Transition to NewIO
[u/mrichter/AliRoot.git] / PMD / AliPMDv0.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
dee197d3 15
88cb7938 16/* $Id$ */
c4561145 17
18//
19///////////////////////////////////////////////////////////////////////////////
20// //
21// Photon Multiplicity Detector Version 1 //
22// //
23//Begin_Html
24/*
25<img src="picts/AliPMDv0Class.gif">
26*/
27//End_Html
28// //
29///////////////////////////////////////////////////////////////////////////////
30////
31
88cb7938 32#include "Riostream.h"
33
34#include <TVirtualMC.h>
35
c4561145 36#include "AliConst.h"
37#include "AliMagF.h"
88cb7938 38#include "AliPMDv0.h"
39#include "AliRun.h"
c4561145 40
41static Int_t kdet, ncell_sm, ncell_hole;
42static Float_t zdist, zdist1;
43static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
44static Float_t boundary, th_base, th_air, th_pcb;
45static Float_t th_lead, th_steel;
46
47ClassImp(AliPMDv0)
48
49 //_____________________________________________________________________________
50 AliPMDv0::AliPMDv0()
51{
52 //
53 // Default constructor
54 //
55 fMedSens=0;
56}
57
58//_____________________________________________________________________________
59AliPMDv0::AliPMDv0(const char *name, const char *title)
60 : AliPMD(name,title)
61{
62 //
63 // Standard constructor
64 //
65 fMedSens=0;
66}
67
68//_____________________________________________________________________________
69void AliPMDv0::CreateGeometry()
70{
71 //
72 // Create geometry for Photon Multiplicity Detector Version 3 :
73 // April 2, 2001
74 //
75 //Begin_Html
76 /*
77 <img src="picts/AliPMDv0.gif">
78 */
79 //End_Html
80 //Begin_Html
81 /*
82 <img src="picts/AliPMDv0Tree.gif">
83 */
84 //End_Html
85 GetParameters();
86 CreateSupermodule();
87 CreatePMD();
88}
89
90//_____________________________________________________________________________
91void AliPMDv0::CreateSupermodule()
92{
93 //
94 // Creates the geometry of the cells, places them in supermodule which
95 // is a rhombus object.
96
97 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
98 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
99 // -- Author : S. Chattopadhyay, 02/04/1999.
100
101 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
102 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
103 // in radius gives the dimension of half width of each cell wall.
104 // These cells are placed as 72 x 72 array in a
105 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
106 // to have closed packed structure.
107 //
108 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
109 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
110 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
111 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
112 //
113 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
114 // and EMFE (iron support)
115
116 // EMM1 made of
117 // ESMB --> Normal supermodule, mirror image of ESMA
118 // EMPB --> Pb converter
119 // EMFE --> Fe backing
120 // ESMA --> Normal supermodule
121 //
122 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
123 // and EMFE (iron support)
124
125 // EMM2 made of
126 // ESMY --> Special supermodule, mirror image of ESMX,
127 // EMPB --> Pb converter
128 // EMFE --> Fe backing
129 // ESMX --> First of the two Special supermodules near the hole
130
131 // EMM3 made of
132 // ESMQ --> Special supermodule, mirror image of ESMX,
133 // EMPB --> Pb converter
134 // EMFE --> Fe backing
135 // ESMP --> Second of the two Special supermodules near the hole
136
137 // EMM2 and EMM3 are used to create the hexagonal HOLE
138
139 //
140 // EPMD
141 // |
142 // |
143 // ---------------------------------------------------------------------------
144 // | | | | |
145 // EHOL EMM1 EMM2 EMM3 EALM
146 // | | |
147 // -------------------- -------------------- --------------------
148 // | | | | | | | | | | | |
149 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
150 // | | |
151 // ------------ ------------ -------------
152 // | | | | | | | | |
153 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
154 // | | |
155 // ECCU ECCU ECCU
156 // | | |
157 // ECAR ECAR ECAR
158
159
160 Int_t i, j;
161 Float_t xb, yb, zb;
162 Int_t number;
163 Int_t ihrotm,irotdm;
164 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
165 Int_t *idtmed = fIdtmed->GetArray()-599;
166
167 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
168 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
169
170 zdist = TMath::Abs(zdist1);
171
172
173 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
174 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
175 //(1mm tolerance on both side and 5mm thick G10 wall)
176 //
177
178 // **** CELL SIZE 20 mm^2 EQUIVALENT
179
180 // Inner hexagon filled with gas (Ar+CO2)
181
182 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
183
184 hexd2[4]= - cell_depth/2.;
185 hexd2[7]= cell_depth/2.;
186 hexd2[6]= cell_radius - cell_wall;
187 hexd2[9]= cell_radius - cell_wall;
188
189 // Gas replaced by vacuum for v0(insensitive) version of PMD.
