS2 = 5 modules (EMC + PPSD) |
d15a28e7 |
63 | // We use 2 arrays of hits : |
64 | // |
65 | // - fHits (the "normal" one), which retains the hits associated with |
66 | // the current primary particle being tracked |
67 | // (this array is reset after each primary has been tracked). |
68 | // |
69 | // - fTmpHits, which retains all the hits of the current event. It |
70 | // is used for the digitization part. |
71 | |
3a6a7952 |
72 | fPinElectronicNoise = 0.010 ; |
73 | fDigitThreshold = 1. ; // 1 GeV |
0869cea5 |
74 | |
d15a28e7 |
75 | fHits = new TClonesArray("AliPHOSHit",100) ; |
6ad0bfa0 |
76 | gAlice->AddHitList(fHits) ; |
77 | |
d15a28e7 |
78 | fTmpHits= new TClonesArray("AliPHOSHit",100) ; |
79 | |
d15a28e7 |
80 | fNTmpHits = fNhits = 0 ; |
81 | |
6ad0bfa0 |
82 | fDigits = new TClonesArray("AliPHOSDigit",100) ; |
83 | |
84 | |
d15a28e7 |
85 | fIshunt = 1 ; // All hits are associated with primary particles |
fe4da5cc |
86 | |
d15a28e7 |
87 | // gets an instance of the geometry parameters class |
6ad0bfa0 |
88 | |
d15a28e7 |
89 | fGeom = AliPHOSGeometry::GetInstance(title, "") ; |
90 | |
91 | if (fGeom->IsInitialized() ) |
92 | cout << "AliPHOSv0 : PHOS geometry intialized for " << fGeom->GetName() << endl ; |
93 | else |
94 | cout << "AliPHOSv0 : PHOS geometry initialization failed !" << endl ; |
95 | } |
96 | //____________________________________________________________________________ |
6ad0bfa0 |
97 | AliPHOSv0::AliPHOSv0(AliPHOSReconstructioner * Reconstructioner, const char *name, const char *title): |
d15a28e7 |
98 | AliPHOS(name,title) |
99 | { |
b2a60966 |
100 | // ctor : title is used to identify the layout |
101 | // GPS2 = 5 modules (EMC + PPSD) |
d15a28e7 |
102 | // We use 2 arrays of hits : |
103 | // |
104 | // - fHits (the "normal" one), which retains the hits associated with |
105 | // the current primary particle being tracked |
106 | // (this array is reset after each primary has been tracked). |
107 | // |
108 | // - fTmpHits, which retains all the hits of the current event. It |
109 | // is used for the digitization part. |
b2a60966 |
110 | |
3a6a7952 |
111 | fPinElectronicNoise = 0.010 ; |
d15a28e7 |
112 | fHits = new TClonesArray("AliPHOSHit",100) ; |
113 | fDigits = new TClonesArray("AliPHOSDigit",100) ; |
114 | fTmpHits= new TClonesArray("AliPHOSHit",100) ; |
115 | |
d15a28e7 |
116 | fNTmpHits = fNhits = 0 ; |
117 | |
118 | fIshunt = 1 ; // All hits are associated with primary particles |
119 | |
120 | // gets an instance of the geometry parameters class |
121 | fGeom = AliPHOSGeometry::GetInstance(title, "") ; |
122 | |
123 | if (fGeom->IsInitialized() ) |
124 | cout << "AliPHOSv0 : PHOS geometry intialized for " << fGeom->GetName() << endl ; |
125 | else |
126 | cout << "AliPHOSv0 : PHOS geometry initialization failed !" << endl ; |
127 | |
128 | // Defining the PHOS Reconstructioner |
129 | |
6ad0bfa0 |
130 | fReconstructioner = Reconstructioner ; |
d15a28e7 |
131 | } |
132 | |
133 | //____________________________________________________________________________ |
134 | AliPHOSv0::~AliPHOSv0() |
135 | { |
b2a60966 |
136 | // dtor |
137 | |
9f616d61 |
138 | fTmpHits->Delete() ; |
d15a28e7 |
139 | delete fTmpHits ; |
9f616d61 |
140 | fTmpHits = 0 ; |
141 | |
142 | fEmcClusters->Delete() ; |
143 | delete fEmcClusters ; |
144 | fEmcClusters = 0 ; |
145 | |
146 | fPpsdClusters->Delete() ; |
147 | delete fPpsdClusters ; |
148 | fPpsdClusters = 0 ; |
149 | |
150 | fTrackSegments->Delete() ; |
151 | delete fTrackSegments ; |
152 | fTrackSegments = 0 ; |
d15a28e7 |
153 | } |
154 | |
155 | //____________________________________________________________________________ |
ff4c968a |
156 | void AliPHOSv0::AddHit(Int_t primary, Int_t Id, Float_t * hits) |
d15a28e7 |
157 | { |
b2a60966 |
158 | // Add a hit to the hit list. |
159 | // A PHOS hit is the sum of all hits in a single crystal |
160 | // or in a single PPSD gas cell |
161 | |
d15a28e7 |
162 | Int_t hitCounter ; |
92862013 |
163 | TClonesArray <mphits = *fTmpHits ; |
d15a28e7 |
164 | AliPHOSHit *newHit ; |
92862013 |
165 | AliPHOSHit *curHit ; |
31aa6d6c |
166 | // AliPHOSHit *curHit2 ; |
ff4c968a |
167 | Bool_t deja = kFALSE ; |
d15a28e7 |
168 | |
169 | // In any case, fills the fTmpHit TClonesArray (with "accumulated hits") |
170 | |
ff4c968a |
171 | newHit = new AliPHOSHit(primary, Id, hits) ; |
31aa6d6c |
172 | TClonesArray &lhits = *fHits; |
d15a28e7 |
173 | |
92862013 |
174 | for ( hitCounter = 0 ; hitCounter < fNTmpHits && !deja ; hitCounter++ ) { |
d15a28e7 |
175 | curHit = (AliPHOSHit*) ltmphits[hitCounter] ; |
31aa6d6c |
176 | // curHit2 = (AliPHOSHit*) lhits[hitCounter] ; // ca plante dans PurifyKine !? |
177 | if( *curHit == *newHit ) { |
178 | *curHit = *curHit + *newHit ; |
179 | // *curHit2 = *curHit2 + *newHit ; |
180 | deja = kTRUE ; |
d15a28e7 |
181 | } |
182 | } |
31aa6d6c |
183 | |
92862013 |
184 | if ( !deja ) { |
d15a28e7 |
185 | new(ltmphits[fNTmpHits]) AliPHOSHit(*newHit) ; |
186 | fNTmpHits++ ; |
31aa6d6c |
187 | new(lhits[fNhits]) AliPHOSHit(*newHit) ; // will be saved on disk |
188 | fNhits++ ; |
d15a28e7 |
189 | } |
190 | |
191 | // Please note that the fTmpHits array must survive up to the |
192 | // end of the events, so it does not appear e.g. in ResetHits() ( |
193 | // which is called at the end of each primary). |
fe4da5cc |
194 | |
ff4c968a |
195 | delete newHit; |
d15a28e7 |
196 | |
197 | } |
198 | |
199 | |
200 | //____________________________________________________________________________ |
201 | void AliPHOSv0::BuildGeometry() |
fe4da5cc |
202 | { |
b2a60966 |
203 | // Build the PHOS geometry for the ROOT display |
204 | //BEGIN_HTML |
205 | /* |
206 | <H2> |
207 | PHOS in ALICE displayed by root |
208 | </H2> |
209 | <UL> |
210 | <LI> All Views |
211 | <P> |
212 | <CENTER> |
213 | <IMG Align=BOTTOM ALT="All Views" SRC="../images/AliPHOSv0AllViews.gif"> |
214 | </CENTER></P></LI> |
215 | <LI> Front View |
216 | <P> |
217 | <CENTER> |
218 | <IMG Align=BOTTOM ALT="Front View" SRC="../images/AliPHOSv0FrontView.gif"> |
219 | </CENTER></P></LI> |
220 | <LI> 3D View 1 |
221 | <P> |
222 | <CENTER> |
223 | <IMG Align=BOTTOM ALT="3D View 1" SRC="../images/AliPHOSv03DView1.gif"> |
224 | </CENTER></P></LI> |
225 | <LI> 3D View 2 |
226 | <P> |
227 | <CENTER> |
228 | <IMG Align=BOTTOM ALT="3D View 2" SRC="../images/AliPHOSv03DView2.gif"> |
229 | </CENTER></P></LI> |
230 | </UL> |
231 | */ |
232 | //END_HTML |
d15a28e7 |
233 | |
234 | this->BuildGeometryforPHOS() ; |
235 | if ( ( strcmp(fGeom->GetName(), "GPS2" ) == 0 ) ) |
236 | this->BuildGeometryforPPSD() ; |
237 | else |
238 | cout << "AliPHOSv0::BuildGeometry : no charged particle identification system installed" << endl; |
239 | |
fe4da5cc |
240 | } |
d15a28e7 |
241 | |
242 | //____________________________________________________________________________ |
243 | void AliPHOSv0:: BuildGeometryforPHOS(void) |
244 | { |
b2a60966 |
245 | // Build the PHOS-EMC geometry for the ROOT display |
d15a28e7 |
246 | |
247 | const Int_t kColorPHOS = kRed ; |
248 | const Int_t kColorXTAL = kBlue ; |
249 | |
92862013 |
250 | Double_t const kRADDEG = 180.0 / kPI ; |
d15a28e7 |
251 | |
252 | new TBRIK( "OuterBox", "PHOS box", "void", fGeom->GetOuterBoxSize(0)/2, |
253 | fGeom->GetOuterBoxSize(1)/2, |
254 | fGeom->GetOuterBoxSize(2)/2 ); |
255 | |
256 | // Textolit Wall box, position inside PHOS |
257 | |
