Removed the QA checker mechanism
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
a3dfe79c 21//---
22// Layout EMC + CPV has name IHEP:
ed4205d8 23// Produces hits for CPV, cumulated hits
24//---
ed4205d8 25//---
5f20d3fb 26//*-- Author: Yves Schutz (SUBATECH)
b2a60966 27
7587f5a5 28
29// --- ROOT system ---
88cb7938 30#include <TParticle.h>
88cb7938 31#include <TVirtualMC.h>
7587f5a5 32
33// --- Standard library ---
34
88cb7938 35
7587f5a5 36// --- AliRoot header files ---
97cee223 37#include "AliPHOSCPVDigit.h"
97cee223 38#include "AliPHOSGeometry.h"
88cb7938 39#include "AliPHOSHit.h"
88cb7938 40#include "AliPHOSv1.h"
41#include "AliRun.h"
5d12ce38 42#include "AliMC.h"
7587f5a5 43
44ClassImp(AliPHOSv1)
45
46//____________________________________________________________________________
02ab1add 47AliPHOSv1::AliPHOSv1():
48AliPHOSv0()
bea63bea 49{
9688c1dd 50
51 fLightYieldMean = 0. ;
52 fIntrinsicPINEfficiency = 0. ;
53 fLightYieldAttenuation = 0. ;
54 fRecalibrationFactor = 0. ;
55 fElectronsPerGeV = 0. ;
27f33ee5 56 fAPDGain = 0. ;
57 fLightFactor = 0. ;
58 fAPDFactor = 0. ;
9688c1dd 59
bea63bea 60}
61
62//____________________________________________________________________________
7587f5a5 63AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 64 AliPHOSv0(name,title)
7587f5a5 65{
5f20d3fb 66 //
ed4205d8 67 // We store hits :
5f20d3fb 68 // - fHits (the "normal" one), which retains the hits associated with
69 // the current primary particle being tracked
70 // (this array is reset after each primary has been tracked).
71 //
fa412d9b 72
037cc66d 73
5f20d3fb 74
75 // We do not want to save in TreeH the raw hits
76 // But save the cumulated hits instead (need to create the branch myself)
77 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 78 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 79
ed4205d8 80 fHits= new TClonesArray("AliPHOSHit",1000) ;
5d12ce38 81 gAlice->GetMCApp()->AddHitList(fHits) ;
5f20d3fb 82
ed4205d8 83 fNhits = 0 ;
5f20d3fb 84
f6d1e5e1 85 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 86
9688c1dd 87 //Photoelectron statistics:
88 // The light yield is a poissonian distribution of the number of
89 // photons created in the PbWo4 crystal, calculated using following formula
90 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
91 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
92 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
93 // APDEfficiency is 0.02655
94 // k_0 is 0.0045 from Valery Antonenko
95 // The number of electrons created in the APD is
96 // NumberOfElectrons = APDGain * LightYield
97 // The APD Gain is 300
98 fLightYieldMean = 47000;
99 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 100 fLightYieldAttenuation = 0.0045 ;
101 fRecalibrationFactor = 13.418/ fLightYieldMean ;
102 fElectronsPerGeV = 2.77e+8 ;
103 fAPDGain = 300. ;
104 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
184569b0 105 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
5f20d3fb 106}
107
108//____________________________________________________________________________
bea63bea 109AliPHOSv1::~AliPHOSv1()
b2a60966 110{
bea63bea 111 // dtor
88cb7938 112 if ( fHits) {
ed4205d8 113 fHits->Delete() ;
114 delete fHits ;
115 fHits = 0 ;
184569b0 116 }
7587f5a5 117}
118
119//____________________________________________________________________________
780fda6d 120void AliPHOSv1::Copy(AliPHOSv1 & phos)
121{
122 TObject::Copy(phos) ;
123 AliPHOSv0::Copy(phos) ;
124 phos.fLightYieldMean = fLightYieldMean ;
125 phos.fIntrinsicPINEfficiency = fIntrinsicPINEfficiency ;
126 phos.fLightYieldAttenuation = fLightYieldAttenuation ;
127 phos.fRecalibrationFactor = fRecalibrationFactor ;
128 phos.fElectronsPerGeV = fElectronsPerGeV ;
129 phos.fAPDGain = fAPDGain ;
130 phos.fLightFactor = fLightFactor ;
131 phos.fAPDFactor = fAPDFactor ;
132}
133
134//____________________________________________________________________________
2af5445a 135void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t Id, Float_t * hits)
bea63bea 136{
137 // Add a hit to the hit list.