190
191 gMC->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10);
192 gMC->Gsatt("ECAR", "SEEN", 0);
193
194 // Outer hexagon made of Copper
195
196 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
197 //total wall thickness=0.2*2
198
199 hexd1[4]= - cell_depth/2.;
200 hexd1[7]= cell_depth/2.;
201 hexd1[6]= cell_radius;
202 hexd1[9]= cell_radius;
203
204 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
205 gMC->Gsatt("ECCU", "SEEN", 1);
206
207 // --- place inner hex inside outer hex
208
ef61784c 209 gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
c4561145 210
211// Rhombus shaped supermodules (defined by PARA)
212
213// volume for SUPERMODULE
214
215 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
216 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
217 dpara_sm1[1] = dpara_sm1[0] *root3_2;
218 dpara_sm1[2] = sm_thick/2.;
219
220//
221 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
222 gMC->Gsatt("ESMA", "SEEN", 0);
223 //
224 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
225 gMC->Gsatt("ESMB", "SEEN", 0);
226
227 // Air residing between the PCB and the base
228
229 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
230 dpara_air[0]= dpara_sm1[0];
231 dpara_air[1]= dpara_sm1[1];
232 dpara_air[2]= th_air/2.;
233
234 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
235 gMC->Gsatt("EAIR", "SEEN", 0);
236
237 // volume for honeycomb chamber EHC1
238
239 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
240 dpara1[0] = dpara_sm1[0];
241 dpara1[1] = dpara_sm1[1];
242 dpara1[2] = cell_depth/2.;
243
244 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
245 gMC->Gsatt("EHC1", "SEEN", 1);
246
247
248
249 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
250
251 Int_t xrow=1;
252
253 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
254 zb = 0.;
255
256 for (j = 1; j <= ncell_sm; ++j) {
257 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
258 if(xrow >= 2){
259 xb = xb+(xrow-1)*hexd1[6];
260 }
261 for (i = 1; i <= ncell_sm; ++i) {
262 number = i+(j-1)*ncell_sm;
ef61784c 263 gMC->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY");
c4561145 264 xb += (hexd1[6]*2.);
265 }
266 xrow = xrow+1;
267 yb += (hexd1[6]*TMath::Sqrt(3.));
268 }
269
270
271 // Place EHC1 and EAIR into ESMA and ESMB
272
273 Float_t z_air1,z_air2,z_gas;
274
275 //ESMA is normal supermodule with base at bottom, with EHC1
276 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
277 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
278 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 279 //Line below Commented for version 0 of PMD routine
280 // gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
c4561145 281 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
282 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
283
284 // ESMB is mirror image of ESMA, with base at top, with EHC1
285
286 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
287 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
288 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
76ad67b5 289 //Line below Commented for version 0 of PMD routine
290 // gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
c4561145 291 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
292 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
293
294
295// special supermodule EMM2(GEANT only) containing 6 unit modules
296
297// volume for SUPERMODULE
298
299 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
300 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
301 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
302 dpara_sm2[2] = sm_thick/2.;
303
304 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
305 gMC->Gsatt("ESMX", "SEEN", 0);
306 //
307 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
308 gMC->Gsatt("ESMY", "SEEN", 0);
309
310 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
311 dpara2[0] = dpara_sm2[0];
312 dpara2[1] = dpara_sm2[1];
313 dpara2[2] = cell_depth/2.;
314
315 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
316 gMC->Gsatt("EHC2", "SEEN", 1);
317
318
319 // Air residing between the PCB and the base
320
321 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
322 dpara2_air[0]= dpara_sm2[0];
323 dpara2_air[1]= dpara_sm2[1];
324 dpara2_air[2]= th_air/2.;
325
326 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
327 gMC->Gsatt("EAIX", "SEEN", 0);
328
329 // Place hexagonal single cells ECCU inside EHC2
330 // skip cells which go into the hole in top left corner.
