]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv1.cxx
Add a task to a train
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
d49fe99a 15/* $Id$ */
fe9578d7 16
c4561145 17//
18///////////////////////////////////////////////////////////////////////////////
19// //
1f7f8a9c 20// Photon Multiplicity Detector Version 1 //
21// Bedanga Mohanty : February 14th 2006
22//---------------------------------------------------
23// ALICE PMD FEE BOARDS IMPLEMENTATION
24// Dt: 25th February 2006
25// M.M. Mondal, S.K. Prasad and P.K. Netrakanti
26//---------------------------------------------------
27// Create final detector from Unit Modules
28// Author : Bedanga and Viyogi June 2003
29//---------------------------------------------------
30// Modified by
31// Dr. Y.P. Viyogi and Ranbir Singh
32// Dt: 2nd February 2009
24c5571f 33//
c4561145 34//Begin_Html
35/*
36<img src="picts/AliPMDv1Class.gif">
37*/
38//End_Html
39// //
24c5571f 40/////////////////////////////////////////////////////////////////////////////
c4561145 41////
42
cad3294f 43#include <Riostream.h>
dd6416aa 44#include <TGeoManager.h>
cad3294f 45#include <TGeoGlobalMagField.h>
788c3ee6 46#include <TVirtualMC.h>
bff3a244 47
48#include "AliConst.h"
4951e003 49#include "AliLog.h"
bff3a244 50#include "AliMC.h"
51#include "AliMagF.h"
52#include "AliPMDv1.h"
53#include "AliRun.h"
c1446131 54#include "AliTrackReference.h"
c4561145 55
1f7f8a9c 56const Int_t AliPMDv1::fgkNcolUM1 = 48; // Number of cols in UM, type 1
57const Int_t AliPMDv1::fgkNcolUM2 = 96; // Number of cols in UM, type 2
58const Int_t AliPMDv1::fgkNrowUM1 = 96; // Number of rows in UM, type 1
59const Int_t AliPMDv1::fgkNrowUM2 = 48; // Number of rows in UM, type 2
60const Float_t AliPMDv1::fgkCellRadius = 0.25; // Radius of a hexagonal cell
61const Float_t AliPMDv1::fgkCellWall = 0.02; // Thickness of cell Wall
62const Float_t AliPMDv1::fgkCellDepth = 0.50; // Gas thickness
63const Float_t AliPMDv1::fgkThPCB = 0.16; // Thickness of PCB
64const Float_t AliPMDv1::fgkThLead = 1.5; // Thickness of Pb
65const Float_t AliPMDv1::fgkThSteel = 0.5; // Thickness of Steel
66const Float_t AliPMDv1::fgkGap = 0.025; // Air Gap
67const Float_t AliPMDv1::fgkZdist = 361.5; // z-position of the detector
68const Float_t AliPMDv1::fgkSqroot3 = 1.7320508;// Square Root of 3
69const Float_t AliPMDv1::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2
70const Float_t AliPMDv1::fgkSSBoundary = 0.3;
71const Float_t AliPMDv1::fgkThSS = 1.23; // Old thickness of SS frame was 1.03
72const Float_t AliPMDv1::fgkThTopG10 = 0.33;
73const Float_t AliPMDv1::fgkThBotG10 = 0.4;
74
24c5571f 75
c4561145 76ClassImp(AliPMDv1)
77
a48edddd 78//_____________________________________________________________________________
79AliPMDv1::AliPMDv1():
80 fSMthick(0.),
24c5571f 81 fSMthickpmd(0.),
a48edddd 82 fDthick(0.),
83 fSMLengthax(0.),
84 fSMLengthay(0.),
85 fSMLengthbx(0.),
86 fSMLengthby(0.),