f6d1e5e1 138 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 139
5f20d3fb 140 Int_t hitCounter ;
bea63bea 141 AliPHOSHit *newHit ;
5f20d3fb 142 AliPHOSHit *curHit ;
143 Bool_t deja = kFALSE ;
fa7cce36 144 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 145
2af5445a 146 newHit = new AliPHOSHit(shunt, primary, Id, hits) ;
bea63bea 147
7854a24a 148 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 149 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 150 if(curHit->GetPrimary() != primary) break ;
151 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 152 if( *curHit == *newHit ) {
f15a01eb 153 *curHit + *newHit ;
ed4205d8 154 deja = kTRUE ;
5f20d3fb 155 }
156 }
157
158 if ( !deja ) {
ed4205d8 159 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 160 // get the block Id number
9688c1dd 161 Int_t relid[4] ;
fa7cce36 162 geom->AbsToRelNumbering(Id, relid) ;
184569b0 163
ed4205d8 164 fNhits++ ;
5f20d3fb 165 }
184569b0 166
bea63bea 167 delete newHit;
bea63bea 168}
169
ed4205d8 170//____________________________________________________________________________
7b326aac 171void AliPHOSv1::FinishPrimary()
172{
173 // called at the end of each track (primary) by AliRun
174 // hits are reset for each new track
175 // accumulate the total hit-multiplicity
7b326aac 176
177}
178
179//____________________________________________________________________________
180void AliPHOSv1::FinishEvent()
181{
182 // called at the end of each event by AliRun
183 // accumulate the hit-multiplicity and total energy per block
184 // if the values have been updated check it
88cb7938 185
88cb7938 186 AliDetector::FinishEvent();
7b326aac 187}
7b326aac 188//____________________________________________________________________________
7587f5a5 189void AliPHOSv1::StepManager(void)
190{
9688c1dd 191 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 192
4f5bbbd4 193 Int_t relid[4] ; // (box, layer, row, column) indices
194 Int_t absid ; // absolute cell ID number
471193a8 195 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 196 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 197 Int_t copy ;
7587f5a5 198
fa7cce36 199 TString name = GetGeometry()->GetName() ;
037cc66d 200
9688c1dd 201 Int_t moduleNumber ;
202
d6fb41ac 203 static Int_t idPCPQ = gMC->VolId("PCPQ");
204 if( gMC->CurrentVolID(copy) == idPCPQ &&
9688c1dd 205 (gMC->IsTrackEntering() ) &&
206 gMC->TrackCharge() != 0) {
f6d1e5e1 207
9688c1dd 208 gMC -> TrackPosition(pos);
f6d1e5e1 209
9688c1dd 210 Float_t xyzm[3], xyzd[3] ;
211 Int_t i;
212 for (i=0; i<3; i++) xyzm[i] = pos[i];
213 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
214
e3daf02c 215 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 216 xyd[0] = xyzd[0];
53e03a1e 217 xyd[1] =-xyzd[2];
218 xyd[2] =-xyzd[1];
f6d1e5e1 219
9688c1dd 220 // Current momentum of the hit's track in the local ref. system
221 TLorentzVector pmom ; //momentum of the particle initiated hit
222 gMC -> TrackMomentum(pmom);
223 Float_t pm[3], pd[3];
224 for (i=0; i<3; i++)
225 pm[i] = pmom[i];
f6d1e5e1 226
9688c1dd 227 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
228 pmom[0] = pd[0];
cf75bc19 229 pmom[1] =-pd[1];
230 pmom[2] =-pd[2];
f6d1e5e1 231
9688c1dd 232 // Digitize the current CPV hit:
233
234 // 1. find pad response and
235 gMC->CurrentVolOffID(3,moduleNumber);
236 moduleNumber--;
237
238 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 239 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 240
9688c1dd 241 Float_t xmean = 0;
242 Float_t zmean = 0;
243 Float_t qsum = 0;
244 Int_t idigit,ndigits;
245
246 // 2. go through the current digit list and sum digits in pads
247
248 ndigits = cpvDigits->GetEntriesFast();
249 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 250 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 251 Float_t x1 = cpvDigit1->GetXpad() ;
252 Float_t z1 = cpvDigit1->GetYpad() ;
253 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 254 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 255 Float_t x2 = cpvDigit2->GetXpad() ;
256 Float_t z2 = cpvDigit2->GetYpad() ;
257 if (x1==x2 && z1==z2) {
258 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
259 cpvDigit2->SetQpad(qsum) ;