331
332 xrow=1;
333 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
334 zb = 0.;
335 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
336 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
337 if(xrow >= 2){
338 xb = xb+(xrow-1)*hexd1[6];
339 }
340 for (i = 1; i <= ncell_sm; ++i) {
341 number = i+(j-1)*ncell_sm;
ef61784c 342 gMC->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY");
c4561145 343 xb += (hexd1[6]*2.);
344 }
345 xrow = xrow+1;
346 yb += (hexd1[6]*TMath::Sqrt(3.));
347 }
348
349
350 // ESMX is normal supermodule with base at bottom, with EHC2
351
352 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
353 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
354 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 355 //Line below Commented for version 0 of PMD routine
356 // gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
c4561145 357 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
358 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
359
360 // ESMY is mirror image of ESMX with base at bottom, with EHC2
361
362 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
363 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
364 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
76ad67b5 365 //Line below Commented for version 0 of PMD routine
366 // gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
c4561145 367 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
368 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
369
370//
371
372
373// special supermodule EMM3 (GEANT only) containing 2 unit modules
374
375// volume for SUPERMODULE
376
377 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
378 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
379 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
380 dpara_sm3[2] = sm_thick/2.;
381
382 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
383 gMC->Gsatt("ESMP", "SEEN", 0);
384 //
385 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
386 gMC->Gsatt("ESMQ", "SEEN", 0);
387
388 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
389 dpara3[0] = dpara_sm3[0];
390 dpara3[1] = dpara_sm3[1];
391 dpara3[2] = cell_depth/2.;
392
393 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
394 gMC->Gsatt("EHC3", "SEEN", 1);
395
396
397 // Air residing between the PCB and the base
398
399 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
400 dpara3_air[0]= dpara_sm3[0];
401 dpara3_air[1]= dpara_sm3[1];
402 dpara3_air[2]= th_air/2.;
403
404 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
405 gMC->Gsatt("EAIP", "SEEN", 0);
406
407
408 // Place hexagonal single cells ECCU inside EHC3
409 // skip cells which go into the hole in top left corner.
410
411 xrow=1;
412 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
413 zb = 0.;
414 for (j = 1; j <= ncell_hole; ++j) {
415 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
416 if(xrow >= 2){
417 xb = xb+(xrow-1)*hexd1[6];
418 }
419 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
420 number = i+(j-1)*(ncell_sm - ncell_hole);
ef61784c 421 gMC->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY");
c4561145 422 xb += (hexd1[6]*2.);
423 }
424 xrow = xrow+1;
425 yb += (hexd1[6]*TMath::Sqrt(3.));
426 }
427
428 // ESMP is normal supermodule with base at bottom, with EHC3
429
430 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
431 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
432 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 433 //Line below Commented for version 0 of PMD routine
434 // gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
c4561145 435 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
436 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
437
438 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
439
440 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
441 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
442 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
76ad67b5 443 //Line below Commented for version 0 of PMD routine
444 // gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
c4561145 445 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
446 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
447
448}
449
450//_____________________________________________________________________________
451
452void AliPMDv0::CreatePMD()
453{
454 //
455 // Create final detector from supermodules
456 //
457 // -- Author : Y.P. VIYOGI, 07/05/1996.