87 fMedSens(0)
c4561145 88{
24c5571f 89
c4561145 90 // Default constructor
24c5571f 91
a48edddd 92 for (Int_t i = 0; i < 3; i++)
93 {
94 fDboxmm1[i] = 0.;
95 fDboxmm12[i] = 0.;
96 fDboxmm2[i] = 0.;
97 fDboxmm22[i] = 0.;
98 }
24c5571f 99 for (Int_t i = 0; i < 48; i++)
100 {
101 fModStatus[i] = 1;
102 }
103
c4561145 104}
105
106//_____________________________________________________________________________
a48edddd 107AliPMDv1::AliPMDv1(const char *name, const char *title):
108 AliPMD(name,title),
109 fSMthick(0.),
24c5571f 110 fSMthickpmd(0.),
a48edddd 111 fDthick(0.),
112 fSMLengthax(0.),
113 fSMLengthay(0.),
114 fSMLengthbx(0.),
115 fSMLengthby(0.),
116 fMedSens(0)
c4561145 117{
24c5571f 118
c4561145 119 // Standard constructor
24c5571f 120
a48edddd 121 for (Int_t i = 0; i < 3; i++)
122 {
123 fDboxmm1[i] = 0.;
124 fDboxmm12[i] = 0.;
125 fDboxmm2[i] = 0.;
126 fDboxmm22[i] = 0.;
127 }
24c5571f 128 for (Int_t i = 0; i < 48; i++)
129 {
130 fModStatus[i] = 1;
131 }
c4561145 132}
133
24c5571f 134
135
136
c4561145 137//_____________________________________________________________________________
138void AliPMDv1::CreateGeometry()
139{
b1952773 140 // Create geometry for Photon Multiplicity Detector
141
c4561145 142 GetParameters();
143 CreateSupermodule();
144 CreatePMD();
145}
146
147//_____________________________________________________________________________
148void AliPMDv1::CreateSupermodule()
149{
b1952773 150 //
24c5571f 151 // Creates the geometry of the cells of PMD, places them in modules
152 // which are rectangular objects.
b1952773 153 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is
154 // placed inside another hexagonal cell made of Cu (ECCU) with larger
155 // radius, compared to ECAR. The difference in radius gives the dimension
156 // of half width of each cell wall.
157 // These cells are placed in a rectangular strip which are of 2 types
24c5571f 158 // EST1 and EST2.
159 // Two types of honeycomb EHC1 & EHC2 are made using strips EST1 & EST2.
160 // 4 types of unit modules are made EUM1 & EUM2 for PRESHOWER Plane and
161 // EUV1 & EUV2 for VETO Plane which contains strips placed repeatedly
162 //
163 // These unit moules are then placed inside EPM1, EPM2, EPM3 and EPM4 along
164 // with lead convertor ELDA & ELDB and Iron Supports EFE1, EFE2, EFE3 and EFE4
165 // They have 6 unit moudles inside them in each plane. Therefore, total of 48
166 // unit modules in both the planes (PRESHOWER Plane & VETO Plane). The numbering
167 // of unit modules is from 0 to 47.
168 //
169 // Steel channels (ECHA & ECHB) are also placed which are used to place the unit modules
170 //
171 // In order to account for the extra material around and on the detector, Girders (EGDR),
172 // girder's Carriage (EXGD), eight Aluminium boxes (ESV1,2,3,4 & EVV1,2,3,4) along with
173 // LVDBs (ELVD), cables (ECB1,2,3,4), and ELMBs (ELMB) are being placed in approximations.
