]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Made a new abstract base class; AliL3HoughBaseTransformer for different implementations
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
21// Layout EMC + PPSD has name GPS2:
ed4205d8 22// Produces cumulated hits
a3dfe79c 23//---
24// Layout EMC + CPV has name IHEP:
ed4205d8 25// Produces hits for CPV, cumulated hits
26//---
27// Layout EMC + CPV + PPSD has name GPS:
28// Produces hits for CPV, cumulated hits
29//---
5f20d3fb 30//*-- Author: Yves Schutz (SUBATECH)
b2a60966 31
7587f5a5 32
33// --- ROOT system ---
bea63bea 34
35#include "TBRIK.h"
36#include "TNode.h"
7587f5a5 37#include "TRandom.h"
94de3818 38#include "TTree.h"
f6d1e5e1 39#include "TParticle.h"
7587f5a5 40
41// --- Standard library ---
42
de9ec31b 43#include <string.h>
44#include <stdlib.h>
45#include <strstream.h>
7587f5a5 46
47// --- AliRoot header files ---
48
49#include "AliPHOSv1.h"
50#include "AliPHOSHit.h"
97cee223 51#include "AliPHOSCPVDigit.h"
7587f5a5 52#include "AliRun.h"
53#include "AliConst.h"
94de3818 54#include "AliMC.h"
97cee223 55#include "AliPHOSGeometry.h"
7b326aac 56#include "AliPHOSQAIntCheckable.h"
57#include "AliPHOSQAFloatCheckable.h"
58#include "AliPHOSQAMeanChecker.h"
7587f5a5 59
60ClassImp(AliPHOSv1)
61
bea63bea 62//____________________________________________________________________________
02ab1add 63AliPHOSv1::AliPHOSv1():
64AliPHOSv0()
bea63bea 65{
735e58f1 66 // default ctor: initialze data memebers
67 fQAHitsMul = 0 ;
68 fQAHitsMulB = 0 ;
69 fQATotEner = 0 ;
70 fQATotEnerB = 0 ;
9688c1dd 71
72 fLightYieldMean = 0. ;
73 fIntrinsicPINEfficiency = 0. ;
74 fLightYieldAttenuation = 0. ;
75 fRecalibrationFactor = 0. ;
76 fElectronsPerGeV = 0. ;
27f33ee5 77 fAPDGain = 0. ;
78 fLightFactor = 0. ;
79 fAPDFactor = 0. ;
9688c1dd 80
bea63bea 81}
82
7587f5a5 83//____________________________________________________________________________
84AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 85 AliPHOSv0(name,title)
7587f5a5 86{
5f20d3fb 87 //
ed4205d8 88 // We store hits :
5f20d3fb 89 // - fHits (the "normal" one), which retains the hits associated with
90 // the current primary particle being tracked
91 // (this array is reset after each primary has been tracked).
92 //
fa412d9b 93
037cc66d 94
5f20d3fb 95
96 // We do not want to save in TreeH the raw hits
97 // But save the cumulated hits instead (need to create the branch myself)
98 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 99 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 100
ed4205d8 101 fHits= new TClonesArray("AliPHOSHit",1000) ;
f6d1e5e1 102 gAlice->AddHitList(fHits) ;
5f20d3fb 103
ed4205d8 104 fNhits = 0 ;
5f20d3fb 105
f6d1e5e1 106 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 107
9688c1dd 108 //Photoelectron statistics:
109 // The light yield is a poissonian distribution of the number of
110 // photons created in the PbWo4 crystal, calculated using following formula
111 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
112 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
113 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
114 // APDEfficiency is 0.02655
115 // k_0 is 0.0045 from Valery Antonenko
116 // The number of electrons created in the APD is
117 // NumberOfElectrons = APDGain * LightYield
118 // The APD Gain is 300
119 fLightYieldMean = 47000;
120 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 121 fLightYieldAttenuation = 0.0045 ;
122 fRecalibrationFactor = 13.418/ fLightYieldMean ;
123 fElectronsPerGeV = 2.77e+8 ;
124 fAPDGain = 300. ;
125 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
126 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
127
9688c1dd 128
fa7cce36 129 Int_t nb = GetGeometry()->GetNModules() ;
fa412d9b 130
7b326aac 131 // create checkables
132 fQAHitsMul = new AliPHOSQAIntCheckable("HitsM") ;
133 fQATotEner = new AliPHOSQAFloatCheckable("TotEn") ;
134 fQAHitsMulB = new TClonesArray("AliPHOSQAIntCheckable",nb) ;
135 fQATotEnerB = new TClonesArray("AliPHOSQAFloatCheckable", nb);
136 char tempo[20] ;
137 Int_t i ;
138 for ( i = 0 ; i < nb ; i++ ) {
139 sprintf(tempo, "HitsMB%d", i+1) ;
140 new( (*fQAHitsMulB)[i]) AliPHOSQAIntCheckable(tempo) ;
141 sprintf(tempo, "TotEnB%d", i+1) ;
142 new( (*fQATotEnerB)[i] ) AliPHOSQAFloatCheckable(tempo) ;
143 }
144
7b326aac 145 AliPHOSQAMeanChecker * hmc = new AliPHOSQAMeanChecker("HitsMul", 100. ,25.) ;
146 AliPHOSQAMeanChecker * emc = new AliPHOSQAMeanChecker("TotEner", 10. ,5.) ;
