]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Added the conversion electron in the particle type list
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
a3dfe79c 21//---
22// Layout EMC + CPV has name IHEP:
ed4205d8 23// Produces hits for CPV, cumulated hits
24//---
ed4205d8 25//---
5f20d3fb 26//*-- Author: Yves Schutz (SUBATECH)
b2a60966 27
7587f5a5 28
29// --- ROOT system ---
88cb7938 30#include <TParticle.h>
88cb7938 31#include <TVirtualMC.h>
7587f5a5 32
33// --- Standard library ---
34
88cb7938 35
7587f5a5 36// --- AliRoot header files ---
97cee223 37#include "AliPHOSCPVDigit.h"
97cee223 38#include "AliPHOSGeometry.h"
88cb7938 39#include "AliPHOSHit.h"
7b326aac 40#include "AliPHOSQAFloatCheckable.h"
88cb7938 41#include "AliPHOSQAIntCheckable.h"
7b326aac 42#include "AliPHOSQAMeanChecker.h"
88cb7938 43#include "AliPHOSv1.h"
44#include "AliRun.h"
5d12ce38 45#include "AliMC.h"
7587f5a5 46
47ClassImp(AliPHOSv1)
48
bea63bea 49//____________________________________________________________________________
02ab1add 50AliPHOSv1::AliPHOSv1():
51AliPHOSv0()
bea63bea 52{
735e58f1 53 // default ctor: initialze data memebers
54 fQAHitsMul = 0 ;
55 fQAHitsMulB = 0 ;
56 fQATotEner = 0 ;
57 fQATotEnerB = 0 ;
9688c1dd 58
59 fLightYieldMean = 0. ;
60 fIntrinsicPINEfficiency = 0. ;
61 fLightYieldAttenuation = 0. ;
62 fRecalibrationFactor = 0. ;
63 fElectronsPerGeV = 0. ;
27f33ee5 64 fAPDGain = 0. ;
65 fLightFactor = 0. ;
66 fAPDFactor = 0. ;
9688c1dd 67
bea63bea 68}
69
7587f5a5 70//____________________________________________________________________________
71AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 72 AliPHOSv0(name,title)
7587f5a5 73{
5f20d3fb 74 //
ed4205d8 75 // We store hits :
5f20d3fb 76 // - fHits (the "normal" one), which retains the hits associated with
77 // the current primary particle being tracked
78 // (this array is reset after each primary has been tracked).
79 //
fa412d9b 80
037cc66d 81
5f20d3fb 82
83 // We do not want to save in TreeH the raw hits
84 // But save the cumulated hits instead (need to create the branch myself)
85 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 86 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 87
ed4205d8 88 fHits= new TClonesArray("AliPHOSHit",1000) ;
5d12ce38 89 gAlice->GetMCApp()->AddHitList(fHits) ;
5f20d3fb 90
ed4205d8 91 fNhits = 0 ;
5f20d3fb 92
f6d1e5e1 93 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 94
9688c1dd 95 //Photoelectron statistics:
96 // The light yield is a poissonian distribution of the number of
97 // photons created in the PbWo4 crystal, calculated using following formula
98 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
99 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
100 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
101 // APDEfficiency is 0.02655
102 // k_0 is 0.0045 from Valery Antonenko
103 // The number of electrons created in the APD is
104 // NumberOfElectrons = APDGain * LightYield
105 // The APD Gain is 300
106 fLightYieldMean = 47000;
