]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Adding MUON HLT code to the repository.
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
702ab87e 18/* History of cvs commits:
19 *
20 * $Log$
21 */
22
7587f5a5 23//_________________________________________________________________________
5f20d3fb 24// Implementation version v1 of PHOS Manager class
a3dfe79c 25//---
a3dfe79c 26//---
27// Layout EMC + CPV has name IHEP:
ed4205d8 28// Produces hits for CPV, cumulated hits
29//---
ed4205d8 30//---
5f20d3fb 31//*-- Author: Yves Schutz (SUBATECH)
b2a60966 32
7587f5a5 33
34// --- ROOT system ---
88cb7938 35#include <TParticle.h>
88cb7938 36#include <TVirtualMC.h>
7587f5a5 37
38// --- Standard library ---
39
88cb7938 40
7587f5a5 41// --- AliRoot header files ---
97cee223 42#include "AliPHOSCPVDigit.h"
97cee223 43#include "AliPHOSGeometry.h"
88cb7938 44#include "AliPHOSHit.h"
88cb7938 45#include "AliPHOSv1.h"
46#include "AliRun.h"
5d12ce38 47#include "AliMC.h"
7587f5a5 48
49ClassImp(AliPHOSv1)
50
bea63bea 51//____________________________________________________________________________
02ab1add 52AliPHOSv1::AliPHOSv1():
53AliPHOSv0()
bea63bea 54{
9688c1dd 55
56 fLightYieldMean = 0. ;
57 fIntrinsicPINEfficiency = 0. ;
58 fLightYieldAttenuation = 0. ;
59 fRecalibrationFactor = 0. ;
60 fElectronsPerGeV = 0. ;
27f33ee5 61 fAPDGain = 0. ;
62 fLightFactor = 0. ;
63 fAPDFactor = 0. ;
9688c1dd 64
bea63bea 65}
66
7587f5a5 67//____________________________________________________________________________
68AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 69 AliPHOSv0(name,title)
7587f5a5 70{
5f20d3fb 71 //
ed4205d8 72 // We store hits :
5f20d3fb 73 // - fHits (the "normal" one), which retains the hits associated with
74 // the current primary particle being tracked
75 // (this array is reset after each primary has been tracked).
76 //
fa412d9b 77
037cc66d 78
5f20d3fb 79
80 // We do not want to save in TreeH the raw hits
81 // But save the cumulated hits instead (need to create the branch myself)
82 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 83 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 84
ed4205d8 85 fHits= new TClonesArray("AliPHOSHit",1000) ;
5d12ce38 86 gAlice->GetMCApp()->AddHitList(fHits) ;
5f20d3fb 87
ed4205d8 88 fNhits = 0 ;
5f20d3fb 89
f6d1e5e1 90 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 91
9688c1dd 92 //Photoelectron statistics:
93 // The light yield is a poissonian distribution of the number of
94 // photons created in the PbWo4 crystal, calculated using following formula
95 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
96 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
97 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
98 // APDEfficiency is 0.02655
99 // k_0 is 0.0045 from Valery Antonenko
100 // The number of electrons created in the APD is
101 // NumberOfElectrons = APDGain * LightYield
102 // The APD Gain is 300
103 fLightYieldMean = 47000;
104 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 105 fLightYieldAttenuation = 0.0045 ;
106 fRecalibrationFactor = 13.418/ fLightYieldMean ;
107 fElectronsPerGeV = 2.77e+8 ;
108 fAPDGain = 300. ;
109 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
184569b0 110 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
5f20d3fb 111}
112
7587f5a5 113//____________________________________________________________________________
bea63bea 114AliPHOSv1::~AliPHOSv1()
b2a60966 115{
bea63bea 116 // dtor
88cb7938 117 if ( fHits) {
ed4205d8 118 fHits->Delete() ;
119 delete fHits ;
120 fHits = 0 ;
184569b0 121 }
7587f5a5 122}
123
780fda6d 124//____________________________________________________________________________
702ab87e 125void AliPHOSv1::Copy(TObject & base)const
780fda6d 126{
702ab87e 127 TObject::Copy(base) ;
128 AliPHOSv0::Copy(base) ;
129 AliPHOSv1 &phos = static_cast<AliPHOSv1 &>(base);
780fda6d 130 phos.fLightYieldMean = fLightYieldMean ;
131 phos.fIntrinsicPINEfficiency = fIntrinsicPINEfficiency ;
132 phos.fLightYieldAttenuation = fLightYieldAttenuation ;
133 phos.fRecalibrationFactor = fRecalibrationFactor ;
134 phos.fElectronsPerGeV = fElectronsPerGeV ;
135 phos.fAPDGain = fAPDGain ;
136 phos.fLightFactor = fLightFactor ;
137 phos.fAPDFactor = fAPDFactor ;
138}
139
7587f5a5 140//____________________________________________________________________________
2af5445a 141void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t Id, Float_t * hits)
bea63bea 142{
143 // Add a hit to the hit list.