147 AliPHOSQAMeanChecker * bhmc = new AliPHOSQAMeanChecker("HitsMulB", 100. ,5.) ;
148 AliPHOSQAMeanChecker * bemc = new AliPHOSQAMeanChecker("TotEnerB", 2. ,.5) ;
149
150 // associate checkables and checkers
151 fQAHitsMul->AddChecker(hmc) ;
152 fQATotEner->AddChecker(emc) ;
153 for ( i = 0 ; i < nb ; i++ ) {
29b077b5 154 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]))->AddChecker(bhmc) ;
155 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]))->AddChecker(bemc) ;
7b326aac 156 }
7b7c1533 157
5f20d3fb 158}
159
7587f5a5 160//____________________________________________________________________________
bea63bea 161AliPHOSv1::~AliPHOSv1()
b2a60966 162{
bea63bea 163 // dtor
5f20d3fb 164
ed4205d8 165 if ( fHits) {
166 fHits->Delete() ;
167 delete fHits ;
168 fHits = 0 ;
8dfa469d 169 }
7b7c1533 170 if (fTreeQA)
171 delete fTreeQA ;
7587f5a5 172}
173
7587f5a5 174//____________________________________________________________________________
b37750a6 175void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
bea63bea 176{
177 // Add a hit to the hit list.
f6d1e5e1 178 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 179
5f20d3fb 180 Int_t hitCounter ;
bea63bea 181 AliPHOSHit *newHit ;
5f20d3fb 182 AliPHOSHit *curHit ;
183 Bool_t deja = kFALSE ;
fa7cce36 184 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 185
b37750a6 186 newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
bea63bea 187
7854a24a 188 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 189 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 190 if(curHit->GetPrimary() != primary) break ;
191 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 192 if( *curHit == *newHit ) {
f15a01eb 193 *curHit + *newHit ;
ed4205d8 194 deja = kTRUE ;
5f20d3fb 195 }
196 }
197
198 if ( !deja ) {
ed4205d8 199 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 200 // get the block Id number
9688c1dd 201 Int_t relid[4] ;
fa7cce36 202 geom->AbsToRelNumbering(Id, relid) ;
7b326aac 203 // and fill the relevant QA checkable (only if in PbW04)
204 if ( relid[1] == 0 ) {
205 fQAHitsMul->Update(1) ;
29b077b5 206 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[relid[0]-1]))->Update(1) ;
7b326aac 207 }
ed4205d8 208 fNhits++ ;
5f20d3fb 209 }
210
bea63bea 211 delete newHit;
bea63bea 212}
213
7b326aac 214//____________________________________________________________________________
215void AliPHOSv1::FinishPrimary()
216{
217 // called at the end of each track (primary) by AliRun
218 // hits are reset for each new track
219 // accumulate the total hit-multiplicity
220// if ( fQAHitsMul )
221// fQAHitsMul->Update( fHits->GetEntriesFast() ) ;
222
223}
224
225//____________________________________________________________________________
226void AliPHOSv1::FinishEvent()
227{
228 // called at the end of each event by AliRun
229 // accumulate the hit-multiplicity and total energy per block
230 // if the values have been updated check it
231
232 if ( fQATotEner ) {
233 if ( fQATotEner->HasChanged() ) {
234 fQATotEner->CheckMe() ;
235 fQATotEner->Reset() ;
236 }
237 }
238
239 Int_t i ;
240 if ( fQAHitsMulB && fQATotEnerB ) {
fa7cce36 241 for (i = 0 ; i < GetGeometry()->GetNModules() ; i++) {
29b077b5 242 AliPHOSQAIntCheckable * ci = static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]) ;
243 AliPHOSQAFloatCheckable* cf = static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]) ;
7b326aac 244 if ( ci->HasChanged() ) {
245 ci->CheckMe() ;
246 ci->Reset() ;
247 }
248 if ( cf->HasChanged() ) {
249 cf->CheckMe() ;
250 cf->Reset() ;
251 }
252 }
253 }
254
255 // check the total multiplicity
256
257 if ( fQAHitsMul ) {
258 if ( fQAHitsMul->HasChanged() ) {
259 fQAHitsMul->CheckMe() ;
260 fQAHitsMul->Reset() ;
261 }
262 }
263}
5f20d3fb 264//____________________________________________________________________________
7587f5a5 265void AliPHOSv1::StepManager(void)
266{
9688c1dd 267 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 268
4f5bbbd4 269 Int_t relid[4] ; // (box, layer, row, column) indices
270 Int_t absid ; // absolute cell ID number
471193a8 271 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 272 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 273 Int_t copy ;
7587f5a5 274
bea63bea 275 Int_t tracknumber = gAlice->CurrentTrack() ;
fa412d9b 276 Int_t primary = gAlice->GetPrimary( gAlice->CurrentTrack() );
fa7cce36 277 TString name = GetGeometry()->GetName() ;
037cc66d 278
9688c1dd 279 Int_t moduleNumber ;
280
281 if( gMC->CurrentVolID(copy) == gMC->VolId("PCPQ") &&