107 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 108 fLightYieldAttenuation = 0.0045 ;
109 fRecalibrationFactor = 13.418/ fLightYieldMean ;
110 fElectronsPerGeV = 2.77e+8 ;
111 fAPDGain = 300. ;
112 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
113 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
114
9688c1dd 115
fa7cce36 116 Int_t nb = GetGeometry()->GetNModules() ;
fa412d9b 117
7b326aac 118 // create checkables
119 fQAHitsMul = new AliPHOSQAIntCheckable("HitsM") ;
120 fQATotEner = new AliPHOSQAFloatCheckable("TotEn") ;
9bc230c0 121 fQAHitsMulB = new TClonesArray("AliPHOSQAIntCheckable",nb) ;
122 fQAHitsMulB->SetOwner() ;
7b326aac 123 fQATotEnerB = new TClonesArray("AliPHOSQAFloatCheckable", nb);
9bc230c0 124 fQATotEnerB->SetOwner() ;
7b326aac 125 char tempo[20] ;
126 Int_t i ;
127 for ( i = 0 ; i < nb ; i++ ) {
128 sprintf(tempo, "HitsMB%d", i+1) ;
129 new( (*fQAHitsMulB)[i]) AliPHOSQAIntCheckable(tempo) ;
130 sprintf(tempo, "TotEnB%d", i+1) ;
131 new( (*fQATotEnerB)[i] ) AliPHOSQAFloatCheckable(tempo) ;
132 }
133
7b326aac 134 AliPHOSQAMeanChecker * hmc = new AliPHOSQAMeanChecker("HitsMul", 100. ,25.) ;
135 AliPHOSQAMeanChecker * emc = new AliPHOSQAMeanChecker("TotEner", 10. ,5.) ;
136 AliPHOSQAMeanChecker * bhmc = new AliPHOSQAMeanChecker("HitsMulB", 100. ,5.) ;
137 AliPHOSQAMeanChecker * bemc = new AliPHOSQAMeanChecker("TotEnerB", 2. ,.5) ;
138
139 // associate checkables and checkers
140 fQAHitsMul->AddChecker(hmc) ;
141 fQATotEner->AddChecker(emc) ;
142 for ( i = 0 ; i < nb ; i++ ) {
29b077b5 143 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]))->AddChecker(bhmc) ;
144 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]))->AddChecker(bemc) ;
7b326aac 145 }
7b7c1533 146
5f20d3fb 147}
148
7587f5a5 149//____________________________________________________________________________
bea63bea 150AliPHOSv1::~AliPHOSv1()
b2a60966 151{
bea63bea 152 // dtor
88cb7938 153 if ( fHits) {
ed4205d8 154 fHits->Delete() ;
155 delete fHits ;
156 fHits = 0 ;
8dfa469d 157 }
9bc230c0 158
9bc230c0 159 if ( fQAHitsMulB ) {
160 fQAHitsMulB->Delete() ;
161 delete fQAHitsMulB ;
162 }
163
164 if ( fQATotEnerB ) {
165 fQATotEnerB->Delete() ;
166 delete fQATotEnerB ;
167 }
168
7587f5a5 169}
170
780fda6d 171//____________________________________________________________________________
172void AliPHOSv1::Copy(AliPHOSv1 & phos)
173{
174 TObject::Copy(phos) ;
175 AliPHOSv0::Copy(phos) ;
176 phos.fLightYieldMean = fLightYieldMean ;
177 phos.fIntrinsicPINEfficiency = fIntrinsicPINEfficiency ;
178 phos.fLightYieldAttenuation = fLightYieldAttenuation ;
179 phos.fRecalibrationFactor = fRecalibrationFactor ;
180 phos.fElectronsPerGeV = fElectronsPerGeV ;
181 phos.fAPDGain = fAPDGain ;
182 phos.fLightFactor = fLightFactor ;
183 phos.fAPDFactor = fAPDFactor ;
184}
185
7587f5a5 186//____________________________________________________________________________
b37750a6 187void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
bea63bea 188{
189 // Add a hit to the hit list.