458 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
459 // -- Modified: For New Geometry YPV, March 2001.
460
461
462 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
463 const Float_t pi = 3.14159;
464 Int_t i,j;
465
466 Float_t xp, yp, zp;
467
468 Int_t num_mod;
469 Int_t jhrot12,jhrot13, irotdm;
470
471 Int_t *idtmed = fIdtmed->GetArray()-599;
472
473 // VOLUMES Names : begining with "E" for all PMD volumes,
474 // The names of SIZE variables begin with S and have more meaningful
475 // characters as shown below.
476
477 // VOLUME SIZE MEDIUM : REMARKS
478 // ------ ----- ------ : ---------------------------
479
480 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
481
482 // *** Define the EPMD Volume and fill with air ***
483
484
485 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
486
487
488 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
489
490 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
491 gaspmd[8] = gaspmd[5];
492
493 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
494 gMC->Gsatt("EPMD", "SEEN", 0);
495
496 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
497
498 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
499 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
500
501
502 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
503
504 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
505 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
506 // EMM1 : normal volume as in old cases
507
508
509 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
510 dpara_emm1[0] = sm_length/2.;
511 dpara_emm1[1] = dpara_emm1[0] *root3_2;
512 dpara_emm1[2] = dm_thick/2.;
513
514 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
515 gMC->Gsatt("EMM1", "SEEN", 1);
516
517 //
518 // --- DEFINE Modules, iron, and lead volumes
519
520 // Pb Convertor for EMM1
521 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
522 dpara_pb1[0] = sm_length/2.;
523 dpara_pb1[1] = dpara_pb1[0] * root3_2;
524 dpara_pb1[2] = th_lead/2.;
525
526 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
527 gMC->Gsatt ("EPB1", "SEEN", 0);
528
529 // Fe Support for EMM1
530 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
531 dpara_fe1[0] = dpara_pb1[0];
532 dpara_fe1[1] = dpara_pb1[1];
533 dpara_fe1[2] = th_steel/2.;
534
535 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
536 gMC->Gsatt ("EFE1", "SEEN", 0);
537
538
539
540 //
541 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
542
543 Float_t z_ps,z_pb,z_fe,z_cv;
544
545 z_ps = - dpara_emm1[2] + sm_thick/2.;
546 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
547 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
548 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
549 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
550 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
551 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
552 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
553
554
555
556 // EMM2 : special master module having full row of cells but the number
557 // of rows limited by hole.
558
559 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
560 dpara_emm2[0] = sm_length/2.;
561 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
562 dpara_emm2[2] = dm_thick/2.;
563
564 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
565 gMC->Gsatt("EMM2", "SEEN", 1);
566
567
568 // Pb Convertor for EMM2
569 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
570 dpara_pb2[0] = dpara_emm2[0];
571 dpara_pb2[1] = dpara_emm2[1];
572 dpara_pb2[2] = th_lead/2.;
573
574 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
575 gMC->Gsatt ("EPB2", "SEEN", 0);
576
577 // Fe Support for EMM2
578 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
579 dpara_fe2[0] = dpara_pb2[0];
580 dpara_fe2[1] = dpara_pb2[1];
581 dpara_fe2[2] = th_steel/2.;
582
583 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
584 gMC->Gsatt ("EFE2", "SEEN", 0);
585
586
587
588 // position supermodule ESMX, ESMY inside EMM2
589
590 z_ps = - dpara_emm2[2] + sm_thick/2.;
591 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
592 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
593 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
594 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
595 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
596 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
597 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
598 //
599
600
601 // EMM3 : special master module having truncated rows and columns of cells
602 // limited by hole.