f6d1e5e1 144 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 145
5f20d3fb 146 Int_t hitCounter ;
bea63bea 147 AliPHOSHit *newHit ;
5f20d3fb 148 AliPHOSHit *curHit ;
149 Bool_t deja = kFALSE ;
fa7cce36 150 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 151
2af5445a 152 newHit = new AliPHOSHit(shunt, primary, Id, hits) ;
bea63bea 153
7854a24a 154 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 155 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 156 if(curHit->GetPrimary() != primary) break ;
157 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 158 if( *curHit == *newHit ) {
f15a01eb 159 *curHit + *newHit ;
ed4205d8 160 deja = kTRUE ;
5f20d3fb 161 }
162 }
163
164 if ( !deja ) {
ed4205d8 165 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 166 // get the block Id number
9688c1dd 167 Int_t relid[4] ;
fa7cce36 168 geom->AbsToRelNumbering(Id, relid) ;
184569b0 169
ed4205d8 170 fNhits++ ;
5f20d3fb 171 }
184569b0 172
bea63bea 173 delete newHit;
bea63bea 174}
175
7b326aac 176//____________________________________________________________________________
177void AliPHOSv1::FinishPrimary()
178{
179 // called at the end of each track (primary) by AliRun
180 // hits are reset for each new track
181 // accumulate the total hit-multiplicity
7b326aac 182
183}
184
185//____________________________________________________________________________
186void AliPHOSv1::FinishEvent()
187{
188 // called at the end of each event by AliRun
189 // accumulate the hit-multiplicity and total energy per block
190 // if the values have been updated check it
88cb7938 191
88cb7938 192 AliDetector::FinishEvent();
7b326aac 193}
5f20d3fb 194//____________________________________________________________________________
7587f5a5 195void AliPHOSv1::StepManager(void)
196{
9688c1dd 197 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 198
4f5bbbd4 199 Int_t relid[4] ; // (box, layer, row, column) indices
200 Int_t absid ; // absolute cell ID number
471193a8 201 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 202 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 203 Int_t copy ;
7587f5a5 204
fa7cce36 205 TString name = GetGeometry()->GetName() ;
037cc66d 206
9688c1dd 207 Int_t moduleNumber ;
208
d6fb41ac 209 static Int_t idPCPQ = gMC->VolId("PCPQ");
210 if( gMC->CurrentVolID(copy) == idPCPQ &&
9688c1dd 211 (gMC->IsTrackEntering() ) &&
212 gMC->TrackCharge() != 0) {
f6d1e5e1 213
9688c1dd 214 gMC -> TrackPosition(pos);
f6d1e5e1 215
9688c1dd 216 Float_t xyzm[3], xyzd[3] ;
217 Int_t i;
218 for (i=0; i<3; i++) xyzm[i] = pos[i];
219 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
220
e3daf02c 221 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 222 xyd[0] = xyzd[0];
53e03a1e 223 xyd[1] =-xyzd[2];
224 xyd[2] =-xyzd[1];
f6d1e5e1 225
9688c1dd 226 // Current momentum of the hit's track in the local ref. system
227 TLorentzVector pmom ; //momentum of the particle initiated hit
228 gMC -> TrackMomentum(pmom);
229 Float_t pm[3], pd[3];
230 for (i=0; i<3; i++)
231 pm[i] = pmom[i];
f6d1e5e1 232
9688c1dd 233 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
234 pmom[0] = pd[0];
cf75bc19 235 pmom[1] =-pd[1];
236 pmom[2] =-pd[2];
f6d1e5e1 237
9688c1dd 238 // Digitize the current CPV hit:
239
240 // 1. find pad response and
241 gMC->CurrentVolOffID(3,moduleNumber);
242 moduleNumber--;
243
244 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 245 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 246
9688c1dd 247 Float_t xmean = 0;
248 Float_t zmean = 0;
249 Float_t qsum = 0;
250 Int_t idigit,ndigits;
251
252 // 2. go through the current digit list and sum digits in pads
253
254 ndigits = cpvDigits->GetEntriesFast();
255 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 256 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 257 Float_t x1 = cpvDigit1->GetXpad() ;
258 Float_t z1 = cpvDigit1->GetYpad() ;
259 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 260 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 261 Float_t x2 = cpvDigit2->GetXpad() ;
262 Float_t z2 = cpvDigit2->GetYpad() ;
263 if (x1==x2 && z1==z2) {
264 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
265 cpvDigit2->SetQpad(qsum) ;
266 cpvDigits->RemoveAt(idigit) ;