f6d1e5e1 190 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 191
5f20d3fb 192 Int_t hitCounter ;
bea63bea 193 AliPHOSHit *newHit ;
5f20d3fb 194 AliPHOSHit *curHit ;
195 Bool_t deja = kFALSE ;
fa7cce36 196 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 197
b37750a6 198 newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
bea63bea 199
7854a24a 200 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 201 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 202 if(curHit->GetPrimary() != primary) break ;
203 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 204 if( *curHit == *newHit ) {
f15a01eb 205 *curHit + *newHit ;
ed4205d8 206 deja = kTRUE ;
5f20d3fb 207 }
208 }
209
210 if ( !deja ) {
ed4205d8 211 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 212 // get the block Id number
9688c1dd 213 Int_t relid[4] ;
fa7cce36 214 geom->AbsToRelNumbering(Id, relid) ;
7b326aac 215 // and fill the relevant QA checkable (only if in PbW04)
216 if ( relid[1] == 0 ) {
217 fQAHitsMul->Update(1) ;
29b077b5 218 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[relid[0]-1]))->Update(1) ;
7b326aac 219 }
ed4205d8 220 fNhits++ ;
5f20d3fb 221 }
222
bea63bea 223 delete newHit;
bea63bea 224}
225
7b326aac 226//____________________________________________________________________________
227void AliPHOSv1::FinishPrimary()
228{
229 // called at the end of each track (primary) by AliRun
230 // hits are reset for each new track
231 // accumulate the total hit-multiplicity
232// if ( fQAHitsMul )
233// fQAHitsMul->Update( fHits->GetEntriesFast() ) ;
234
235}
236
237//____________________________________________________________________________
238void AliPHOSv1::FinishEvent()
239{
240 // called at the end of each event by AliRun
241 // accumulate the hit-multiplicity and total energy per block
242 // if the values have been updated check it
88cb7938 243
7b326aac 244
245 if ( fQATotEner ) {
246 if ( fQATotEner->HasChanged() ) {
247 fQATotEner->CheckMe() ;
248 fQATotEner->Reset() ;
249 }
250 }
251
252 Int_t i ;
253 if ( fQAHitsMulB && fQATotEnerB ) {
fa7cce36 254 for (i = 0 ; i < GetGeometry()->GetNModules() ; i++) {
29b077b5 255 AliPHOSQAIntCheckable * ci = static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]) ;
256 AliPHOSQAFloatCheckable* cf = static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]) ;
7b326aac 257 if ( ci->HasChanged() ) {
258 ci->CheckMe() ;
259 ci->Reset() ;
260 }
261 if ( cf->HasChanged() ) {
262 cf->CheckMe() ;
263 cf->Reset() ;
264 }
265 }
266 }
267
268 // check the total multiplicity
269
270 if ( fQAHitsMul ) {
271 if ( fQAHitsMul->HasChanged() ) {
272 fQAHitsMul->CheckMe() ;
273 fQAHitsMul->Reset() ;
274 }
275 }
88cb7938 276
277 AliDetector::FinishEvent();
7b326aac 278}
5f20d3fb 279//____________________________________________________________________________
7587f5a5 280void AliPHOSv1::StepManager(void)
281{
9688c1dd 282 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 283
4f5bbbd4 284 Int_t relid[4] ; // (box, layer, row, column) indices
285 Int_t absid ; // absolute cell ID number
471193a8 286 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 287 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 288 Int_t copy ;
7587f5a5 289
5d12ce38 290 Int_t tracknumber = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
fa7cce36 291 TString name = GetGeometry()->GetName() ;
037cc66d 292
9688c1dd 293 Int_t moduleNumber ;
294
295 if( gMC->CurrentVolID(copy) == gMC->VolId("PCPQ") &&
296 (gMC->IsTrackEntering() ) &&
297 gMC->TrackCharge() != 0) {
f6d1e5e1 298
9688c1dd 299 gMC -> TrackPosition(pos);
f6d1e5e1 300
9688c1dd 301 Float_t xyzm[3], xyzd[3] ;
302 Int_t i;
303 for (i=0; i<3; i++) xyzm[i] = pos[i];
304 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
305
e3daf02c 306 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 307 xyd[0] = xyzd[0];
53e03a1e 308 xyd[1] =-xyzd[2];
309 xyd[2] =-xyzd[1];
f6d1e5e1 310
9688c1dd 311 // Current momentum of the hit's track in the local ref. system
312 TLorentzVector pmom ; //momentum of the particle initiated hit
313 gMC -> TrackMomentum(pmom);
314 Float_t pm[3], pd[3];
315 for (i=0; i<3; i++)
316 pm[i] = pmom[i];
f6d1e5e1 317
9688c1dd 318 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
319 pmom[0] = pd[0];
cf75bc19 320 pmom[1] =-pd[1];
321 pmom[2] =-pd[2];
f6d1e5e1 322
9688c1dd 323 // Digitize the current CPV hit:
324
325 // 1. find pad response and
326 gMC->CurrentVolOffID(3,moduleNumber);
327 moduleNumber--;
328
329 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 330 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 331