603
604 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
605 dpara_emm3[0] = dpara_emm2[1]/root3_2;
606 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
607 dpara_emm3[2] = dm_thick/2.;
608
609 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
610 gMC->Gsatt("EMM3", "SEEN", 1);
611
612
613 // Pb Convertor for EMM3
614 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
615 dpara_pb3[0] = dpara_emm3[0];
616 dpara_pb3[1] = dpara_emm3[1];
617 dpara_pb3[2] = th_lead/2.;
618
619 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
620 gMC->Gsatt ("EPB3", "SEEN", 0);
621
622 // Fe Support for EMM3
623 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
624 dpara_fe3[0] = dpara_pb3[0];
625 dpara_fe3[1] = dpara_pb3[1];
626 dpara_fe3[2] = th_steel/2.;
627
628 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
629 gMC->Gsatt ("EFE3", "SEEN", 0);
630
631
632
633 // position supermodule ESMP, ESMQ inside EMM3
634
635 z_ps = - dpara_emm3[2] + sm_thick/2.;
636 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
637 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
638 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
639 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
640 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
641 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
642 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
643 //
644
645 // EHOL is a tube structure made of air
646 //
647 //Float_t d_hole[3];
648 //d_hole[0] = 0.;
649 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
650 //d_hole[2] = dm_thick/2.;
651 //
652 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
653 //gMC->Gsatt("EHOL", "SEEN", 1);
654
655 //Al-rod as boundary of the supermodules
656
657 Float_t Al_rod[3] ;
658 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
659 Al_rod[1] = boundary;
660 Al_rod[2] = dm_thick/2.;
661
662 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
663 gMC->Gsatt ("EALM", "SEEN", 1);
664 Float_t xalm[3];
665 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
666 xalm[1]=-xalm[0]/2.;
667 xalm[2]=xalm[1];
668
669 Float_t yalm[3];
670 yalm[0]=0.;
671 yalm[1]=xalm[0]*root3_2;
672 yalm[2]=-yalm[1];
673
674 // delx = full side of the supermodule
675 Float_t delx=sm_length * 3.;
676 Float_t x1= delx*root3_2 /2.;
677 Float_t x4=delx/4.;
678
679
680 // placing master modules and Al-rod in PMD
681
682 Float_t dx = sm_length;
683 Float_t dy = dx * root3_2;
684
685 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
686 -dx, 0., dx,
687 -3.*dx/2., -dx/2., dx/2.};
688
689 Float_t ysup[9] = {dy, dy, dy,
690 0., 0., 0.,
691 -dy, -dy, -dy};
692
693 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
694
695 Float_t xoff = boundary * TMath::Tan(pi/6.);
696 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
697 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
698 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
699
700 Float_t xemm2 = sm_length/2. -
701 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
702 + xoff;
703 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
704 - boundary;
705
706 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
707 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
708
709 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
710 Int_t irotate[3] = {0, jhrot12, jhrot13};
711
712 num_mod=0;
ef61784c 713 for (j=0; j<3; ++j) {
714 gMC->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY");
715 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
716 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
c4561145 717
ef61784c 718 gMC->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY");
c4561145 719
ef61784c 720 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
721 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
c4561145 722
ef61784c 723 gMC->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY");
c4561145 724
ef61784c 725 for (i=1; i<9; ++i) {
726 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
727 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
728 if(fDebug)
729 printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
c4561145 730
ef61784c 731 num_mod = num_mod+1;
c4561145 732
ef61784c 733 if(fDebug)
734 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
c4561145 735
ef61784c 736 gMC->Gspos("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY");
c4561145 737
ef61784c 738 }
739 }
c4561145 740
741
742 // place EHOL in the centre of EPMD
743 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
744
745 // --- Place the EPMD in ALICE
746 xp = 0.;
747 yp = 0.;
748 zp = zdist1;
749
750 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
751
752}
753
754