258 | new TBRIK( "TextolitBox", "PHOS Textolit box ", "void", fGeom->GetTextolitBoxSize(0)/2, |
259 | fGeom->GetTextolitBoxSize(1)/2, |
260 | fGeom->GetTextolitBoxSize(2)/2); |
261 | |
262 | // Polystyrene Foam Plate |
263 | |
264 | new TBRIK( "UpperFoamPlate", "PHOS Upper foam plate", "void", fGeom->GetTextolitBoxSize(0)/2, |
265 | fGeom->GetSecondUpperPlateThickness()/2, |
266 | fGeom->GetTextolitBoxSize(2)/2 ) ; |
267 | |
268 | // Air Filled Box |
fe4da5cc |
269 | |
d15a28e7 |
270 | new TBRIK( "AirFilledBox", "PHOS air filled box", "void", fGeom->GetAirFilledBoxSize(0)/2, |
271 | fGeom->GetAirFilledBoxSize(1)/2, |
272 | fGeom->GetAirFilledBoxSize(2)/2 ); |
273 | |
274 | // Crystals Box |
275 | |
92862013 |
276 | Float_t xtlX = fGeom->GetCrystalSize(0) ; |
277 | Float_t xtlY = fGeom->GetCrystalSize(1) ; |
278 | Float_t xtlZ = fGeom->GetCrystalSize(2) ; |
d15a28e7 |
279 | |
92862013 |
280 | Float_t xl = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ; |
281 | Float_t yl = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 |
d15a28e7 |
282 | + fGeom->GetModuleBoxThickness() / 2.0 ; |
92862013 |
283 | Float_t zl = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ; |
d15a28e7 |
284 | |
92862013 |
285 | new TBRIK( "CrystalsBox", "PHOS crystals box", "void", xl, yl, zl ) ; |
d15a28e7 |
286 | |
287 | // position PHOS into ALICE |
288 | |
92862013 |
289 | Float_t r = fGeom->GetIPtoOuterCoverDistance() + fGeom->GetOuterBoxSize(1) / 2.0 ; |
d15a28e7 |
290 | Int_t number = 988 ; |
291 | Float_t pphi = TMath::ATan( fGeom->GetOuterBoxSize(0) / ( 2.0 * fGeom->GetIPtoOuterCoverDistance() ) ) ; |
92862013 |
292 | pphi *= kRADDEG ; |
293 | TNode * top = gAlice->GetGeometry()->GetNode("alice") ; |
d15a28e7 |
294 | |
295 | char * nodename = new char[20] ; |
296 | char * rotname = new char[20] ; |
297 | |
298 | for( Int_t i = 1; i <= fGeom->GetNModules(); i++ ) { |
299 | Float_t angle = pphi * 2 * ( i - fGeom->GetNModules() / 2.0 - 0.5 ) ; |
300 | sprintf(rotname, "%s%d", "rot", number++) ; |
301 | new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0); |
92862013 |
302 | top->cd(); |
d15a28e7 |
303 | sprintf(nodename,"%s%d", "Module", i) ; |
92862013 |
304 | Float_t x = r * TMath::Sin( angle / kRADDEG ) ; |
305 | Float_t y = -r * TMath::Cos( angle / kRADDEG ) ; |
306 | TNode * outerboxnode = new TNode(nodename, nodename, "OuterBox", x, y, 0, rotname ) ; |
307 | outerboxnode->SetLineColor(kColorPHOS) ; |
308 | fNodes->Add(outerboxnode) ; |
309 | outerboxnode->cd() ; |
d15a28e7 |
310 | // now inside the outer box the textolit box |
92862013 |
311 | y = ( fGeom->GetOuterBoxThickness(1) - fGeom->GetUpperPlateThickness() ) / 2. ; |
d15a28e7 |
312 | sprintf(nodename,"%s%d", "TexBox", i) ; |
92862013 |
313 | TNode * textolitboxnode = new TNode(nodename, nodename, "TextolitBox", 0, y, 0) ; |
314 | textolitboxnode->SetLineColor(kColorPHOS) ; |
315 | fNodes->Add(textolitboxnode) ; |
d15a28e7 |
316 | // upper foam plate inside outre box |
92862013 |
317 | outerboxnode->cd() ; |
d15a28e7 |
318 | sprintf(nodename, "%s%d", "UFPlate", i) ; |
92862013 |
319 | y = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetSecondUpperPlateThickness() ) / 2.0 ; |
320 | TNode * upperfoamplatenode = new TNode(nodename, nodename, "UpperFoamPlate", 0, y, 0) ; |
321 | upperfoamplatenode->SetLineColor(kColorPHOS) ; |
322 | fNodes->Add(upperfoamplatenode) ; |
d15a28e7 |
323 | // air filled box inside textolit box (not drawn) |
92862013 |
324 | textolitboxnode->cd(); |
325 | y = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetAirFilledBoxSize(1) ) / 2.0 - fGeom->GetSecondUpperPlateThickness() ; |
d15a28e7 |
326 | sprintf(nodename, "%s%d", "AFBox", i) ; |
92862013 |
327 | TNode * airfilledboxnode = new TNode(nodename, nodename, "AirFilledBox", 0, y, 0) ; |
328 | fNodes->Add(airfilledboxnode) ; |
d15a28e7 |
329 | // crystals box inside air filled box |
92862013 |
330 | airfilledboxnode->cd() ; |
331 | y = fGeom->GetAirFilledBoxSize(1) / 2.0 - yl |
d15a28e7 |
332 | - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness() |
333 | - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() ) ; |
334 | sprintf(nodename, "%s%d", "XTBox", i) ; |
92862013 |
335 | TNode * crystalsboxnode = new TNode(nodename, nodename, "CrystalsBox", 0, y, 0) ; |
336 | crystalsboxnode->SetLineColor(kColorXTAL) ; |
337 | fNodes->Add(crystalsboxnode) ; |
d15a28e7 |
338 | } |
339 | } |
340 | |
341 | //____________________________________________________________________________ |
342 | void AliPHOSv0:: BuildGeometryforPPSD(void) |
fe4da5cc |
343 | { |
b2a60966 |
344 | // Build the PHOS-PPSD geometry for the ROOT display |
345 | //BEGIN_HTML |
346 | /* |
347 | <H2> |
348 | PPSD displayed by root |
349 | </H2> |
350 | <UL> |
351 | <LI> Zoom on PPSD: Front View |
352 | <P> |
353 | <CENTER> |
354 | <IMG Align=BOTTOM ALT="PPSD Front View" SRC="../images/AliPHOSv0PPSDFrontView.gif"> |
355 | </CENTER></P></LI> |
356 | <LI> Zoom on PPSD: Perspective View |
357 | <P> |
358 | <CENTER> |
359 | <IMG Align=BOTTOM ALT="PPSD Prespective View" SRC="../images/AliPHOSv0PPSDPerspectiveView.gif"> |
360 | </CENTER></P></LI> |
361 | </UL> |
362 | */ |
363 | //END_HTML |
92862013 |
364 | Double_t const kRADDEG = 180.0 / kPI ; |
d15a28e7 |
365 | |
366 | const Int_t kColorPHOS = kRed ; |
367 | const Int_t kColorPPSD = kGreen ; |
368 | const Int_t kColorGas = kBlue ; |
369 | const Int_t kColorAir = kYellow ; |
370 | |
371 | // Box for a full PHOS module |
372 | |
373 | new TBRIK( "PPSDBox", "PPSD box", "void", fGeom->GetPPSDBoxSize(0)/2, |
374 | fGeom->GetPPSDBoxSize(1)/2, |
375 | fGeom->GetPPSDBoxSize(2)/2 ); |
376 | |
377 | // Box containing one micromegas module |
378 | |
379 | new TBRIK( "PPSDModule", "PPSD module", "void", fGeom->GetPPSDModuleSize(0)/2, |
380 | fGeom->GetPPSDModuleSize(1)/2, |
381 | fGeom->GetPPSDModuleSize(2)/2 ); |
382 | // top lid |
383 | |
384 | new TBRIK ( "TopLid", "Micromegas top lid", "void", fGeom->GetPPSDModuleSize(0)/2, |
385 | fGeom->GetLidThickness()/2, |
386 | fGeom->GetPPSDModuleSize(2)/2 ) ; |
387 | // composite panel (top and bottom) |
388 | |
389 | new TBRIK ( "TopPanel", "Composite top panel", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2, |
390 | fGeom->GetCompositeThickness()/2, |
391 | ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ; |
392 | |
393 | new TBRIK ( "BottomPanel", "Composite bottom panel", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2, |
394 | fGeom->GetCompositeThickness()/2, |
395 | ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ; |
396 | // gas gap (conversion and avalanche) |
397 | |
398 | new TBRIK ( "GasGap", "gas gap", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2, |
399 | ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() )/2, |
400 | ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ; |
401 | |
402 | // anode and cathode |
403 | |
404 | new TBRIK ( "Anode", "Anode", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2, |
405 | fGeom->GetAnodeThickness()/2, |
406 | ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ; |
407 | |
408 | new TBRIK ( "Cathode", "Cathode", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2, |
409 | fGeom->GetCathodeThickness()/2, |
410 | ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ; |
411 | // PC |
412 | |
413 | new TBRIK ( "PCBoard", "Printed Circuit", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2, |