282 (gMC->IsTrackEntering() ) &&
283 gMC->TrackCharge() != 0) {
f6d1e5e1 284
9688c1dd 285 gMC -> TrackPosition(pos);
f6d1e5e1 286
9688c1dd 287 Float_t xyzm[3], xyzd[3] ;
288 Int_t i;
289 for (i=0; i<3; i++) xyzm[i] = pos[i];
290 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
291
e3daf02c 292 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 293 xyd[0] = xyzd[0];
53e03a1e 294 xyd[1] =-xyzd[2];
295 xyd[2] =-xyzd[1];
f6d1e5e1 296
9688c1dd 297 // Current momentum of the hit's track in the local ref. system
298 TLorentzVector pmom ; //momentum of the particle initiated hit
299 gMC -> TrackMomentum(pmom);
300 Float_t pm[3], pd[3];
301 for (i=0; i<3; i++)
302 pm[i] = pmom[i];
f6d1e5e1 303
9688c1dd 304 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
305 pmom[0] = pd[0];
cf75bc19 306 pmom[1] =-pd[1];
307 pmom[2] =-pd[2];
f6d1e5e1 308
9688c1dd 309 // Digitize the current CPV hit:
310
311 // 1. find pad response and
312 gMC->CurrentVolOffID(3,moduleNumber);
313 moduleNumber--;
314
315 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
316 CPVDigitize(pmom,xyd,moduleNumber,cpvDigits);
fa412d9b 317
9688c1dd 318 Float_t xmean = 0;
319 Float_t zmean = 0;
320 Float_t qsum = 0;
321 Int_t idigit,ndigits;
322
323 // 2. go through the current digit list and sum digits in pads
324
325 ndigits = cpvDigits->GetEntriesFast();
326 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 327 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 328 Float_t x1 = cpvDigit1->GetXpad() ;
329 Float_t z1 = cpvDigit1->GetYpad() ;
330 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 331 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 332 Float_t x2 = cpvDigit2->GetXpad() ;
333 Float_t z2 = cpvDigit2->GetYpad() ;
334 if (x1==x2 && z1==z2) {
335 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
336 cpvDigit2->SetQpad(qsum) ;
337 cpvDigits->RemoveAt(idigit) ;
fa412d9b 338 }
339 }
9688c1dd 340 }
341 cpvDigits->Compress() ;
342
343 // 3. add digits to temporary hit list fTmpHits
344
345 ndigits = cpvDigits->GetEntriesFast();
346 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 347 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 348 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
349 relid[1] =-1 ; // means CPV
350 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
351 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
352
353 // get the absolute Id number
354 GetGeometry()->RelToAbsNumbering(relid, absid) ;
355
356 // add current digit to the temporary hit list
357
471193a8 358 xyzte[3] = gMC->TrackTime() ;
359 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
9688c1dd 360 primary = -1; // No need in primary for CPV
471193a8 361 AddHit(fIshunt, primary, tracknumber, absid, xyzte);
9688c1dd 362
363 if (cpvDigit->GetQpad() > 0.02) {
364 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
365 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
366 qsum += cpvDigit->GetQpad();
fa412d9b 367 }
fa412d9b 368 }
e534a69d 369 if (cpvDigits) {
370 cpvDigits->Delete();
371 delete cpvDigits;
372 cpvDigits=0;
373 }
9688c1dd 374 }
037cc66d 375
9688c1dd 376
377
fa412d9b 378 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
9688c1dd 379
fa412d9b 380 gMC->TrackPosition(pos) ;
471193a8 381 xyzte[0] = pos[0] ;
382 xyzte[1] = pos[1] ;
383 xyzte[2] = pos[2] ;
597e6309 384
9688c1dd 385 Float_t global[3], local[3] ;
386 global[0] = pos[0] ;
387 global[1] = pos[1] ;
388 global[2] = pos[2] ;
389 Float_t lostenergy = gMC->Edep();
f6d1e5e1 390
391 //Put in the TreeK particle entering PHOS and all its parents
392 if ( gMC->IsTrackEntering() ){
393 Float_t xyzd[3] ;
471193a8 394 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
f6d1e5e1 395 if (xyzd[1] > GetGeometry()->GetCrystalSize(1)/2-0.002 ||
396 xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2+0.002) {
397 TParticle * part = 0 ;
398 Int_t parent = gAlice->CurrentTrack() ;
399 while ( parent != -1 ) {
400 part = gAlice->Particle(parent) ;
401 part->SetBit(kKeepBit);
402 parent = part->GetFirstMother() ;
403 }
404 }
405 }
9688c1dd 406 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 407 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 408
9688c1dd 409 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 410
9688c1dd 411 Int_t strip ;
412 gMC->CurrentVolOffID(3, strip);
413 Int_t cell ;
414 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 415
9688c1dd 416 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
417 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 418