755//_____________________________________________________________________________
756void AliPMDv0::DrawModule()
757{
758 //
759 // Draw a shaded view of the Photon Multiplicity Detector
760 //
761
762 gMC->Gsatt("*", "seen", -1);
763 gMC->Gsatt("alic", "seen", 0);
764 //
765 // Set the visibility of the components
766 //
767 gMC->Gsatt("ECAR","seen",0);
768 gMC->Gsatt("ECCU","seen",1);
769 gMC->Gsatt("EHC1","seen",1);
770 gMC->Gsatt("EHC1","seen",1);
771 gMC->Gsatt("EHC2","seen",1);
772 gMC->Gsatt("EMM1","seen",1);
773 gMC->Gsatt("EHOL","seen",1);
774 gMC->Gsatt("EPMD","seen",0);
775 //
776 gMC->Gdopt("hide", "on");
777 gMC->Gdopt("shad", "on");
778 gMC->Gsatt("*", "fill", 7);
779 gMC->SetClipBox(".");
780 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
781 gMC->DefaultRange();
782 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
783 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
784
785 //gMC->Gdman(17, 5, "MAN");
786 gMC->Gdopt("hide", "off");
787}
788
789//_____________________________________________________________________________
790void AliPMDv0::CreateMaterials()
791{
792 //
793 // Create materials for the PMD
794 //
795 // ORIGIN : Y. P. VIYOGI
796 //
797
798 // --- The Argon- CO2 mixture ---
799 Float_t ag[2] = { 39.95 };
800 Float_t zg[2] = { 18. };
801 Float_t wg[2] = { .8,.2 };
802 Float_t dar = .001782; // --- Ar density in g/cm3 ---
803 // --- CO2 ---
804 Float_t ac[2] = { 12.,16. };
805 Float_t zc[2] = { 6.,8. };
806 Float_t wc[2] = { 1.,2. };
807 Float_t dc = .001977;
808 Float_t dco = .002; // --- CO2 density in g/cm3 ---
809
810 Float_t absl, radl, a, d, z;
811 Float_t dg;
812 Float_t x0ar;
813 //Float_t x0xe=2.4;
814 //Float_t dxe=0.005858;
815 Float_t buf[1];
816 Int_t nbuf;
817 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
818 Float_t zsteel[4] = { 26.,24.,28.,14. };
819 Float_t wsteel[4] = { .715,.18,.1,.005 };
820
821 Int_t *idtmed = fIdtmed->GetArray()-599;
822 Int_t isxfld = gAlice->Field()->Integ();
823 Float_t sxmgmx = gAlice->Field()->Max();
824
825 // --- Define the various materials for GEANT ---
826 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
827 x0ar = 19.55 / dar;
828 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
829 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
830 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
831 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
832 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
833 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
834 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
835 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
836 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
837 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
838 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
839 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
840 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
841
842 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
843 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
844 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
845 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
846
847 // define gas-mixtures
848
849 char namate[21];
850 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
851 ag[1] = a;
852 zg[1] = z;
853 dg = (dar * 4 + dco) / 5;
854 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
855
856 // Define tracking media
857 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
858 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
859 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
860 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
861 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
862 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
863 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
864 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
865 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
866 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
867 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
868 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
869 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
870 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
871 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
872
873 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
874 gMC->Gstpar(idtmed[600], "LOSS", 3.);
875 gMC->Gstpar(idtmed[600], "DRAY", 1.);
876
877 gMC->Gstpar(idtmed[603], "LOSS", 3.);
878 gMC->Gstpar(idtmed[603], "DRAY", 1.);
879
880 gMC->Gstpar(idtmed[604], "LOSS", 3.);
881 gMC->Gstpar(idtmed[604], "DRAY", 1.);
882
883 gMC->Gstpar(idtmed[605], "LOSS", 3.);
884 gMC->Gstpar(idtmed[605], "DRAY", 1.);