414 | fGeom->GetPCThickness()/2, |
415 | ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ; |
416 | // Gap between Lead and top micromegas |
417 | |
418 | new TBRIK ( "LeadToM", "Air Gap top", "void", fGeom->GetPPSDBoxSize(0)/2, |
419 | fGeom->GetMicro1ToLeadGap()/2, |
420 | fGeom->GetPPSDBoxSize(2)/2 ) ; |
421 | |
422 | // Gap between Lead and bottom micromegas |
423 | |
424 | new TBRIK ( "MToLead", "Air Gap bottom", "void", fGeom->GetPPSDBoxSize(0)/2, |
425 | fGeom->GetLeadToMicro2Gap()/2, |
426 | fGeom->GetPPSDBoxSize(2)/2 ) ; |
427 | // Lead converter |
428 | |
429 | new TBRIK ( "Lead", "Lead converter", "void", fGeom->GetPPSDBoxSize(0)/2, |
430 | fGeom->GetLeadConverterThickness()/2, |
431 | fGeom->GetPPSDBoxSize(2)/2 ) ; |
432 | |
433 | // position PPSD into ALICE |
434 | |
435 | char * nodename = new char[20] ; |
436 | char * rotname = new char[20] ; |
437 | |
92862013 |
438 | Float_t r = fGeom->GetIPtoTopLidDistance() + fGeom->GetPPSDBoxSize(1) / 2.0 ; |
d15a28e7 |
439 | Int_t number = 988 ; |
92862013 |
440 | TNode * top = gAlice->GetGeometry()->GetNode("alice") ; |
d15a28e7 |
441 | |
442 | for( Int_t i = 1; i <= fGeom->GetNModules(); i++ ) { // the number of PHOS modules |
443 | Float_t angle = fGeom->GetPHOSAngle(i) ; |
444 | sprintf(rotname, "%s%d", "rotg", number++) ; |
445 | new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0); |
92862013 |
446 | top->cd(); |
d15a28e7 |
447 | sprintf(nodename, "%s%d", "Moduleg", i) ; |
92862013 |
448 | Float_t x = r * TMath::Sin( angle / kRADDEG ) ; |
449 | Float_t y = -r * TMath::Cos( angle / kRADDEG ) ; |
450 | TNode * ppsdboxnode = new TNode(nodename , nodename ,"PPSDBox", x, y, 0, rotname ) ; |
451 | ppsdboxnode->SetLineColor(kColorPPSD) ; |
452 | fNodes->Add(ppsdboxnode) ; |
453 | ppsdboxnode->cd() ; |
d15a28e7 |
454 | // inside the PPSD box: |
455 | // 1. fNumberOfModulesPhi x fNumberOfModulesZ top micromegas |
92862013 |
456 | x = ( fGeom->GetPPSDBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. ; |
31aa6d6c |
457 | { |
458 | for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { // the number of micromegas modules in phi per PHOS module |
459 | Float_t z = ( fGeom->GetPPSDBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. ; |
460 | TNode * micro1node ; |
461 | for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { // the number of micromegas modules in z per PHOS module |
462 | y = ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas1Thickness() ) / 2. ; |
463 | sprintf(nodename, "%s%d%d%d", "Mic1", i, iphi, iz) ; |
464 | micro1node = new TNode(nodename, nodename, "PPSDModule", x, y, z) ; |
465 | micro1node->SetLineColor(kColorPPSD) ; |
466 | fNodes->Add(micro1node) ; |
467 | // inside top micromegas |
468 | micro1node->cd() ; |
469 | // a. top lid |
470 | y = ( fGeom->GetMicromegas1Thickness() - fGeom->GetLidThickness() ) / 2. ; |
471 | sprintf(nodename, "%s%d%d%d", "Lid", i, iphi, iz) ; |
472 | TNode * toplidnode = new TNode(nodename, nodename, "TopLid", 0, y, 0) ; |
473 | toplidnode->SetLineColor(kColorPPSD) ; |
474 | fNodes->Add(toplidnode) ; |
475 | // b. composite panel |
476 | y = y - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ; |
477 | sprintf(nodename, "%s%d%d%d", "CompU", i, iphi, iz) ; |
478 | TNode * compupnode = new TNode(nodename, nodename, "TopPanel", 0, y, 0) ; |
479 | compupnode->SetLineColor(kColorPPSD) ; |
480 | fNodes->Add(compupnode) ; |
481 | // c. anode |
482 | y = y - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ; |
483 | sprintf(nodename, "%s%d%d%d", "Ano", i, iphi, iz) ; |
484 | TNode * anodenode = new TNode(nodename, nodename, "Anode", 0, y, 0) ; |
485 | anodenode->SetLineColor(kColorPHOS) ; |
486 | fNodes->Add(anodenode) ; |
487 | // d. gas |
488 | y = y - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ; |
489 | sprintf(nodename, "%s%d%d%d", "GGap", i, iphi, iz) ; |
490 | TNode * ggapnode = new TNode(nodename, nodename, "GasGap", 0, y, 0) ; |
491 | ggapnode->SetLineColor(kColorGas) ; |
492 | fNodes->Add(ggapnode) ; |
d15a28e7 |
493 | // f. cathode |
31aa6d6c |
494 | y = y - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ; |
495 | sprintf(nodename, "%s%d%d%d", "Cathode", i, iphi, iz) ; |
496 | TNode * cathodenode = new TNode(nodename, nodename, "Cathode", 0, y, 0) ; |
497 | cathodenode->SetLineColor(kColorPHOS) ; |
498 | fNodes->Add(cathodenode) ; |
499 | // g. printed circuit |
500 | y = y - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ; |
501 | sprintf(nodename, "%s%d%d%d", "PC", i, iphi, iz) ; |
502 | TNode * pcnode = new TNode(nodename, nodename, "PCBoard", 0, y, 0) ; |
503 | pcnode->SetLineColor(kColorPPSD) ; |
504 | fNodes->Add(pcnode) ; |
505 | // h. composite panel |
506 | y = y - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ; |
507 | sprintf(nodename, "%s%d%d%d", "CompDown", i, iphi, iz) ; |
508 | TNode * compdownnode = new TNode(nodename, nodename, "BottomPanel", 0, y, 0) ; |
509 | compdownnode->SetLineColor(kColorPPSD) ; |
510 | fNodes->Add(compdownnode) ; |
511 | z = z - fGeom->GetPPSDModuleSize(2) ; |
512 | ppsdboxnode->cd() ; |
513 | } // end of Z module loop |
514 | x = x - fGeom->GetPPSDModuleSize(0) ; |
92862013 |
515 | ppsdboxnode->cd() ; |
31aa6d6c |
516 | } // end of phi module loop |
517 | } |
d15a28e7 |
518 | // 2. air gap |
92862013 |
519 | ppsdboxnode->cd() ; |
520 | y = ( fGeom->GetPPSDBoxSize(1) - 2 * fGeom->GetMicromegas1Thickness() - fGeom->GetMicro1ToLeadGap() ) / 2. ; |
d15a28e7 |
521 | sprintf(nodename, "%s%d", "GapUp", i) ; |
92862013 |
522 | TNode * gapupnode = new TNode(nodename, nodename, "LeadToM", 0, y, 0) ; |
523 | gapupnode->SetLineColor(kColorAir) ; |
524 | fNodes->Add(gapupnode) ; |
d15a28e7 |
525 | // 3. lead converter |
92862013 |
526 | y = y - fGeom->GetMicro1ToLeadGap() / 2. - fGeom->GetLeadConverterThickness() / 2. ; |
d15a28e7 |
527 | sprintf(nodename, "%s%d", "LeadC", i) ; |
92862013 |
528 | TNode * leadcnode = new TNode(nodename, nodename, "Lead", 0, y, 0) ; |
529 | leadcnode->SetLineColor(kColorPPSD) ; |
530 | fNodes->Add(leadcnode) ; |
d15a28e7 |
531 | // 4. air gap |
92862013 |
532 | y = y - fGeom->GetLeadConverterThickness() / 2. - fGeom->GetLeadToMicro2Gap() / 2. ; |
d15a28e7 |
533 | sprintf(nodename, "%s%d", "GapDown", i) ; |
92862013 |
534 | TNode * gapdownnode = new TNode(nodename, nodename, "MToLead", 0, y, 0) ; |
535 | gapdownnode->SetLineColor(kColorAir) ; |
536 | fNodes->Add(gapdownnode) ; |
d15a28e7 |
537 | // 5. fNumberOfModulesPhi x fNumberOfModulesZ bottom micromegas |
92862013 |
538 | x = ( fGeom->GetPPSDBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. - fGeom->GetPhiDisplacement() ; |
31aa6d6c |
539 | { |
540 | for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { |
541 | Float_t z = ( fGeom->GetPPSDBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. - fGeom->GetZDisplacement() ;; |
542 | TNode * micro2node ; |
543 | for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { |
544 | y = - ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas2Thickness() ) / 2. ; |
545 | sprintf(nodename, "%s%d%d%d", "Mic2", i, iphi, iz) ; |
546 | micro2node = new TNode(nodename, nodename, "PPSDModule", x, y, z) ; |
547 | micro2node->SetLineColor(kColorPPSD) ; |
548 | fNodes->Add(micro2node) ; |
549 | // inside bottom micromegas |
550 | micro2node->cd() ; |
d15a28e7 |
551 | // a. top lid |
92862013 |
552 | y = ( fGeom->GetMicromegas2Thickness() - fGeom->GetLidThickness() ) / 2. ; |