fa412d9b 267 }
268 }
9688c1dd 269 }
270 cpvDigits->Compress() ;
271
272 // 3. add digits to temporary hit list fTmpHits
273
274 ndigits = cpvDigits->GetEntriesFast();
275 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 276 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 277 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
278 relid[1] =-1 ; // means CPV
279 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
280 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
281
282 // get the absolute Id number
283 GetGeometry()->RelToAbsNumbering(relid, absid) ;
284
285 // add current digit to the temporary hit list
286
471193a8 287 xyzte[3] = gMC->TrackTime() ;
288 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
2af5445a 289
290 Int_t primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
291 AddHit(fIshunt, primary, absid, xyzte);
9688c1dd 292
293 if (cpvDigit->GetQpad() > 0.02) {
294 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
295 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
296 qsum += cpvDigit->GetQpad();
fa412d9b 297 }
fa412d9b 298 }
e534a69d 299 if (cpvDigits) {
300 cpvDigits->Delete();
301 delete cpvDigits;
302 cpvDigits=0;
303 }
9688c1dd 304 }
037cc66d 305
9688c1dd 306
d6fb41ac 307 static Int_t idPXTL = gMC->VolId("PXTL");
308 if(gMC->CurrentVolID(copy) == idPXTL ) { // We are inside a PBWO crystal
9688c1dd 309
fa412d9b 310 gMC->TrackPosition(pos) ;
471193a8 311 xyzte[0] = pos[0] ;
312 xyzte[1] = pos[1] ;
313 xyzte[2] = pos[2] ;
597e6309 314
9688c1dd 315 Float_t global[3], local[3] ;
316 global[0] = pos[0] ;
317 global[1] = pos[1] ;
318 global[2] = pos[2] ;
319 Float_t lostenergy = gMC->Edep();
f6d1e5e1 320
321 //Put in the TreeK particle entering PHOS and all its parents
322 if ( gMC->IsTrackEntering() ){
323 Float_t xyzd[3] ;
471193a8 324 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
97c3e101 325 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.1){ //Entered close to forward surface
5d12ce38 326 Int_t parent = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
81d4c3d5 327 TParticle * part = gAlice->GetMCApp()->Particle(parent) ;
328 Float_t vert[3],vertd[3] ;
329 vert[0]=part->Vx() ;
330 vert[1]=part->Vy() ;
331 vert[2]=part->Vz() ;
332 gMC -> Gmtod (vert, vertd, 1); // transform coordinate from master to daughter system
2af5445a 333 if(vertd[1]<-GetGeometry()->GetCrystalSize(1)/2.-0.1){ //Particle is created in foront of PHOS
334 //0.1 to get rid of numerical errors
335 part->SetBit(kKeepBit);
81d4c3d5 336 while ( parent != -1 ) {
337 part = gAlice->GetMCApp()->Particle(parent) ;
81d4c3d5 338 part->SetBit(kKeepBit);
339 parent = part->GetFirstMother() ;
340 }
f6d1e5e1 341 }
342 }
343 }
9688c1dd 344 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 345 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 346
9688c1dd 347 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 348
9688c1dd 349 Int_t strip ;
350 gMC->CurrentVolOffID(3, strip);
351 Int_t cell ;
352 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 353
9688c1dd 354 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
355 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 356
9688c1dd 357 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
358 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 359
9688c1dd 360 gMC->Gmtod(global, local, 1) ;
361
471193a8 362 //Calculates the light yield, the number of photons produced in the
9688c1dd 363 //crystal
27f33ee5 364 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 365 exp(-fLightYieldAttenuation *
366 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
367 ) ;
471193a8 368
9688c1dd 369 //Calculates de energy deposited in the crystal
471193a8 370 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 371
2af5445a 372 Int_t primary ;
373 if(fIshunt == 2){
374 primary = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
375 TParticle * part = gAlice->GetMCApp()->Particle(primary) ;
376 while ( !part->TestBit(kKeepBit) ) {
377 primary = part->GetFirstMother() ;
378 if(primary == -1){
379 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
380 break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