885
886 gMC->Gstpar(idtmed[606], "LOSS", 3.);
887 gMC->Gstpar(idtmed[606], "DRAY", 1.);
888
889 gMC->Gstpar(idtmed[607], "LOSS", 3.);
890 gMC->Gstpar(idtmed[607], "DRAY", 1.);
891
892 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
893 // --- without affecting the hit patterns ---
894 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
895 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
896 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
897 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
898 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
899 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
900 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
901 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
902 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
903 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
904 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
905 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
906 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
907 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
908 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
909 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
910 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
911 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
912 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
913 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
914
915 // --- Prevent particles stopping in the gas due to energy cut-off ---
916 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
917 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
918 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
919 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
920 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
921}
922
923//_____________________________________________________________________________
924void AliPMDv0::Init()
925{
926 //
927 // Initialises PMD detector after it has been built
928 //
929 Int_t i;
930 kdet=1;
931 //
df622204 932 if(fDebug) {
933 printf("\n%s: ",ClassName());
934 for(i=0;i<35;i++) printf("*");
935 printf(" PMD_INIT ");
936 for(i=0;i<35;i++) printf("*");
937 printf("\n%s: ",ClassName());
938 printf(" PMD simulation package (v0) initialised\n");
939 printf("%s: parameters of pmd\n", ClassName());
dee197d3 940 printf("%s: %10.2f %10.2f %10.2f \
df622204 941 %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
942 printf("%s: ",ClassName());
943 for(i=0;i<80;i++) printf("*");
944 printf("\n");
945 }
c4561145 946 Int_t *idtmed = fIdtmed->GetArray()-599;
947 fMedSens=idtmed[605-1];
948}
949
950//_____________________________________________________________________________
951void AliPMDv0::StepManager()
952{
953 //
954 // Called at each step in the PMD
955 //
956 Int_t copy;
957 Float_t hits[4], destep;
958 Float_t center[3] = {0,0,0};
959 Int_t vol[5];
960 //char *namep;
961
962 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
963
964 gMC->CurrentVolID(copy);
965
966 //namep=gMC->CurrentVolName();
967 //printf("Current vol is %s \n",namep);
968
969 vol[0]=copy;
970 gMC->CurrentVolOffID(1,copy);
971
972 //namep=gMC->CurrentVolOffName(1);
973 //printf("Current vol 11 is %s \n",namep);
974
975 vol[1]=copy;
976 gMC->CurrentVolOffID(2,copy);
977
978 //namep=gMC->CurrentVolOffName(2);
979 //printf("Current vol 22 is %s \n",namep);
980
981 vol[2]=copy;
982
983 // if(strncmp(namep,"EHC1",4))vol[2]=1;
984
985 gMC->CurrentVolOffID(3,copy);
986
987 //namep=gMC->CurrentVolOffName(3);
988 //printf("Current vol 33 is %s \n",namep);
989
990 vol[3]=copy;
991 gMC->CurrentVolOffID(4,copy);
992
993 //namep=gMC->CurrentVolOffName(4);
994 //printf("Current vol 44 is %s \n",namep);
995
996 vol[4]=copy;
997 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
998
999 gMC->Gdtom(center,hits,1);
1000 hits[3] = destep*1e9; //Number in eV
1001 AddHit(gAlice->CurrentTrack(), vol, hits);
1002 }
1003}
1004
1005
1006//------------------------------------------------------------------------
1007// Get parameters
1008
1009void AliPMDv0::GetParameters()
1010{
1011 Int_t ncell_um, num_um;
1012 ncell_um=24;
1013 num_um=3;
1014 ncell_hole=24;
1015 cell_radius=0.25;
1016 cell_wall=0.02;
1017 cell_depth=0.25 * 2.;
1018 //
1019 boundary=0.7;
1020 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1021 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1022 //
1023 th_base=0.3;
1024 th_air=0.1;
1025 th_pcb=0.16;
1026 //
1027 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1028 //
1029 th_lead=1.5;
1030 th_steel=0.5;
1031 //
1032 zdist1 = -365.;
1033}
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
ef61784c 1047