d15a28e7 |
553 | sprintf(nodename, "%s%d", "Lidb", i) ; |
92862013 |
554 | TNode * toplidbnode = new TNode(nodename, nodename, "TopLid", 0, y, 0) ; |
555 | toplidbnode->SetLineColor(kColorPPSD) ; |
556 | fNodes->Add(toplidbnode) ; |
d15a28e7 |
557 | // b. composite panel |
92862013 |
558 | y = y - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ; |
d15a28e7 |
559 | sprintf(nodename, "%s%d", "CompUb", i) ; |
92862013 |
560 | TNode * compupbnode = new TNode(nodename, nodename, "TopPanel", 0, y, 0) ; |
561 | compupbnode->SetLineColor(kColorPPSD) ; |
562 | fNodes->Add(compupbnode) ; |
d15a28e7 |
563 | // c. anode |
92862013 |
564 | y = y - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ; |
d15a28e7 |
565 | sprintf(nodename, "%s%d", "Anob", i) ; |
92862013 |
566 | TNode * anodebnode = new TNode(nodename, nodename, "Anode", 0, y, 0) ; |
567 | anodebnode->SetLineColor(kColorPPSD) ; |
568 | fNodes->Add(anodebnode) ; |
d15a28e7 |
569 | // d. conversion gas |
92862013 |
570 | y = y - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ; |
d15a28e7 |
571 | sprintf(nodename, "%s%d", "GGapb", i) ; |
92862013 |
572 | TNode * ggapbnode = new TNode(nodename, nodename, "GasGap", 0, y, 0) ; |
573 | ggapbnode->SetLineColor(kColorGas) ; |
574 | fNodes->Add(ggapbnode) ; |
d15a28e7 |
575 | // f. cathode |
92862013 |
576 | y = y - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ; |
d15a28e7 |
577 | sprintf(nodename, "%s%d", "Cathodeb", i) ; |
92862013 |
578 | TNode * cathodebnode = new TNode(nodename, nodename, "Cathode", 0, y, 0) ; |
579 | cathodebnode->SetLineColor(kColorPPSD) ; |
580 | fNodes->Add(cathodebnode) ; |
d15a28e7 |
581 | // g. printed circuit |
92862013 |
582 | y = y - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ; |
d15a28e7 |
583 | sprintf(nodename, "%s%d", "PCb", i) ; |
92862013 |
584 | TNode * pcbnode = new TNode(nodename, nodename, "PCBoard", 0, y, 0) ; |
585 | pcbnode->SetLineColor(kColorPPSD) ; |
586 | fNodes->Add(pcbnode) ; |
d15a28e7 |
587 | // h. composite pane |
92862013 |
588 | y = y - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ; |
d15a28e7 |
589 | sprintf(nodename, "%s%d", "CompDownb", i) ; |
92862013 |
590 | TNode * compdownbnode = new TNode(nodename, nodename, "BottomPanel", 0, y, 0) ; |
591 | compdownbnode->SetLineColor(kColorPPSD) ; |
592 | fNodes->Add(compdownbnode) ; |
593 | z = z - fGeom->GetPPSDModuleSize(2) ; |
594 | ppsdboxnode->cd() ; |
d15a28e7 |
595 | } // end of Z module loop |
92862013 |
596 | x = x - fGeom->GetPPSDModuleSize(0) ; |
597 | ppsdboxnode->cd() ; |
31aa6d6c |
598 | } // end of phi module loop |
599 | } |
600 | } // PHOS modules |
601 | |
602 | delete rotname ; |
603 | delete nodename ; |
604 | |
fe4da5cc |
605 | } |
606 | |
d15a28e7 |
607 | //____________________________________________________________________________ |
fe4da5cc |
608 | void AliPHOSv0::CreateGeometry() |
609 | { |
b2a60966 |
610 | // Create the PHOS geometry for Geant |
d15a28e7 |
611 | |
92862013 |
612 | AliPHOSv0 *phostmp = (AliPHOSv0*)gAlice->GetModule("PHOS") ; |
d15a28e7 |
613 | |
92862013 |
614 | if ( phostmp == NULL ) { |
d15a28e7 |
615 | |
616 | fprintf(stderr, "PHOS detector not found!\n") ; |
617 | return; |
fe4da5cc |
618 | |
d15a28e7 |
619 | } |
d15a28e7 |
620 | // Get pointer to the array containing media indeces |
92862013 |
621 | Int_t *idtmed = fIdtmed->GetArray() - 699 ; |
d15a28e7 |
622 | |
92862013 |
623 | Float_t bigbox[3] ; |
624 | bigbox[0] = fGeom->GetOuterBoxSize(0) / 2.0 ; |
625 | bigbox[1] = ( fGeom->GetOuterBoxSize(1) + fGeom->GetPPSDBoxSize(1) ) / 2.0 ; |
626 | bigbox[2] = fGeom->GetOuterBoxSize(2) / 2.0 ; |
d15a28e7 |
627 | |
92862013 |
628 | gMC->Gsvolu("PHOS", "BOX ", idtmed[798], bigbox, 3) ; |
d15a28e7 |
629 | |
630 | this->CreateGeometryforPHOS() ; |
631 | if ( strcmp( fGeom->GetName(), "GPS2") == 0 ) |
632 | this->CreateGeometryforPPSD() ; |
633 | else |
634 | cout << "AliPHOSv0::CreateGeometry : no charged particle identification system installed" << endl; |
635 | |
636 | // --- Position PHOS mdules in ALICE setup --- |
637 | |
92862013 |
638 | Int_t idrotm[99] ; |
639 | Double_t const kRADDEG = 180.0 / kPI ; |
d15a28e7 |
640 | |
641 | for( Int_t i = 1; i <= fGeom->GetNModules(); i++ ) { |
642 | |
643 | Float_t angle = fGeom->GetPHOSAngle(i) ; |
92862013 |
644 | AliMatrix(idrotm[i-1], 90.0, angle, 90.0, 90.0+angle, 0.0, 0.0) ; |
d15a28e7 |
645 | |
92862013 |
646 | Float_t r = fGeom->GetIPtoOuterCoverDistance() + ( fGeom->GetOuterBoxSize(1) + fGeom->GetPPSDBoxSize(1) ) / 2.0 ; |
d15a28e7 |
647 | |
92862013 |
648 | Float_t xP1 = r * TMath::Sin( angle / kRADDEG ) ; |
649 | Float_t yP1 = -r * TMath::Cos( angle / kRADDEG ) ; |
d15a28e7 |
650 | |
92862013 |
651 | gMC->Gspos("PHOS", i, "ALIC", xP1, yP1, 0.0, idrotm[i-1], "ONLY") ; |
d15a28e7 |
652 | |
653 | } // for GetNModules |
654 | |
fe4da5cc |
655 | } |
d15a28e7 |
656 | |
657 | //____________________________________________________________________________ |
658 | void AliPHOSv0::CreateGeometryforPHOS() |
659 | { |
b2a60966 |
660 | // Create the PHOS-EMC geometry for GEANT |
661 | //BEGIN_HTML |
662 | /* |
663 | <H2> |
664 | Geant3 geometry tree of PHOS-EMC in ALICE |
665 | </H2> |
666 | <P><CENTER> |
667 | <IMG Align=BOTTOM ALT="EMC geant tree" SRC="../images/EMCinAlice.gif"> |
668 | </CENTER><P> |
669 | */ |
670 | //END_HTML |
671 | |
672 | // Get pointer to the array containing media indexes |
92862013 |
673 | Int_t *idtmed = fIdtmed->GetArray() - 699 ; |
d15a28e7 |
674 | |
675 | // --- |
676 | // --- Define PHOS box volume, fPUFPill with thermo insulating foam --- |
677 | // --- Foam Thermo Insulating outer cover dimensions --- |
92862013 |
678 | // --- Put it in bigbox = PHOS |
d15a28e7 |
679 | |
92862013 |
680 | Float_t dphos[3] ; |
681 | dphos[0] = fGeom->GetOuterBoxSize(0) / 2.0 ; |
682 | dphos[1] = fGeom->GetOuterBoxSize(1) / 2.0 ; |
683 | dphos[2] = fGeom->GetOuterBoxSize(2) / 2.0 ; |
d15a28e7 |
684 | |
92862013 |
685 | gMC->Gsvolu("EMCA", "BOX ", idtmed[706], dphos, 3) ; |
d15a28e7 |
686 | |
92862013 |
687 | Float_t yO = - fGeom->GetPPSDBoxSize(1) / 2.0 ; |
d15a28e7 |
688 | |
92862013 |
689 | gMC->Gspos("EMCA", 1, "PHOS", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
690 | |
691 | // --- |
692 | // --- Define Textolit Wall box, position inside EMCA --- |
693 | // --- Textolit Wall box dimentions --- |
694 | |
695 | |
92862013 |
696 | Float_t dptxw[3]; |
697 | dptxw[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ; |
698 | dptxw[1] = fGeom->GetTextolitBoxSize(1) / 2.0 ; |
699 | dptxw[2] = fGeom->GetTextolitBoxSize(2) / 2.0 ; |
d15a28e7 |
700 | |
92862013 |
701 | gMC->Gsvolu("PTXW", "BOX ", idtmed[707], dptxw, 3); |
d15a28e7 |
702 | |
92862013 |
703 | yO = ( fGeom->GetOuterBoxThickness(1) - fGeom->GetUpperPlateThickness() ) / 2. ; |
d15a28e7 |
704 | |
92862013 |
705 | gMC->Gspos("PTXW", 1, "EMCA", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
706 | |
707 | // --- |
708 | // --- Define Upper Polystyrene Foam Plate, place inside PTXW --- |
709 | // --- immediately below Foam Thermo Insulation Upper plate --- |
710 | |
711 | // --- Upper Polystyrene Foam plate thickness --- |
712 | |
92862013 |
713 | Float_t dpufp[3] ; |
714 | dpufp[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ; |
715 | dpufp[1] = fGeom->GetSecondUpperPlateThickness() / 2. ; |
716 | dpufp[2] = fGeom->GetTextolitBoxSize(2) /2.0 ; |
d15a28e7 |
717 | |