174 //
175 // Four FR4 sheets (ECC1,2,3,4) are placed parallel to the PMD on both sides, which perform
176 // as cooling encloser
177
178 // NOTE:- VOLUME Names : begining with "E" for all PMD volumes
c4561145 179
b1952773 180 Int_t i,j;
c4561145 181 Int_t number;
182 Int_t ihrotm,irotdm;
3cdb4e97 183 Float_t xb, yb, zb;
184
c4561145 185 Int_t *idtmed = fIdtmed->GetArray()-599;
186
187 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
188 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
189
24c5571f 190 //******************************************************//
191 // STEP - I //
f117e3aa 192 //******************************************************//
b1952773 193 // First create the sensitive medium of a hexagon cell (ECAR)
c4561145 194 // Inner hexagon filled with gas (Ar+CO2)
24c5571f 195 // Integer assigned to Ar+CO2 medium is 604
196
c4561145 197 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
3cdb4e97 198 hexd2[4] = -fgkCellDepth/2.;
199 hexd2[7] = fgkCellDepth/2.;
200 hexd2[6] = fgkCellRadius - fgkCellWall;
201 hexd2[9] = fgkCellRadius - fgkCellWall;
c4561145 202
203 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
f117e3aa 204
24c5571f 205 //******************************************************//
206 // STEP - II //
f117e3aa 207 //******************************************************//
b1952773 208 // Place the sensitive medium inside a hexagon copper cell (ECCU)
c4561145 209 // Outer hexagon made of Copper
24c5571f 210 // Integer assigned to Cu medium is 614
b1952773 211
c4561145 212 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
3cdb4e97 213 hexd1[4] = -fgkCellDepth/2.;
214 hexd1[7] = fgkCellDepth/2.;
215 hexd1[6] = fgkCellRadius;
216 hexd1[9] = fgkCellRadius;
24c5571f 217
c4561145 218 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
c4561145 219
b1952773 220 // Place inner hex (sensitive volume) inside outer hex (copper)
221
a978c9e3 222 gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
f117e3aa 223
f117e3aa 224 //******************************************************//
24c5571f 225 // STEP - III //
226 //******************************************************//
227 // Now create Two types of Rectangular strips (EST1, EST2)
228 // of 1 column and 96 or 48 cells length
c4561145 229
b1952773 230 // volume for first strip EST1 made of AIR
24c5571f 231 // Integer assigned to Air medium is 698
232 // strip type-1 is of 1 column and 96 rows i.e. of 96 cells length
c4561145 233
b1952773 234 Float_t dbox1[3];
f117e3aa 235 dbox1[0] = fgkCellRadius/fgkSqroot3by2;
236 dbox1[1] = fgkNrowUM1*fgkCellRadius;
3cdb4e97 237 dbox1[2] = fgkCellDepth/2.;
b1952773 238
239 gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3);
c4561145 240
c4561145 241
24c5571f 242 // volume for second strip EST2
243 // strip type-2 is of 1 column and 48 rows i.e. of 48 cells length
f117e3aa 244
b1952773 245 Float_t dbox2[3];
f117e3aa 246 dbox2[1] = fgkNrowUM2*fgkCellRadius;
247 dbox2[0] = dbox1[0];
b1952773 248 dbox2[2] = dbox1[2];
c4561145 249
b1952773 250 gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3);
c4561145 251
b1952773 252 // Place hexagonal cells ECCU placed inside EST1
24c5571f 253
f117e3aa 254 xb = 0.;
b1952773 255 zb = 0.;
f117e3aa 256 yb = (dbox1[1]) - fgkCellRadius;
257 for (i = 1; i <= fgkNrowUM1; ++i)
a978c9e3 258 {
259 number = i;
f117e3aa 260 gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, 0, "ONLY");
261 yb -= (fgkCellRadius*2.);
a978c9e3 262 }
f117e3aa 263
b1952773 264 // Place hexagonal cells ECCU placed inside EST2
f117e3aa 265 xb = 0.;
a978c9e3 266 zb = 0.;
f117e3aa 267 yb = (dbox2[1]) - fgkCellRadius;
268 for (i = 1; i <= fgkNrowUM2; ++i)
a978c9e3 269 {
270 number = i;
f117e3aa 271 gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, 0, "ONLY");
f117e3aa 272 yb -= (fgkCellRadius*2.);
a978c9e3 273 }
24c5571f 274
275
f117e3aa 276 //******************************************************//
24c5571f 277 // STEP - IV //
f117e3aa 278 //******************************************************//
24c5571f 279 // Create EHC1 : The honey combs for a unit module type-1
280 //-------------------------EHC1 Start-------------------//
281
f117e3aa 282 // First step is to create a honey comb unit module.
24c5571f 283 // This is named as EHC1 and is a volume of Air
284 // we will lay the EST1 strips of honey comb cells inside it.