260 cpvDigits->RemoveAt(idigit) ;
fa412d9b 261 }
262 }
9688c1dd 263 }
264 cpvDigits->Compress() ;
265
266 // 3. add digits to temporary hit list fTmpHits
267
268 ndigits = cpvDigits->GetEntriesFast();
269 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 270 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 271 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
272 relid[1] =-1 ; // means CPV
273 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
274 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
275
276 // get the absolute Id number
277 GetGeometry()->RelToAbsNumbering(relid, absid) ;
278
279 // add current digit to the temporary hit list
280
471193a8 281 xyzte[3] = gMC->TrackTime() ;
282 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
2af5445a 283
284 Int_t primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
285 AddHit(fIshunt, primary, absid, xyzte);
9688c1dd 286
287 if (cpvDigit->GetQpad() > 0.02) {
288 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
289 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
290 qsum += cpvDigit->GetQpad();
fa412d9b 291 }
fa412d9b 292 }
e534a69d 293 if (cpvDigits) {
294 cpvDigits->Delete();
295 delete cpvDigits;
296 cpvDigits=0;
297 }
9688c1dd 298 }
037cc66d 299
9688c1dd 300
d6fb41ac 301 static Int_t idPXTL = gMC->VolId("PXTL");
302 if(gMC->CurrentVolID(copy) == idPXTL ) { // We are inside a PBWO crystal
9688c1dd 303
fa412d9b 304 gMC->TrackPosition(pos) ;
471193a8 305 xyzte[0] = pos[0] ;
306 xyzte[1] = pos[1] ;
307 xyzte[2] = pos[2] ;
597e6309 308
9688c1dd 309 Float_t global[3], local[3] ;
310 global[0] = pos[0] ;
311 global[1] = pos[1] ;
312 global[2] = pos[2] ;
313 Float_t lostenergy = gMC->Edep();
f6d1e5e1 314
315 //Put in the TreeK particle entering PHOS and all its parents
316 if ( gMC->IsTrackEntering() ){
317 Float_t xyzd[3] ;
471193a8 318 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
97c3e101 319 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.1){ //Entered close to forward surface
5d12ce38 320 Int_t parent = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
81d4c3d5 321 TParticle * part = gAlice->GetMCApp()->Particle(parent) ;
322 Float_t vert[3],vertd[3] ;
323 vert[0]=part->Vx() ;
324 vert[1]=part->Vy() ;
325 vert[2]=part->Vz() ;
326 gMC -> Gmtod (vert, vertd, 1); // transform coordinate from master to daughter system
2af5445a 327 if(vertd[1]<-GetGeometry()->GetCrystalSize(1)/2.-0.1){ //Particle is created in foront of PHOS
328 //0.1 to get rid of numerical errors
329 part->SetBit(kKeepBit);
81d4c3d5 330 while ( parent != -1 ) {
331 part = gAlice->GetMCApp()->Particle(parent) ;
81d4c3d5 332 part->SetBit(kKeepBit);
333 parent = part->GetFirstMother() ;
334 }
f6d1e5e1 335 }
336 }
337 }
9688c1dd 338 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 339 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 340
9688c1dd 341 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 342
9688c1dd 343 Int_t strip ;
344 gMC->CurrentVolOffID(3, strip);
345 Int_t cell ;
346 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 347
9688c1dd 348 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
349 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 350
9688c1dd 351 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
352 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 353
9688c1dd 354 gMC->Gmtod(global, local, 1) ;
355
471193a8 356 //Calculates the light yield, the number of photons produced in the
9688c1dd 357 //crystal
27f33ee5 358 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 359 exp(-fLightYieldAttenuation *
360 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
361 ) ;
471193a8 362
9688c1dd 363 //Calculates de energy deposited in the crystal
471193a8 364 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 365
2af5445a 366 Int_t primary ;
367 if(fIshunt == 2){
368 primary = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
369 TParticle * part = gAlice->GetMCApp()->Particle(primary) ;
370 while ( !part->TestBit(kKeepBit) ) {
371 primary = part->GetFirstMother() ;
372 if(primary == -1){
373 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
374 break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