92862013 |
718 | gMC->Gsvolu("PUFP", "BOX ", idtmed[703], dpufp, 3) ; |
d15a28e7 |
719 | |
92862013 |
720 | yO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetSecondUpperPlateThickness() ) / 2.0 ; |
d15a28e7 |
721 | |
92862013 |
722 | gMC->Gspos("PUFP", 1, "PTXW", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
723 | |
724 | // --- |
725 | // --- Define air-filled box, place inside PTXW --- |
726 | // --- Inner AIR volume dimensions --- |
fe4da5cc |
727 | |
d15a28e7 |
728 | |
92862013 |
729 | Float_t dpair[3] ; |
730 | dpair[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; |
731 | dpair[1] = fGeom->GetAirFilledBoxSize(1) / 2.0 ; |
732 | dpair[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; |
d15a28e7 |
733 | |
92862013 |
734 | gMC->Gsvolu("PAIR", "BOX ", idtmed[798], dpair, 3) ; |
d15a28e7 |
735 | |
92862013 |
736 | yO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetAirFilledBoxSize(1) ) / 2.0 - fGeom->GetSecondUpperPlateThickness() ; |
d15a28e7 |
737 | |
92862013 |
738 | gMC->Gspos("PAIR", 1, "PTXW", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
739 | |
740 | // --- Dimensions of PbWO4 crystal --- |
741 | |
92862013 |
742 | Float_t xtlX = fGeom->GetCrystalSize(0) ; |
743 | Float_t xtlY = fGeom->GetCrystalSize(1) ; |
744 | Float_t xtlZ = fGeom->GetCrystalSize(2) ; |
d15a28e7 |
745 | |
92862013 |
746 | Float_t dptcb[3] ; |
747 | dptcb[0] = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ; |
748 | dptcb[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 |
d15a28e7 |
749 | + fGeom->GetModuleBoxThickness() / 2.0 ; |
92862013 |
750 | dptcb[2] = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ; |
d15a28e7 |
751 | |
92862013 |
752 | gMC->Gsvolu("PTCB", "BOX ", idtmed[706], dptcb, 3) ; |
d15a28e7 |
753 | |
92862013 |
754 | yO = fGeom->GetAirFilledBoxSize(1) / 2.0 - dptcb[1] |
d15a28e7 |
755 | - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness() |
756 | - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() ) ; |
757 | |
92862013 |
758 | gMC->Gspos("PTCB", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
759 | |
760 | // --- |
761 | // --- Define Crystal BLock filled with air, position it inside PTCB --- |
92862013 |
762 | Float_t dpcbl[3] ; |
d15a28e7 |
763 | |
92862013 |
764 | dpcbl[0] = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ; |
765 | dpcbl[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ; |
766 | dpcbl[2] = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ; |
d15a28e7 |
767 | |
92862013 |
768 | gMC->Gsvolu("PCBL", "BOX ", idtmed[798], dpcbl, 3) ; |
d15a28e7 |
769 | |
770 | // --- Divide PCBL in X (phi) and Z directions -- |
771 | gMC->Gsdvn("PROW", "PCBL", Int_t (fGeom->GetNPhi()), 1) ; |
772 | gMC->Gsdvn("PCEL", "PROW", Int_t (fGeom->GetNZ()), 3) ; |
773 | |
92862013 |
774 | yO = -fGeom->GetModuleBoxThickness() / 2.0 ; |
d15a28e7 |
775 | |
92862013 |
776 | gMC->Gspos("PCBL", 1, "PTCB", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
777 | |
778 | // --- |
779 | // --- Define STeel (actually, it's titanium) Cover volume, place inside PCEL |
92862013 |
780 | Float_t dpstc[3] ; |
d15a28e7 |
781 | |
92862013 |
782 | dpstc[0] = ( xtlX + 2 * fGeom->GetCrystalWrapThickness() ) / 2.0 ; |
783 | dpstc[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ; |
784 | dpstc[2] = ( xtlZ + 2 * fGeom->GetCrystalWrapThickness() + 2 * fGeom->GetCrystalHolderThickness() ) / 2.0 ; |
d15a28e7 |
785 | |
92862013 |
786 | gMC->Gsvolu("PSTC", "BOX ", idtmed[704], dpstc, 3) ; |
d15a28e7 |
787 | |
788 | gMC->Gspos("PSTC", 1, "PCEL", 0.0, 0.0, 0.0, 0, "ONLY") ; |
789 | |
790 | // --- |
791 | // --- Define Tyvek volume, place inside PSTC --- |
92862013 |
792 | Float_t dppap[3] ; |
d15a28e7 |
793 | |
92862013 |
794 | dppap[0] = xtlX / 2.0 + fGeom->GetCrystalWrapThickness() ; |
795 | dppap[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ; |
796 | dppap[2] = xtlZ / 2.0 + fGeom->GetCrystalWrapThickness() ; |
d15a28e7 |
797 | |
92862013 |
798 | gMC->Gsvolu("PPAP", "BOX ", idtmed[702], dppap, 3) ; |
d15a28e7 |
799 | |
92862013 |
800 | yO = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 |
801 | - ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ; |
d15a28e7 |
802 | |
92862013 |
803 | gMC->Gspos("PPAP", 1, "PSTC", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
804 | |
805 | // --- |
806 | // --- Define PbWO4 crystal volume, place inside PPAP --- |
92862013 |
807 | Float_t dpxtl[3] ; |
d15a28e7 |
808 | |
92862013 |
809 | dpxtl[0] = xtlX / 2.0 ; |
810 | dpxtl[1] = xtlY / 2.0 ; |
811 | dpxtl[2] = xtlZ / 2.0 ; |
d15a28e7 |
812 | |
92862013 |
813 | gMC->Gsvolu("PXTL", "BOX ", idtmed[699], dpxtl, 3) ; |
d15a28e7 |
814 | |
92862013 |
815 | yO = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 - xtlY / 2.0 - fGeom->GetCrystalWrapThickness() ; |
d15a28e7 |
816 | |
92862013 |
817 | gMC->Gspos("PXTL", 1, "PPAP", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
818 | |
819 | // --- |
820 | // --- Define crystal support volume, place inside PPAP --- |
92862013 |
821 | Float_t dpsup[3] ; |
d15a28e7 |
822 | |
92862013 |
823 | dpsup[0] = xtlX / 2.0 + fGeom->GetCrystalWrapThickness() ; |
824 | dpsup[1] = fGeom->GetCrystalSupportHeight() / 2.0 ; |
825 | dpsup[2] = xtlZ / 2.0 + fGeom->GetCrystalWrapThickness() ; |
d15a28e7 |
826 | |
92862013 |
827 | gMC->Gsvolu("PSUP", "BOX ", idtmed[798], dpsup, 3) ; |
d15a28e7 |
828 | |
92862013 |
829 | yO = fGeom->GetCrystalSupportHeight() / 2.0 - ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ; |
d15a28e7 |
830 | |
92862013 |
831 | gMC->Gspos("PSUP", 1, "PPAP", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
832 | |
833 | // --- |
834 | // --- Define PIN-diode volume and position it inside crystal support --- |
835 | // --- right behind PbWO4 crystal |
836 | |
837 | // --- PIN-diode dimensions --- |
838 | |
839 | |
92862013 |
840 | Float_t dppin[3] ; |
841 | dppin[0] = fGeom->GetPinDiodeSize(0) / 2.0 ; |
842 | dppin[1] = fGeom->GetPinDiodeSize(1) / 2.0 ; |
843 | dppin[2] = fGeom->GetPinDiodeSize(2) / 2.0 ; |
d15a28e7 |
844 | |
92862013 |
845 | gMC->Gsvolu("PPIN", "BOX ", idtmed[705], dppin, 3) ; |
d15a28e7 |
846 | |
92862013 |
847 | yO = fGeom->GetCrystalSupportHeight() / 2.0 - fGeom->GetPinDiodeSize(1) / 2.0 ; |
d15a28e7 |
848 | |
92862013 |
849 | gMC->Gspos("PPIN", 1, "PSUP", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
850 | |
851 | // --- |
852 | // --- Define Upper Cooling Panel, place it on top of PTCB --- |
92862013 |
853 | Float_t dpucp[3] ; |
d15a28e7 |
854 | // --- Upper Cooling Plate thickness --- |
855 | |
92862013 |
856 | dpucp[0] = dptcb[0] ; |
857 | dpucp[1] = fGeom->GetUpperCoolingPlateThickness() ; |
858 | dpucp[2] = dptcb[2] ; |
d15a28e7 |
859 | |
92862013 |
860 | gMC->Gsvolu("PUCP", "BOX ", idtmed[701], dpucp,3) ; |
d15a28e7 |
861 | |
92862013 |
862 | yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetUpperCoolingPlateThickness() ) / 2. |
d15a28e7 |
863 | - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness() |
864 | - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() - fGeom->GetUpperCoolingPlateThickness() ) ; |
865 | |
92862013 |
866 | gMC->Gspos("PUCP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
867 | |
868 | // --- |
869 | // --- Define Al Support Plate, position it inside PAIR --- |
870 | // --- right beneath PTCB --- |
871 | // --- Al Support Plate thickness --- |
872 | |
92862013 |
873 | Float_t dpasp[3] ; |