a978c9e3 285
24c5571f 286 // Dimensions of EHC1
287 // X-dimension = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+ 0.15+0.05+0.05;
288 // Y-dimension = Number of rows * cell radius/sqrt3by2 + 0.15+0.05+0.05;
289 // 0.15cm is the extension in honeycomb on both side of X and Y, 0.05 for air gap and 0.05
290 // for G10 boundary around, which are now merged in the dimensions of EHC1
291 // Z-dimension = cell depth/2
292
293 Float_t ehcExt = 0.15;
294 Float_t ehcAround = 0.05 + 0.05;;
f117e3aa 295
b1952773 296 Float_t dbox3[3];
24c5571f 297 dbox3[0] = (dbox1[0]*fgkNcolUM1)-
298 (fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.) + ehcExt + ehcAround;
299 dbox3[1] = dbox1[1]+fgkCellRadius/2. + ehcExt + ehcAround;
3cdb4e97 300 dbox3[2] = fgkCellDepth/2.;
24c5571f 301
f117e3aa 302 //Create a BOX, Material AIR
303 gMC->Gsvolu("EHC1","BOX", idtmed[698], dbox3, 3);
f117e3aa 304 // Place rectangular strips EST1 inside EHC1 unit module
305 xb = dbox3[0]-dbox1[0];
b1952773 306
f117e3aa 307 for (j = 1; j <= fgkNcolUM1; ++j)
b1952773 308 {
309 if(j%2 == 0)
310 {
f117e3aa 311 yb = -fgkCellRadius/2.0;
b1952773 312 }
313 else
314 {
f117e3aa 315 yb = fgkCellRadius/2.0;
b1952773 316 }
317 number = j;
24c5571f 318 gMC->Gspos("EST1",number, "EHC1", xb - 0.25, yb , 0. , 0, "MANY");
319
f117e3aa 320 //The strips are being placed from top towards bottom of the module
321 //This is because the first cell in a module in hardware is the top
322 //left corner cell
24c5571f 323
f117e3aa 324 xb = (dbox3[0]-dbox1[0])-j*fgkCellRadius*fgkSqroot3;
24c5571f 325
c4561145 326 }
24c5571f 327
328 //--------------------EHC1 done----------------------------------------//
329
330
331
332 //--------------------------------EHC2 Start---------------------------//
333 // Create EHC2 : The honey combs for a unit module type-2
f117e3aa 334 // First step is to create a honey comb unit module.
335 // This is named as EHC2, we will lay the EST2 strips of
336 // honey comb cells inside it.
24c5571f 337
338 // Dimensions of EHC2
339 // X-dimension = (dbox2[0]*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+ 0.15+0.05+0.05;
340 // Y-dimension = Number of rows * cell radius/sqrt3by2 + 0.15+0.05+0.05;
341 // 0.15cm is the extension in honeycomb on both side of X and Y, 0.05 for air gap and 0.05
342 // for G10 boundary around, which are now merged in the dimensions of EHC2
343 // Z-dimension = cell depth/2
344
345
b1952773 346 Float_t dbox4[3];
24c5571f 347
348 dbox4[0] =(dbox2[0]*fgkNcolUM2)-
349 (fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.) + ehcExt + ehcAround;
350 dbox4[1] = dbox2[1] + fgkCellRadius/2. + ehcExt + ehcAround;
b1952773 351 dbox4[2] = dbox3[2];
a978c9e3 352
f117e3aa 353 //Create a BOX of AIR
354 gMC->Gsvolu("EHC2","BOX", idtmed[698], dbox4, 3);
24c5571f 355
f117e3aa 356 // Place rectangular strips EST2 inside EHC2 unit module
357 xb = dbox4[0]-dbox2[0];
a978c9e3 358
24c5571f 359 for (j = 1; j <= fgkNcolUM2; ++j)
360 {
361 if(j%2 == 0)
362 {
363 yb = -fgkCellRadius/2.0;
364 }
365 else
366 {
367 yb = +fgkCellRadius/2.0;
368 }
369 number = j;
370 gMC->Gspos("EST2",number, "EHC2", xb - 0.25, yb , 0. ,0, "MANY");
371 xb = (dbox4[0]-dbox2[0])-j*fgkCellRadius*fgkSqroot3;
372 }
373
374
375 //----------------------------EHC2 done-------------------------------//
f117e3aa 376
24c5571f 377 //====================================================================//
378
f117e3aa 379 // Now the job is to assmeble an Unit module
380 // It will have the following components