9688c1dd 419 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
420 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 421
9688c1dd 422 gMC->Gmtod(global, local, 1) ;
423
471193a8 424 //Calculates the light yield, the number of photons produced in the
9688c1dd 425 //crystal
27f33ee5 426 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 427 exp(-fLightYieldAttenuation *
428 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
429 ) ;
471193a8 430
9688c1dd 431 //Calculates de energy deposited in the crystal
471193a8 432 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 433
434 // add current hit to the hit list
f6d1e5e1 435 //cout << "AliPHOSv1::StepManager " << primary << " " << tracknumber << endl ;
471193a8 436 AddHit(fIshunt, primary,tracknumber, absid, xyzte);
9688c1dd 437
94de8339 438 // fill the relevant QA Checkables
471193a8 439 fQATotEner->Update( xyzte[4] ) ; // total energy in PHOS
440 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[moduleNumber-1]))->Update( xyzte[4] ) ; // energy in this block
f6d1e5e1 441
fa412d9b 442 } // there is deposited energy
443 } // we are inside a PHOS Xtal
f6d1e5e1 444
fa412d9b 445}
446
447//____________________________________________________________________________
448void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, Int_t moduleNumber, TClonesArray *cpvDigits)
449{
450 // ------------------------------------------------------------------------
451 // Digitize one CPV hit:
452 // On input take exact 4-momentum p and position zxhit of the hit,
453 // find the pad response around this hit and
454 // put the amplitudes in the pads into array digits
455 //
456 // Author: Yuri Kharlov (after Serguei Sadovsky)
457 // 2 October 2000
458 // ------------------------------------------------------------------------
459
fa7cce36 460 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 461 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
462 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
463 const Int_t kNgamz = 5; // Ionization size in Z
464 const Int_t kNgamx = 9; // Ionization size in Phi
465 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 466
467 Float_t rnor1,rnor2;
468
469 // Just a reminder on axes notation in the CPV module:
470 // axis Z goes along the beam
471 // axis X goes across the beam in the module plane
472 // axis Y is a normal to the module plane showing from the IP
473
474 Float_t hitX = zxhit[0];
475 Float_t hitZ =-zxhit[1];
476 Float_t pX = p.Px();
477 Float_t pZ =-p.Pz();
478 Float_t pNorm = p.Py();
a3dfe79c 479 Float_t eloss = kdEdx;
3d402178 480
7b326aac 481// cout << "CPVDigitize: YVK : "<<hitX<<" "<<hitZ<<" | "<<pX<<" "<<pZ<<" "<<pNorm<<endl;
482
fa7cce36 483 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
484 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 485 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 486 eloss *= (1 + kDetR*rnor1) *
fa7cce36 487 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
488 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
489 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 490 Float_t zhit2 = zhit1 + dZY;
491 Float_t xhit2 = xhit1 + dXY;
492
a3dfe79c 493 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
494 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 495
496 Int_t nIter;
497 Float_t zxe[3][5];
498 if (iwht1==iwht2) { // incline 1-wire hit
499 nIter = 2;
500 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 501 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
502 zxe[2][0] = eloss/2;
fa412d9b 503 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 504 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
505 zxe[2][1] = eloss/2;
fa412d9b 506 }
507 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
508 nIter = 3;
509 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 510 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
511 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
512 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 513 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
514 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
515 Float_t dxw1 = xhit1 - xwr13;
516 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 517 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
518 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
519 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 520 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
521 zxe[1][0] = xwht1;
a3dfe79c 522 zxe[2][0] = eloss * egm1;