874 | dpasp[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; |
875 | dpasp[1] = fGeom->GetSupportPlateThickness() / 2.0 ; |
876 | dpasp[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; |
d15a28e7 |
877 | |
92862013 |
878 | gMC->Gsvolu("PASP", "BOX ", idtmed[701], dpasp, 3) ; |
d15a28e7 |
879 | |
92862013 |
880 | yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetSupportPlateThickness() ) / 2. |
d15a28e7 |
881 | - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() |
92862013 |
882 | - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 ) ; |
d15a28e7 |
883 | |
92862013 |
884 | gMC->Gspos("PASP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
885 | |
886 | // --- |
887 | // --- Define Thermo Insulating Plate, position it inside PAIR --- |
888 | // --- right beneath PASP --- |
889 | // --- Lower Thermo Insulating Plate thickness --- |
890 | |
92862013 |
891 | Float_t dptip[3] ; |
892 | dptip[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; |
893 | dptip[1] = fGeom->GetLowerThermoPlateThickness() / 2.0 ; |
894 | dptip[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; |
d15a28e7 |
895 | |
92862013 |
896 | gMC->Gsvolu("PTIP", "BOX ", idtmed[706], dptip, 3) ; |
d15a28e7 |
897 | |
92862013 |
898 | yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerThermoPlateThickness() ) / 2. |
d15a28e7 |
899 | - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness() |
92862013 |
900 | - fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 + fGeom->GetSupportPlateThickness() ) ; |
d15a28e7 |
901 | |
92862013 |
902 | gMC->Gspos("PTIP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
903 | |
904 | // --- |
905 | // --- Define Textolit Plate, position it inside PAIR --- |
906 | // --- right beneath PTIP --- |
907 | // --- Lower Textolit Plate thickness --- |
908 | |
92862013 |
909 | Float_t dptxp[3] ; |
910 | dptxp[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; |
911 | dptxp[1] = fGeom->GetLowerTextolitPlateThickness() / 2.0 ; |
912 | dptxp[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; |
d15a28e7 |
913 | |
92862013 |
914 | gMC->Gsvolu("PTXP", "BOX ", idtmed[707], dptxp, 3) ; |
d15a28e7 |
915 | |
92862013 |
916 | yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerTextolitPlateThickness() ) / 2. |
d15a28e7 |
917 | - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness() |
92862013 |
918 | - fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 + fGeom->GetSupportPlateThickness() |
d15a28e7 |
919 | + fGeom->GetLowerThermoPlateThickness() ) ; |
920 | |
92862013 |
921 | gMC->Gspos("PTXP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
922 | |
923 | } |
924 | |
925 | //____________________________________________________________________________ |
926 | void AliPHOSv0::CreateGeometryforPPSD() |
fe4da5cc |
927 | { |
b2a60966 |
928 | // Create the PHOS-PPSD geometry for GEANT |
929 | |
930 | //BEGIN_HTML |
931 | /* |
932 | <H2> |
933 | Geant3 geometry tree of PHOS-PPSD in ALICE |
934 | </H2> |
935 | <P><CENTER> |
936 | <IMG Align=BOTTOM ALT="PPSD geant tree" SRC="../images/PPSDinAlice.gif"> |
937 | </CENTER><P> |
938 | */ |
939 | //END_HTML |
940 | |
941 | // Get pointer to the array containing media indexes |
92862013 |
942 | Int_t *idtmed = fIdtmed->GetArray() - 699 ; |
d15a28e7 |
943 | |
92862013 |
944 | // The box containing all ppsd's for one PHOS module filled with air |
945 | Float_t ppsd[3] ; |
946 | ppsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ; |
947 | ppsd[1] = fGeom->GetPPSDBoxSize(1) / 2.0 ; |
948 | ppsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ; |
fe4da5cc |
949 | |
92862013 |
950 | gMC->Gsvolu("PPSD", "BOX ", idtmed[798], ppsd, 3) ; |
d15a28e7 |
951 | |
92862013 |
952 | Float_t yO = fGeom->GetOuterBoxSize(1) / 2.0 ; |
d15a28e7 |
953 | |
92862013 |
954 | gMC->Gspos("PPSD", 1, "PHOS", 0.0, yO, 0.0, 0, "ONLY") ; |
d15a28e7 |
955 | |
956 | // Now we build a micromegas module |
957 | // The box containing the whole module filled with epoxy (FR4) |
958 | |
92862013 |
959 | Float_t mppsd[3] ; |
960 | mppsd[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ; |
961 | mppsd[1] = fGeom->GetPPSDModuleSize(1) / 2.0 ; |
962 | mppsd[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ; |
d15a28e7 |
963 | |
92862013 |
964 | gMC->Gsvolu("MPPS", "BOX ", idtmed[708], mppsd, 3) ; |
d15a28e7 |
965 | |
92862013 |
966 | // Inside mppsd : |
d15a28e7 |
967 | // 1. The Top Lid made of epoxy (FR4) |
968 | |
92862013 |
969 | Float_t tlppsd[3] ; |
970 | tlppsd[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ; |
971 | tlppsd[1] = fGeom->GetLidThickness() / 2.0 ; |
972 | tlppsd[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ; |
d15a28e7 |
973 | |
92862013 |
974 | gMC->Gsvolu("TLPS", "BOX ", idtmed[708], tlppsd, 3) ; |
d15a28e7 |
975 | |
92862013 |
976 | Float_t y0 = ( fGeom->GetMicromegas1Thickness() - fGeom->GetLidThickness() ) / 2. ; |
d15a28e7 |
977 | |
92862013 |
978 | gMC->Gspos("TLPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
979 | |
980 | // 2. the upper panel made of composite material |
981 | |
92862013 |
982 | Float_t upppsd[3] ; |
983 | upppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
984 | upppsd[1] = fGeom->GetCompositeThickness() / 2.0 ; |
985 | upppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
d15a28e7 |
986 | |
92862013 |
987 | gMC->Gsvolu("UPPS", "BOX ", idtmed[709], upppsd, 3) ; |
d15a28e7 |
988 | |
92862013 |
989 | y0 = y0 - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ; |
d15a28e7 |
990 | |
92862013 |
991 | gMC->Gspos("UPPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
992 | |
993 | // 3. the anode made of Copper |
994 | |
92862013 |
995 | Float_t anppsd[3] ; |
996 | anppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
997 | anppsd[1] = fGeom->GetAnodeThickness() / 2.0 ; |
998 | anppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
d15a28e7 |
999 | |
92862013 |
1000 | gMC->Gsvolu("ANPS", "BOX ", idtmed[710], anppsd, 3) ; |
d15a28e7 |
1001 | |
92862013 |
1002 | y0 = y0 - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ; |
d15a28e7 |
1003 | |
92862013 |
1004 | gMC->Gspos("ANPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1005 | |
1006 | // 4. the conversion gap + avalanche gap filled with gas |
1007 | |
92862013 |
1008 | Float_t ggppsd[3] ; |
1009 | ggppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
1010 | ggppsd[1] = ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2.0 ; |
1011 | ggppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
d15a28e7 |
1012 | |
92862013 |
1013 | gMC->Gsvolu("GGPS", "BOX ", idtmed[715], ggppsd, 3) ; |
d15a28e7 |
1014 | |
1015 | // --- Divide GGPP in X (phi) and Z directions -- |
1016 | gMC->Gsdvn("GROW", "GGPS", fGeom->GetNumberOfPadsPhi(), 1) ; |
1017 | gMC->Gsdvn("GCEL", "GROW", fGeom->GetNumberOfPadsZ() , 3) ; |
1018 | |
92862013 |
1019 | y0 = y0 - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ; |
d15a28e7 |
1020 | |
92862013 |
1021 | gMC->Gspos("GGPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1022 | |
1023 | |
1024 | // 6. the cathode made of Copper |
1025 | |
92862013 |
1026 | Float_t cappsd[3] ; |
1027 | cappsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
1028 | cappsd[1] = fGeom->GetCathodeThickness() / 2.0 ; |
1029 | cappsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
d15a28e7 |
1030 | |
92862013 |
1031 | gMC->Gsvolu("CAPS", "BOX ", idtmed[710], cappsd, 3) ; |