375 //surface of the crystal. In this case it may have no primary at all.
376 //We can not easily separate this case from the case when this is part of the shower,
377 //developed in the neighboring crystal.
378 }
379 part = gAlice->GetMCApp()->Particle(primary) ;
380 }
5a49626b 381 }
2af5445a 382 else
383 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
5a49626b 384
2af5445a 385
386
9688c1dd 387 // add current hit to the hit list
21cd0c07 388 // Info("StepManager","%d %d", primary, tracknumber) ;
2af5445a 389 AddHit(fIshunt, primary, absid, xyzte);
184569b0 390
fa412d9b 391 } // there is deposited energy
392 } // we are inside a PHOS Xtal
f6d1e5e1 393
fa412d9b 394}
395
396//____________________________________________________________________________
90cceaf6 397void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 398{
399 // ------------------------------------------------------------------------
400 // Digitize one CPV hit:
401 // On input take exact 4-momentum p and position zxhit of the hit,
402 // find the pad response around this hit and
403 // put the amplitudes in the pads into array digits
404 //
405 // Author: Yuri Kharlov (after Serguei Sadovsky)
406 // 2 October 2000
407 // ------------------------------------------------------------------------
408
fa7cce36 409 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 410 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
411 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
412 const Int_t kNgamz = 5; // Ionization size in Z
413 const Int_t kNgamx = 9; // Ionization size in Phi
414 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 415
416 Float_t rnor1,rnor2;
417
418 // Just a reminder on axes notation in the CPV module:
419 // axis Z goes along the beam
420 // axis X goes across the beam in the module plane
421 // axis Y is a normal to the module plane showing from the IP
422
423 Float_t hitX = zxhit[0];
424 Float_t hitZ =-zxhit[1];
425 Float_t pX = p.Px();
426 Float_t pZ =-p.Pz();
427 Float_t pNorm = p.Py();
a3dfe79c 428 Float_t eloss = kdEdx;
3d402178 429
21cd0c07 430//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 431
fa7cce36 432 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
433 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 434 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 435 eloss *= (1 + kDetR*rnor1) *
fa7cce36 436 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
437 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
438 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 439 Float_t zhit2 = zhit1 + dZY;
440 Float_t xhit2 = xhit1 + dXY;
441
a3dfe79c 442 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
443 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 444
445 Int_t nIter;
446 Float_t zxe[3][5];
447 if (iwht1==iwht2) { // incline 1-wire hit
448 nIter = 2;
449 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 450 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
451 zxe[2][0] = eloss/2;
fa412d9b 452 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 453 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
454 zxe[2][1] = eloss/2;
fa412d9b 455 }
456 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
457 nIter = 3;
458 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 459 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
460 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
461 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 462 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
463 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
464 Float_t dxw1 = xhit1 - xwr13;
465 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 466 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
467 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
468 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 469 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
470 zxe[1][0] = xwht1;
a3dfe79c 471 zxe[2][0] = eloss * egm1;
fa412d9b 472 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
473 zxe[1][1] = xwht2;
a3dfe79c 474 zxe[2][1] = eloss * egm2;
fa412d9b 475 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
476 zxe[1][2] = xwht3;
a3dfe79c 477 zxe[2][2] = eloss * egm3;
fa412d9b 478 }
479 else { // incline 2-wire hit