9688c1dd 332 Float_t xmean = 0;
333 Float_t zmean = 0;
334 Float_t qsum = 0;
335 Int_t idigit,ndigits;
336
337 // 2. go through the current digit list and sum digits in pads
338
339 ndigits = cpvDigits->GetEntriesFast();
340 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 341 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 342 Float_t x1 = cpvDigit1->GetXpad() ;
343 Float_t z1 = cpvDigit1->GetYpad() ;
344 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 345 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 346 Float_t x2 = cpvDigit2->GetXpad() ;
347 Float_t z2 = cpvDigit2->GetYpad() ;
348 if (x1==x2 && z1==z2) {
349 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
350 cpvDigit2->SetQpad(qsum) ;
351 cpvDigits->RemoveAt(idigit) ;
fa412d9b 352 }
353 }
9688c1dd 354 }
355 cpvDigits->Compress() ;
356
357 // 3. add digits to temporary hit list fTmpHits
358
359 ndigits = cpvDigits->GetEntriesFast();
360 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 361 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 362 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
363 relid[1] =-1 ; // means CPV
364 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
365 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
366
367 // get the absolute Id number
368 GetGeometry()->RelToAbsNumbering(relid, absid) ;
369
370 // add current digit to the temporary hit list
371
471193a8 372 xyzte[3] = gMC->TrackTime() ;
373 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
5a49626b 374 AddHit(fIshunt, -1, tracknumber, absid, xyzte); // -1: No need in primary for CPV
9688c1dd 375
376 if (cpvDigit->GetQpad() > 0.02) {
377 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
378 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
379 qsum += cpvDigit->GetQpad();
fa412d9b 380 }
fa412d9b 381 }
e534a69d 382 if (cpvDigits) {
383 cpvDigits->Delete();
384 delete cpvDigits;
385 cpvDigits=0;
386 }
9688c1dd 387 }
037cc66d 388
9688c1dd 389
390
fa412d9b 391 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
9688c1dd 392
fa412d9b 393 gMC->TrackPosition(pos) ;
471193a8 394 xyzte[0] = pos[0] ;
395 xyzte[1] = pos[1] ;
396 xyzte[2] = pos[2] ;
597e6309 397
9688c1dd 398 Float_t global[3], local[3] ;
399 global[0] = pos[0] ;
400 global[1] = pos[1] ;
401 global[2] = pos[2] ;
402 Float_t lostenergy = gMC->Edep();
f6d1e5e1 403
404 //Put in the TreeK particle entering PHOS and all its parents
405 if ( gMC->IsTrackEntering() ){
406 Float_t xyzd[3] ;
471193a8 407 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
5a49626b 408 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.001){ //Entered close to forward surface
f6d1e5e1 409 TParticle * part = 0 ;
5d12ce38 410 Int_t parent = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
f6d1e5e1 411 while ( parent != -1 ) {
5d12ce38 412 part = gAlice->GetMCApp()->Particle(parent) ;
f6d1e5e1 413 part->SetBit(kKeepBit);
414 parent = part->GetFirstMother() ;
415 }
416 }
417 }
9688c1dd 418 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 419 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 420
9688c1dd 421 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 422
9688c1dd 423 Int_t strip ;
424 gMC->CurrentVolOffID(3, strip);
425 Int_t cell ;
426 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 427
9688c1dd 428 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
429 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 430
9688c1dd 431 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
432 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 433
9688c1dd 434 gMC->Gmtod(global, local, 1) ;
435
471193a8 436 //Calculates the light yield, the number of photons produced in the
9688c1dd 437 //crystal
27f33ee5 438 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 439 exp(-fLightYieldAttenuation *
440 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
441 ) ;
471193a8 442
9688c1dd 443 //Calculates de energy deposited in the crystal
471193a8 444 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 445
5a49626b 446 Int_t primary =-1 ;
447 if(fIshunt == 1)
5d12ce38 448 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
5a49626b 449 else if(fIshunt == 2){
5d12ce38 450 primary = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
451 TParticle * part = gAlice->GetMCApp()->Particle(primary) ;
5a49626b 452 while ( !part->TestBit(kKeepBit) ) {
453 primary = part->GetFirstMother() ;
454 if(primary == -1) break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
455 //surface of the crystal. In this case it may have no primary at all.