d15a28e7 |
1032 | |
92862013 |
1033 | y0 = y0 - ( fGeom->GetAvalancheGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ; |
d15a28e7 |
1034 | |
92862013 |
1035 | gMC->Gspos("CAPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1036 | |
1037 | // 7. the printed circuit made of G10 |
1038 | |
92862013 |
1039 | Float_t pcppsd[3] ; |
1040 | pcppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2,.0 ; |
1041 | pcppsd[1] = fGeom->GetPCThickness() / 2.0 ; |
1042 | pcppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
d15a28e7 |
1043 | |
92862013 |
1044 | gMC->Gsvolu("PCPS", "BOX ", idtmed[711], cappsd, 3) ; |
d15a28e7 |
1045 | |
92862013 |
1046 | y0 = y0 - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ; |
d15a28e7 |
1047 | |
92862013 |
1048 | gMC->Gspos("PCPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1049 | |
1050 | // 8. the lower panel made of composite material |
1051 | |
92862013 |
1052 | Float_t lpppsd[3] ; |
1053 | lpppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
1054 | lpppsd[1] = fGeom->GetCompositeThickness() / 2.0 ; |
1055 | lpppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ; |
d15a28e7 |
1056 | |
92862013 |
1057 | gMC->Gsvolu("LPPS", "BOX ", idtmed[709], lpppsd, 3) ; |
d15a28e7 |
1058 | |
92862013 |
1059 | y0 = y0 - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ; |
d15a28e7 |
1060 | |
92862013 |
1061 | gMC->Gspos("LPPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1062 | |
92862013 |
1063 | // Position the fNumberOfModulesPhi x fNumberOfModulesZ modules (mppsd) inside PPSD to cover a PHOS module |
d15a28e7 |
1064 | // the top and bottom one's (which are assumed identical) : |
1065 | |
92862013 |
1066 | Float_t yt = ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas1Thickness() ) / 2. ; |
1067 | Float_t yb = - ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas2Thickness() ) / 2. ; |
d15a28e7 |
1068 | |
92862013 |
1069 | Int_t copyNumbertop = 0 ; |
1070 | Int_t copyNumberbot = fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() ; |
d15a28e7 |
1071 | |
92862013 |
1072 | Float_t x = ( fGeom->GetPPSDBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. ; |
d15a28e7 |
1073 | |
1074 | for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { // the number of micromegas modules in phi per PHOS module |
92862013 |
1075 | Float_t z = ( fGeom->GetPPSDBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. ; |
d15a28e7 |
1076 | |
1077 | for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { // the number of micromegas modules in z per PHOS module |
92862013 |
1078 | gMC->Gspos("MPPS", ++copyNumbertop, "PPSD", x, yt, z, 0, "ONLY") ; |
1079 | gMC->Gspos("MPPS", ++copyNumberbot, "PPSD", x, yb, z, 0, "ONLY") ; |
1080 | z = z - fGeom->GetPPSDModuleSize(2) ; |
d15a28e7 |
1081 | } // end of Z module loop |
92862013 |
1082 | x = x - fGeom->GetPPSDModuleSize(0) ; |
d15a28e7 |
1083 | } // end of phi module loop |
1084 | |
1085 | // The Lead converter between two air gaps |
1086 | // 1. Upper air gap |
1087 | |
92862013 |
1088 | Float_t uappsd[3] ; |
1089 | uappsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ; |
1090 | uappsd[1] = fGeom->GetMicro1ToLeadGap() / 2.0 ; |
1091 | uappsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ; |
d15a28e7 |
1092 | |
92862013 |
1093 | gMC->Gsvolu("UAPPSD", "BOX ", idtmed[798], uappsd, 3) ; |
d15a28e7 |
1094 | |
92862013 |
1095 | y0 = ( fGeom->GetPPSDBoxSize(1) - 2 * fGeom->GetMicromegas1Thickness() - fGeom->GetMicro1ToLeadGap() ) / 2. ; |
d15a28e7 |
1096 | |
92862013 |
1097 | gMC->Gspos("UAPPSD", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1098 | |
1099 | // 2. Lead converter |
1100 | |
92862013 |
1101 | Float_t lcppsd[3] ; |
1102 | lcppsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ; |
1103 | lcppsd[1] = fGeom->GetLeadConverterThickness() / 2.0 ; |
1104 | lcppsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ; |
d15a28e7 |
1105 | |
92862013 |
1106 | gMC->Gsvolu("LCPPSD", "BOX ", idtmed[712], lcppsd, 3) ; |
d15a28e7 |
1107 | |
92862013 |
1108 | y0 = y0 - fGeom->GetMicro1ToLeadGap() / 2. - fGeom->GetLeadConverterThickness() / 2. ; |
d15a28e7 |
1109 | |
92862013 |
1110 | gMC->Gspos("LCPPSD", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1111 | |
1112 | // 3. Lower air gap |
1113 | |
92862013 |
1114 | Float_t lappsd[3] ; |
1115 | lappsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ; |
1116 | lappsd[1] = fGeom->GetLeadToMicro2Gap() / 2.0 ; |
1117 | lappsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ; |
d15a28e7 |
1118 | |
92862013 |
1119 | gMC->Gsvolu("LAPPSD", "BOX ", idtmed[798], lappsd, 3) ; |
fe4da5cc |
1120 | |
92862013 |
1121 | y0 = y0 - fGeom->GetLeadConverterThickness() / 2. - fGeom->GetLeadToMicro2Gap() / 2. ; |
d15a28e7 |
1122 | |
92862013 |
1123 | gMC->Gspos("LAPPSD", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ; |
d15a28e7 |
1124 | |
fe4da5cc |
1125 | } |
1126 | |
d15a28e7 |
1127 | //___________________________________________________________________________ |
b2a60966 |
1128 | Int_t AliPHOSv0::Digitize(Float_t Energy) |
1129 | { |
1130 | // Applies the energy calibration |
1131 | |
31aa6d6c |
1132 | Float_t fB = 100. ; // ; 100000000. ; |
d15a28e7 |
1133 | Float_t fA = 0. ; |
1134 | Int_t chan = Int_t(fA + Energy*fB ) ; |
1135 | return chan ; |
1136 | } |
31aa6d6c |
1137 | |
d15a28e7 |
1138 | //___________________________________________________________________________ |
1139 | void AliPHOSv0::FinishEvent() |
fe4da5cc |
1140 | { |
b2a60966 |
1141 | // Makes the digits from the sum of summed hit in a single crystal or PPSD gas cell |
1142 | // Adds to the energy the electronic noise |
1143 | // Keeps digits with energy above fDigitThreshold |
1144 | |
d15a28e7 |
1145 | Int_t i ; |
cf239357 |
1146 | Int_t relid[4]; |
ff4c968a |
1147 | Int_t j ; |
d15a28e7 |
1148 | TClonesArray &lDigits = *fDigits ; |
92862013 |
1149 | AliPHOSHit * hit ; |
ff4c968a |
1150 | AliPHOSDigit * newdigit ; |
1151 | AliPHOSDigit * curdigit ; |
1152 | Bool_t deja = kFALSE ; |
b2a60966 |
1153 | |
d15a28e7 |
1154 | for ( i = 0 ; i < fNTmpHits ; i++ ) { |
92862013 |
1155 | hit = (AliPHOSHit*)fTmpHits->At(i) ; |
ff4c968a |
1156 | newdigit = new AliPHOSDigit( hit->GetPrimary(), hit->GetId(), Digitize( hit->GetEnergy() ) ) ; |
6a72c964 |
1157 | deja =kFALSE ; |
ff4c968a |
1158 | for ( j = 0 ; j < fNdigits ; j++) { |
cf239357 |
1159 | curdigit = (AliPHOSDigit*) lDigits[j] ; |
ff4c968a |
1160 | if ( *curdigit == *newdigit) { |
cf239357 |
1161 | *curdigit = *curdigit + *newdigit ; |
ff4c968a |
1162 | deja = kTRUE ; |
1163 | } |
1164 | } |
d1232693 |
1165 | if ( !deja ) { |
ff4c968a |
1166 | new(lDigits[fNdigits]) AliPHOSDigit(* newdigit) ; |
1167 | fNdigits++ ; |
1168 | } |
1169 | |
1170 | delete newdigit ; |
0869cea5 |
1171 | } |
ff4c968a |
1172 | |
cf239357 |
1173 | // Noise induced by the PIN diode of the PbWO crystals |
26d4b141 |
1174 | |
0869cea5 |
1175 | Float_t energyandnoise ; |
1176 | for ( i = 0 ; i < fNdigits ; i++ ) { |
ff4c968a |
1177 | newdigit = (AliPHOSDigit * ) fDigits->At(i) ; |
cf239357 |
1178 | fGeom->AbsToRelNumbering(newdigit->GetId(), relid) ; |
ae37f159 |
1179 | |
cf239357 |
1180 | if (relid[1]==0){ // Digits belong to EMC (PbW0_4 crystals) |
3a6a7952 |
1181 | energyandnoise = newdigit->GetAmp() + Digitize(gRandom->Gaus(0., fPinElectronicNoise)) ; |
ae37f159 |
1182 | |
cf239357 |
1183 | if (energyandnoise < 0 ) |