480 nIter = 2;
a3dfe79c 481 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
482 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 483 Float_t xwr12 = (xwht1 + xwht2) / 2;
484 Float_t dxw1 = xhit1 - xwr12;
485 Float_t dxw2 = xhit2 - xwr12;
486 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
487 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
488 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
489 zxe[1][0] = xwht1;
a3dfe79c 490 zxe[2][0] = eloss * egm1;
fa412d9b 491 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
492 zxe[1][1] = xwht2;
a3dfe79c 493 zxe[2][1] = eloss * egm2;
fa412d9b 494 }
bea63bea 495
fa412d9b 496 // Finite size of ionization region
497
fa7cce36 498 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
499 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 500 Int_t nz3 = (kNgamz+1)/2;
501 Int_t nx3 = (kNgamx+1)/2;
502 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 503 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 504
505 for (Int_t iter=0; iter<nIter; iter++) {
506
507 Float_t zhit = zxe[0][iter];
508 Float_t xhit = zxe[1][iter];
509 Float_t qhit = zxe[2][iter];
fa7cce36 510 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
511 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 512 if ( zcell<=0 || xcell<=0 ||
513 zcell>=nCellZ || xcell>=nCellX) return;
514 Int_t izcell = (Int_t) zcell;
515 Int_t ixcell = (Int_t) xcell;
516 Float_t zc = zcell - izcell - 0.5;
517 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 518 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 519 Int_t kzg = izcell + iz - nz3;
520 if (kzg<=0 || kzg>nCellZ) continue;
521 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 522 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 523 Int_t kxg = ixcell + ix - nx3;
524 if (kxg<=0 || kxg>nCellX) continue;
525 Float_t xg = (Float_t)(ix-nx3) - xc;
526
527 // Now calculate pad response
528 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 529 qpad += kNoise*rnor2;
fa412d9b 530 if (qpad<0) continue;
531
532 // Fill the array with pad response ID and amplitude
3d402178 533 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 534 }
fa412d9b 535 }
fa412d9b 536 }
537}
538
539//____________________________________________________________________________
540Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
541 // ------------------------------------------------------------------------
542 // Calculate the amplitude in one CPV pad using the
543 // cumulative pad response function
544 // Author: Yuri Kharlov (after Serguei Sadovski)
545 // 3 October 2000
546 // ------------------------------------------------------------------------
547
fa7cce36 548 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
549 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
550 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
551 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 552 Double_t amplitude = qhit *
553 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
554 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
555 return (Float_t)amplitude;
7587f5a5 556}
557
fa412d9b 558//____________________________________________________________________________
559Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
560 // ------------------------------------------------------------------------
561 // Cumulative pad response function
562 // It includes several terms from the CF decomposition in electrostatics
563 // Note: this cumulative function is wrong since omits some terms
564 // but the cell amplitude obtained with it is correct because
565 // these omitting terms cancel
566 // Author: Yuri Kharlov (after Serguei Sadovski)
567 // 3 October 2000
568 // ------------------------------------------------------------------------
569
a3dfe79c 570 const Double_t kA=1.0;
571 const Double_t kB=0.7;
fa412d9b 572
573 Double_t r2 = x*x + y*y;
574 Double_t xy = x*y;
575 Double_t cumulPRF = 0;
576 for (Int_t i=0; i<=4; i++) {
a3dfe79c 577 Double_t b1 = (2*i + 1) * kB;
fa412d9b 578 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
579 }
a3dfe79c 580 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 581 return cumulPRF;
582}
7eb9d12d 583