456 //We can not easily separate this case from the case when this is part of the shower,
457 //developed in the neighboring crystal.
5d12ce38 458 part = gAlice->GetMCApp()->Particle(primary) ;
5a49626b 459 }
460 }
461
462
9688c1dd 463 // add current hit to the hit list
21cd0c07 464 // Info("StepManager","%d %d", primary, tracknumber) ;
471193a8 465 AddHit(fIshunt, primary,tracknumber, absid, xyzte);
9688c1dd 466
94de8339 467 // fill the relevant QA Checkables
471193a8 468 fQATotEner->Update( xyzte[4] ) ; // total energy in PHOS
469 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[moduleNumber-1]))->Update( xyzte[4] ) ; // energy in this block
f6d1e5e1 470
fa412d9b 471 } // there is deposited energy
472 } // we are inside a PHOS Xtal
f6d1e5e1 473
fa412d9b 474}
475
476//____________________________________________________________________________
90cceaf6 477void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 478{
479 // ------------------------------------------------------------------------
480 // Digitize one CPV hit:
481 // On input take exact 4-momentum p and position zxhit of the hit,
482 // find the pad response around this hit and
483 // put the amplitudes in the pads into array digits
484 //
485 // Author: Yuri Kharlov (after Serguei Sadovsky)
486 // 2 October 2000
487 // ------------------------------------------------------------------------
488
fa7cce36 489 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 490 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
491 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
492 const Int_t kNgamz = 5; // Ionization size in Z
493 const Int_t kNgamx = 9; // Ionization size in Phi
494 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 495
496 Float_t rnor1,rnor2;
497
498 // Just a reminder on axes notation in the CPV module:
499 // axis Z goes along the beam
500 // axis X goes across the beam in the module plane
501 // axis Y is a normal to the module plane showing from the IP
502
503 Float_t hitX = zxhit[0];
504 Float_t hitZ =-zxhit[1];
505 Float_t pX = p.Px();
506 Float_t pZ =-p.Pz();
507 Float_t pNorm = p.Py();
a3dfe79c 508 Float_t eloss = kdEdx;
3d402178 509
21cd0c07 510//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 511
fa7cce36 512 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
513 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 514 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 515 eloss *= (1 + kDetR*rnor1) *
fa7cce36 516 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
517 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
518 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 519 Float_t zhit2 = zhit1 + dZY;
520 Float_t xhit2 = xhit1 + dXY;
521
a3dfe79c 522 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
523 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 524
525 Int_t nIter;
526 Float_t zxe[3][5];
527 if (iwht1==iwht2) { // incline 1-wire hit
528 nIter = 2;
529 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 530 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
531 zxe[2][0] = eloss/2;
fa412d9b 532 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 533 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
534 zxe[2][1] = eloss/2;
fa412d9b 535 }
536 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
537 nIter = 3;
538 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 539 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
540 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
541 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 542 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
543 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
544 Float_t dxw1 = xhit1 - xwr13;
545 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 546 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
547 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
548 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 549 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
550 zxe[1][0] = xwht1;
a3dfe79c 551 zxe[2][0] = eloss * egm1;
fa412d9b 552 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
553 zxe[1][1] = xwht2;
a3dfe79c 554 zxe[2][1] = eloss * egm2;
fa412d9b 555 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
556 zxe[1][2] = xwht3;