381 //surface of the crystal. In this case it may have no primary at all.
382 //We can not easily separate this case from the case when this is part of the shower,
383 //developed in the neighboring crystal.
384 }
385 part = gAlice->GetMCApp()->Particle(primary) ;
386 }
5a49626b 387 }
2af5445a 388 else
389 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
5a49626b 390
2af5445a 391
392
9688c1dd 393 // add current hit to the hit list
21cd0c07 394 // Info("StepManager","%d %d", primary, tracknumber) ;
2af5445a 395 AddHit(fIshunt, primary, absid, xyzte);
184569b0 396
fa412d9b 397 } // there is deposited energy
398 } // we are inside a PHOS Xtal
f6d1e5e1 399
fa412d9b 400}
401
402//____________________________________________________________________________
90cceaf6 403void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 404{
405 // ------------------------------------------------------------------------
406 // Digitize one CPV hit:
407 // On input take exact 4-momentum p and position zxhit of the hit,
408 // find the pad response around this hit and
409 // put the amplitudes in the pads into array digits
410 //
411 // Author: Yuri Kharlov (after Serguei Sadovsky)
412 // 2 October 2000
413 // ------------------------------------------------------------------------
414
fa7cce36 415 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 416 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
417 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
418 const Int_t kNgamz = 5; // Ionization size in Z
419 const Int_t kNgamx = 9; // Ionization size in Phi
420 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 421
422 Float_t rnor1,rnor2;
423
424 // Just a reminder on axes notation in the CPV module:
425 // axis Z goes along the beam
426 // axis X goes across the beam in the module plane
427 // axis Y is a normal to the module plane showing from the IP
428
429 Float_t hitX = zxhit[0];
430 Float_t hitZ =-zxhit[1];
431 Float_t pX = p.Px();
432 Float_t pZ =-p.Pz();
433 Float_t pNorm = p.Py();
a3dfe79c 434 Float_t eloss = kdEdx;
3d402178 435
21cd0c07 436//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 437
fa7cce36 438 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
439 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 440 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 441 eloss *= (1 + kDetR*rnor1) *
fa7cce36 442 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
443 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
444 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 445 Float_t zhit2 = zhit1 + dZY;
446 Float_t xhit2 = xhit1 + dXY;
447
a3dfe79c 448 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
449 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 450
451 Int_t nIter;
452 Float_t zxe[3][5];
453 if (iwht1==iwht2) { // incline 1-wire hit
454 nIter = 2;
455 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 456 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
457 zxe[2][0] = eloss/2;
fa412d9b 458 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 459 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
460 zxe[2][1] = eloss/2;
fa412d9b 461 }
462 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
463 nIter = 3;
464 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 465 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
466 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
467 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 468 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
469 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
470 Float_t dxw1 = xhit1 - xwr13;
471 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 472 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
473 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
474 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 475 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
476 zxe[1][0] = xwht1;
a3dfe79c 477 zxe[2][0] = eloss * egm1;
fa412d9b 478 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
479 zxe[1][1] = xwht2;
a3dfe79c 480 zxe[2][1] = eloss * egm2;
fa412d9b 481 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
482 zxe[1][2] = xwht3;
a3dfe79c 483 zxe[2][2] = eloss * egm3;
fa412d9b 484 }
485 else { // incline 2-wire hit