fa412d9b 523 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
524 zxe[1][1] = xwht2;
a3dfe79c 525 zxe[2][1] = eloss * egm2;
fa412d9b 526 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
527 zxe[1][2] = xwht3;
a3dfe79c 528 zxe[2][2] = eloss * egm3;
fa412d9b 529 }
530 else { // incline 2-wire hit
531 nIter = 2;
a3dfe79c 532 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
533 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 534 Float_t xwr12 = (xwht1 + xwht2) / 2;
535 Float_t dxw1 = xhit1 - xwr12;
536 Float_t dxw2 = xhit2 - xwr12;
537 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
538 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
539 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
540 zxe[1][0] = xwht1;
a3dfe79c 541 zxe[2][0] = eloss * egm1;
fa412d9b 542 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
543 zxe[1][1] = xwht2;
a3dfe79c 544 zxe[2][1] = eloss * egm2;
fa412d9b 545 }
bea63bea 546
fa412d9b 547 // Finite size of ionization region
548
fa7cce36 549 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
550 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 551 Int_t nz3 = (kNgamz+1)/2;
552 Int_t nx3 = (kNgamx+1)/2;
553 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 554 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 555
556 for (Int_t iter=0; iter<nIter; iter++) {
557
558 Float_t zhit = zxe[0][iter];
559 Float_t xhit = zxe[1][iter];
560 Float_t qhit = zxe[2][iter];
fa7cce36 561 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
562 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 563 if ( zcell<=0 || xcell<=0 ||
564 zcell>=nCellZ || xcell>=nCellX) return;
565 Int_t izcell = (Int_t) zcell;
566 Int_t ixcell = (Int_t) xcell;
567 Float_t zc = zcell - izcell - 0.5;
568 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 569 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 570 Int_t kzg = izcell + iz - nz3;
571 if (kzg<=0 || kzg>nCellZ) continue;
572 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 573 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 574 Int_t kxg = ixcell + ix - nx3;
575 if (kxg<=0 || kxg>nCellX) continue;
576 Float_t xg = (Float_t)(ix-nx3) - xc;
577
578 // Now calculate pad response
579 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 580 qpad += kNoise*rnor2;
fa412d9b 581 if (qpad<0) continue;
582
583 // Fill the array with pad response ID and amplitude
3d402178 584 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 585 }
fa412d9b 586 }
fa412d9b 587 }
588}
589
590//____________________________________________________________________________
591Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
592 // ------------------------------------------------------------------------
593 // Calculate the amplitude in one CPV pad using the
594 // cumulative pad response function
595 // Author: Yuri Kharlov (after Serguei Sadovski)
596 // 3 October 2000
597 // ------------------------------------------------------------------------
598
fa7cce36 599 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
600 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
601 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
602 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 603 Double_t amplitude = qhit *
604 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
605 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
606 return (Float_t)amplitude;
7587f5a5 607}
608
fa412d9b 609//____________________________________________________________________________
610Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
611 // ------------------------------------------------------------------------
612 // Cumulative pad response function
613 // It includes several terms from the CF decomposition in electrostatics
614 // Note: this cumulative function is wrong since omits some terms
615 // but the cell amplitude obtained with it is correct because
616 // these omitting terms cancel
617 // Author: Yuri Kharlov (after Serguei Sadovski)
618 // 3 October 2000
619 // ------------------------------------------------------------------------
620
a3dfe79c 621 const Double_t kA=1.0;
622 const Double_t kB=0.7;
fa412d9b 623
624 Double_t r2 = x*x + y*y;
625 Double_t xy = x*y;
626 Double_t cumulPRF = 0;
627 for (Int_t i=0; i<=4; i++) {
a3dfe79c 628 Double_t b1 = (2*i + 1) * kB;
fa412d9b 629 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
630 }
a3dfe79c 631 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 632 return cumulPRF;
633}
7eb9d12d 634