1184 | energyandnoise = 0 ; |
ae37f159 |
1185 | |
ae37f159 |
1186 | if ( newdigit->GetAmp() < fDigitThreshold ) // if threshold not surpassed, remove digit from list |
1187 | fDigits->RemoveAt(i) ; |
cf239357 |
1188 | } |
fe4da5cc |
1189 | } |
31aa6d6c |
1190 | |
1191 | |
ae37f159 |
1192 | fDigits->Compress() ; |
d15a28e7 |
1193 | fNTmpHits = 0 ; |
1194 | fTmpHits->Delete(); |
31aa6d6c |
1195 | |
fe4da5cc |
1196 | } |
d15a28e7 |
1197 | |
1198 | //____________________________________________________________________________ |
1199 | void AliPHOSv0::Init(void) |
1200 | { |
b2a60966 |
1201 | // Just prints an information message |
1202 | |
d15a28e7 |
1203 | Int_t i; |
1204 | |
1205 | printf("\n"); |
1206 | for(i=0;i<35;i++) printf("*"); |
1207 | printf(" PHOS_INIT "); |
1208 | for(i=0;i<35;i++) printf("*"); |
1209 | printf("\n"); |
1210 | |
1211 | // Here the PHOS initialisation code (if any!) |
1212 | |
1213 | for(i=0;i<80;i++) printf("*"); |
1214 | printf("\n"); |
1215 | |
1216 | } |
1217 | |
1218 | //___________________________________________________________________________ |
1219 | void AliPHOSv0::MakeBranch(Option_t* opt) |
1220 | { |
b2a60966 |
1221 | // Create new branche in the current Root Tree in the digit Tree |
1222 | |
d15a28e7 |
1223 | AliDetector::MakeBranch(opt) ; |
1224 | |
1225 | char branchname[10]; |
1226 | sprintf(branchname,"%s",GetName()); |
c198e326 |
1227 | char *cdD = strstr(opt,"D"); |
d15a28e7 |
1228 | |
c198e326 |
1229 | if (fDigits && gAlice->TreeD() && cdD) { |
31aa6d6c |
1230 | gAlice->TreeD()->Branch(branchname, &fDigits, fBufferSize); |
c198e326 |
1231 | } |
d15a28e7 |
1232 | } |
d15a28e7 |
1233 | |
9f616d61 |
1234 | //_____________________________________________________________________________ |
6ad0bfa0 |
1235 | void AliPHOSv0::Reconstruction(AliPHOSReconstructioner * Reconstructioner) |
d15a28e7 |
1236 | { |
b2a60966 |
1237 | // 1. Reinitializes the existing RecPoint, TrackSegment, and RecParticles Lists and |
1238 | // 2. Creates a branch in TreeR for each list |
1239 | // 3. Steers the reconstruction processes |
1240 | // 4. Saves the 3 lists in TreeR |
1241 | // 5. Write the Tree to File |
1242 | |
6ad0bfa0 |
1243 | fReconstructioner = Reconstructioner ; |
b2a60966 |
1244 | |
1245 | char branchname[10] ; |
6ad0bfa0 |
1246 | |
b2a60966 |
1247 | // 1. |
1248 | |
9f616d61 |
1249 | if (fEmcClusters) { |
1250 | fEmcClusters->Delete() ; |
1251 | delete fEmcClusters ; |
1252 | fEmcClusters = 0 ; |
9f616d61 |
1253 | } |
1254 | fEmcClusters= new RecPointsList("AliPHOSEmcRecPoint", 100) ; |
b2a60966 |
1255 | if ( fEmcClusters && gAlice->TreeR() ) { |
1256 | sprintf(branchname,"%sERP",GetName()) ; |
1257 | gAlice->TreeR()->Branch(branchname, &fEmcClusters, fBufferSize); |
1258 | } |
1259 | |
9f616d61 |
1260 | if (fPpsdClusters) { |
1261 | fPpsdClusters->Delete() ; |
1262 | delete fPpsdClusters ; |
1263 | fPpsdClusters = 0 ; |
1264 | } |
1265 | fPpsdClusters = new RecPointsList("AliPHOSPpsdRecPoint", 100) ; |
b2a60966 |
1266 | if ( fPpsdClusters && gAlice->TreeR() ) { |
1267 | sprintf(branchname,"%sPRP",GetName()) ; |
1268 | gAlice->TreeR()->Branch(branchname, &fPpsdClusters, fBufferSize); |
1269 | } |
9f616d61 |
1270 | |
b2a60966 |
1271 | if (fTrackSegments) { |
9f616d61 |
1272 | fTrackSegments->Delete() ; |
1273 | delete fTrackSegments ; |
1274 | fTrackSegments = 0 ; |
1275 | } |
b2a60966 |
1276 | fTrackSegments = new TrackSegmentsList("AliPHOSTrackSegment", 100) ; |
1277 | if ( fTrackSegments && gAlice->TreeR() ) { |
1278 | sprintf(branchname,"%sTS",GetName()) ; |
1279 | gAlice->TreeR()->Branch(branchname, &fTrackSegments, fBufferSize); |
1280 | } |
1281 | |
6ad0bfa0 |
1282 | if (fRecParticles) { |
1283 | fRecParticles->Delete() ; |
1284 | delete fRecParticles ; |
1285 | fRecParticles = 0 ; |
1286 | } |
1287 | fRecParticles = new RecParticlesList("AliPHOSRecParticle", 100) ; |
b2a60966 |
1288 | if ( fRecParticles && gAlice->TreeR() ) { |
1289 | sprintf(branchname,"%sRP",GetName()) ; |
1290 | gAlice->TreeR()->Branch(branchname, &fRecParticles, fBufferSize); |
1291 | } |
1292 | |
1293 | // 3. |
6ad0bfa0 |
1294 | |
1295 | fReconstructioner->Make(fDigits, fEmcClusters, fPpsdClusters, fTrackSegments, fRecParticles); |
9f616d61 |
1296 | |
b2a60966 |
1297 | // 4. |
1298 | |
1299 | gAlice->TreeR()->Fill() ; |
1300 | |
1301 | // 5. |
1302 | |
1303 | gAlice->TreeR()->Write() ; |
1304 | |
d15a28e7 |
1305 | } |
1306 | |
1307 | //____________________________________________________________________________ |
1308 | void AliPHOSv0::StepManager(void) |
1309 | { |
b2a60966 |
1310 | // Accumulates hits as long as the track stays in a single crystal or PPSD gas Cell |
1311 | |
92862013 |
1312 | Int_t relid[4] ; // (box, layer, row, column) indices |
d15a28e7 |
1313 | Float_t xyze[4] ; // position wrt MRS and energy deposited |
1314 | TLorentzVector pos ; |
ff4c968a |
1315 | Int_t copy ; |
d15a28e7 |
1316 | |
ff4c968a |
1317 | Int_t primary = gAlice->GetPrimary( gAlice->CurrentTrack() ); |
d15a28e7 |
1318 | TString name = fGeom->GetName() ; |
d15a28e7 |
1319 | if ( name == "GPS2" ) { // the CPV is a PPSD |
b2a60966 |
1320 | if( gMC->CurrentVolID(copy) == gMC->VolId("GCEL") ) // We are inside a gas cell |
d15a28e7 |
1321 | { |
1322 | gMC->TrackPosition(pos) ; |
1323 | xyze[0] = pos[0] ; |
1324 | xyze[1] = pos[1] ; |
1325 | xyze[2] = pos[2] ; |
1326 | xyze[3] = gMC->Edep() ; |
1327 | |
1328 | if ( xyze[3] != 0 ) { // there is deposited energy |
92862013 |
1329 | gMC->CurrentVolOffID(5, relid[0]) ; // get the PHOS Module number |
1330 | gMC->CurrentVolOffID(3, relid[1]) ; // get the Micromegas Module number |
d15a28e7 |
1331 | // 1-> Geom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() upper |
1332 | // > fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() lower |
92862013 |
1333 | gMC->CurrentVolOffID(1, relid[2]) ; // get the row number of the cell |
1334 | gMC->CurrentVolID(relid[3]) ; // get the column number |
d15a28e7 |
1335 | |
1336 | // get the absolute Id number |
1337 | |
92862013 |
1338 | Int_t absid ; |
ff4c968a |
1339 | fGeom->RelToAbsNumbering(relid, absid) ; |
d15a28e7 |
1340 | |
1341 | // add current hit to the hit list |
ff4c968a |
1342 | AddHit(primary, absid, xyze); |
d15a28e7 |
1343 | |
1344 | } // there is deposited energy |
1345 | } // We are inside the gas of the CPV |
1346 | } // GPS2 configuration |
1347 | |
ff4c968a |
1348 | if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) // We are inside a PBWO crystal |
d15a28e7 |
1349 | { |
1350 | gMC->TrackPosition(pos) ; |
1351 | xyze[0] = pos[0] ; |
1352 | xyze[1] = pos[1] ; |
1353 | xyze[2] = pos[2] ; |
1354 | xyze[3] = gMC->Edep() ; |
1355 | |
1356 | if ( xyze[3] != 0 ) { |
92862013 |
1357 | gMC->CurrentVolOffID(10, relid[0]) ; // get the PHOS module number ; |
ff4c968a |
1358 | relid[1] = 0 ; // means PBW04 |
92862013 |
1359 | gMC->CurrentVolOffID(4, relid[2]) ; // get the row number inside the module |
1360 | gMC->CurrentVolOffID(3, relid[3]) ; // get the cell number inside the module |
d15a28e7 |
1361 | |
1362 | // get the absolute Id number |
1363 | |
92862013 |
1364 | Int_t absid ; |
1365 | fGeom->RelToAbsNumbering(relid, absid) ; |
d15a28e7 |
1366 | |
1367 | // add current hit to the hit list |
1368 | |
ff4c968a |
1369 | AddHit(primary, absid, xyze); |
d15a28e7 |
1370 | |
1371 | } // there is deposited energy |
1372 | } // we are inside a PHOS Xtal |
1373 | } |
1374 | |