486 nIter = 2;
a3dfe79c 487 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
488 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 489 Float_t xwr12 = (xwht1 + xwht2) / 2;
490 Float_t dxw1 = xhit1 - xwr12;
491 Float_t dxw2 = xhit2 - xwr12;
492 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
493 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
494 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
495 zxe[1][0] = xwht1;
a3dfe79c 496 zxe[2][0] = eloss * egm1;
fa412d9b 497 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
498 zxe[1][1] = xwht2;
a3dfe79c 499 zxe[2][1] = eloss * egm2;
fa412d9b 500 }
bea63bea 501
fa412d9b 502 // Finite size of ionization region
503
fa7cce36 504 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
505 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 506 Int_t nz3 = (kNgamz+1)/2;
507 Int_t nx3 = (kNgamx+1)/2;
508 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 509 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 510
511 for (Int_t iter=0; iter<nIter; iter++) {
512
513 Float_t zhit = zxe[0][iter];
514 Float_t xhit = zxe[1][iter];
515 Float_t qhit = zxe[2][iter];
fa7cce36 516 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
517 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 518 if ( zcell<=0 || xcell<=0 ||
519 zcell>=nCellZ || xcell>=nCellX) return;
520 Int_t izcell = (Int_t) zcell;
521 Int_t ixcell = (Int_t) xcell;
522 Float_t zc = zcell - izcell - 0.5;
523 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 524 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 525 Int_t kzg = izcell + iz - nz3;
526 if (kzg<=0 || kzg>nCellZ) continue;
527 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 528 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 529 Int_t kxg = ixcell + ix - nx3;
530 if (kxg<=0 || kxg>nCellX) continue;
531 Float_t xg = (Float_t)(ix-nx3) - xc;
532
533 // Now calculate pad response
534 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 535 qpad += kNoise*rnor2;
fa412d9b 536 if (qpad<0) continue;
537
538 // Fill the array with pad response ID and amplitude
3d402178 539 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 540 }
fa412d9b 541 }
fa412d9b 542 }
543}
544
545//____________________________________________________________________________
546Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
547 // ------------------------------------------------------------------------
548 // Calculate the amplitude in one CPV pad using the
549 // cumulative pad response function
550 // Author: Yuri Kharlov (after Serguei Sadovski)
551 // 3 October 2000
552 // ------------------------------------------------------------------------
553
fa7cce36 554 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
555 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
556 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
557 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 558 Double_t amplitude = qhit *
559 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
560 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
561 return (Float_t)amplitude;
7587f5a5 562}
563
fa412d9b 564//____________________________________________________________________________
565Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
566 // ------------------------------------------------------------------------
567 // Cumulative pad response function
568 // It includes several terms from the CF decomposition in electrostatics
569 // Note: this cumulative function is wrong since omits some terms
570 // but the cell amplitude obtained with it is correct because
571 // these omitting terms cancel
572 // Author: Yuri Kharlov (after Serguei Sadovski)
573 // 3 October 2000
574 // ------------------------------------------------------------------------
575
a3dfe79c 576 const Double_t kA=1.0;
577 const Double_t kB=0.7;
fa412d9b 578
579 Double_t r2 = x*x + y*y;
580 Double_t xy = x*y;
581 Double_t cumulPRF = 0;
582 for (Int_t i=0; i<=4; i++) {
a3dfe79c 583 Double_t b1 = (2*i + 1) * kB;
fa412d9b 584 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
585 }
a3dfe79c 586 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 587 return cumulPRF;
588}
7eb9d12d 589