a3dfe79c 557 zxe[2][2] = eloss * egm3;
fa412d9b 558 }
559 else { // incline 2-wire hit
560 nIter = 2;
a3dfe79c 561 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
562 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 563 Float_t xwr12 = (xwht1 + xwht2) / 2;
564 Float_t dxw1 = xhit1 - xwr12;
565 Float_t dxw2 = xhit2 - xwr12;
566 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
567 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
568 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
569 zxe[1][0] = xwht1;
a3dfe79c 570 zxe[2][0] = eloss * egm1;
fa412d9b 571 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
572 zxe[1][1] = xwht2;
a3dfe79c 573 zxe[2][1] = eloss * egm2;
fa412d9b 574 }
bea63bea 575
fa412d9b 576 // Finite size of ionization region
577
fa7cce36 578 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
579 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 580 Int_t nz3 = (kNgamz+1)/2;
581 Int_t nx3 = (kNgamx+1)/2;
582 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 583 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 584
585 for (Int_t iter=0; iter<nIter; iter++) {
586
587 Float_t zhit = zxe[0][iter];
588 Float_t xhit = zxe[1][iter];
589 Float_t qhit = zxe[2][iter];
fa7cce36 590 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
591 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 592 if ( zcell<=0 || xcell<=0 ||
593 zcell>=nCellZ || xcell>=nCellX) return;
594 Int_t izcell = (Int_t) zcell;
595 Int_t ixcell = (Int_t) xcell;
596 Float_t zc = zcell - izcell - 0.5;
597 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 598 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 599 Int_t kzg = izcell + iz - nz3;
600 if (kzg<=0 || kzg>nCellZ) continue;
601 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 602 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 603 Int_t kxg = ixcell + ix - nx3;
604 if (kxg<=0 || kxg>nCellX) continue;
605 Float_t xg = (Float_t)(ix-nx3) - xc;
606
607 // Now calculate pad response
608 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 609 qpad += kNoise*rnor2;
fa412d9b 610 if (qpad<0) continue;
611
612 // Fill the array with pad response ID and amplitude
3d402178 613 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 614 }
fa412d9b 615 }
fa412d9b 616 }
617}
618
619//____________________________________________________________________________
620Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
621 // ------------------------------------------------------------------------
622 // Calculate the amplitude in one CPV pad using the
623 // cumulative pad response function
624 // Author: Yuri Kharlov (after Serguei Sadovski)
625 // 3 October 2000
626 // ------------------------------------------------------------------------
627
fa7cce36 628 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
629 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
630 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
631 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 632 Double_t amplitude = qhit *
633 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
634 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
635 return (Float_t)amplitude;
7587f5a5 636}
637
fa412d9b 638//____________________________________________________________________________
639Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
640 // ------------------------------------------------------------------------
641 // Cumulative pad response function
642 // It includes several terms from the CF decomposition in electrostatics
643 // Note: this cumulative function is wrong since omits some terms
644 // but the cell amplitude obtained with it is correct because
645 // these omitting terms cancel
646 // Author: Yuri Kharlov (after Serguei Sadovski)
647 // 3 October 2000
648 // ------------------------------------------------------------------------
649
a3dfe79c 650 const Double_t kA=1.0;
651 const Double_t kB=0.7;
fa412d9b 652
653 Double_t r2 = x*x + y*y;
654 Double_t xy = x*y;
655 Double_t cumulPRF = 0;
656 for (Int_t i=0; i<=4; i++) {
a3dfe79c 657 Double_t b1 = (2*i + 1) * kB;
fa412d9b 658 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
659 }
a3dfe79c 660 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 661 return cumulPRF;
662}
7eb9d12d 663