24c5571f 381 // (a) Base plate of G10 of 0.2cm
382 // (b) Air gap of 0.08cm
383 // (c) Bottom PCB of 0.16cm G10
384 // (d) Honey comb 0f 0.5cm
385 // (e) Top PCB of 0.16cm G10
386 // (f) Back Plane of 0.1cm G10
387 // (g) Then all around then we have an air gap of 0.05cm
388 // (h) Then all around 0.05cm thick G10 insulation
389 // (i) Then all around Stainless Steel boundary channel 0.3 cm thick
390
391 // In order to reduce the number of volumes and simplify the geometry
392 // following steps are performed:
393 // (I) Base Plate(0.2cm), Air gap(0.04cm) and Bottom PCB(0.16cm)
394 // are taken together as a G10 Plate EDGA (0.4cm)
395 // (II) Back Plane(0.1cm), Air Gap(0.04cm) and Top PCB(0.16cm) and extra
396 // clearance 0.03cm are taken together as G10 Plate EEGA(0.33cm)
397 // (III) The all around Air gap(0.05cm) and G10 boundary(0.05cm) are already
398 // merged in the dimension of EHC1, EHC2, EDGA and EEGA. Therefore, no
399 // separate volumes for all around materials
400
f117e3aa 401 //Let us first create them one by one
24c5571f 402 //--------------------------------------------------------------------//
403
404 // ---------------- Lets do it first for UM Long Type -----//
405 // 4mm G10 Box : Bottom PCB + Air Gap + Base Plate
406 //================================================
407 // Make a 4mm thick G10 Box for Unit module Long Type
408 // X-dimension is EHC1 - ehcExt
409 // Y-dimension is EHC1 - ehcExt
410 // EHC1 was extended 0.15cm(ehcExt) on both sides
411 // Z-dimension 0.4/2 = 0.2 cm
412 // Integer assigned to G10 medium is 607
f117e3aa 413
24c5571f 414 Float_t dboxCGA[3];
415 dboxCGA[0] = dbox3[0] - ehcExt;
416 dboxCGA[1] = dbox3[1] - ehcExt;
417 dboxCGA[2] = fgkThBotG10/2.;
418
419 //Create a G10 BOX
420 gMC->Gsvolu("EDGA","BOX", idtmed[607], dboxCGA, 3);
f117e3aa 421
f117e3aa 422 //-------------------------------------------------//
24c5571f 423 // 3.3mm G10 Box : Top PCB + Air GAp + Back Plane
424 //================================================
425 // Make a 3.3mm thick G10 Box for Unit module Long Type
426 // X-dimension is EHC1 - ehcExt
427 // Y-dimension is EHC1 - ehcExt
428 // EHC1 was extended 0.15cm(ehcExt) on both sides
429 // Z-dimension 0.33/2 = 0.165 cm
430
431 Float_t dboxEEGA[3];
432 dboxEEGA[0] = dboxCGA[0];
433 dboxEEGA[1] = dboxCGA[1];
434 dboxEEGA[2] = fgkThTopG10/2.;
435
436 //Create a G10 BOX
437 gMC->Gsvolu("EEGA","BOX", idtmed[607], dboxEEGA, 3);
438
439
440 //----------------------------------------------------------//
441 //Stainless Steel Bounadry : EUM1 & EUV1
442 //
443 // Make a 3.63cm thick Stainless Steel boundary for Unit module Long Type
444 // 3.63cm equivalent to EDGA(0.4cm)+EHC1(0.5cm)+EEGA(0.33cm)+FEE Board(2.4cm)
445 // X-dimension is EEGA + fgkSSBoundary
446 // Y-dimension is EEGA + fgkSSBoundary
447 // Z-dimension 1.23/2 + 2.4/2.
448 // FEE Boards are 2.4cm thick
449 // Integer assigned to Stainless Steel medium is 618
f117e3aa 450 //------------------------------------------------------//
24c5571f 451 // A Stainless Steel Boundary Channel to house the unit module
452 // along with the FEE Boards
f117e3aa 453
24c5571f 454 Float_t dboxSS1[3];
455 dboxSS1[0] = dboxCGA[0]+fgkSSBoundary;
456 dboxSS1[1] = dboxCGA[1]+fgkSSBoundary;
457 dboxSS1[2] = fgkThSS/2.+ 2.4/2.;
458
459 //FOR PRESHOWER
460 //Stainless Steel boundary - Material Stainless Steel
461 gMC->Gsvolu("EUM1","BOX", idtmed[618], dboxSS1, 3);
462
463 //FOR VETO
464 //Stainless Steel boundary - Material Stainless Steel
465 gMC->Gsvolu("EUV1","BOX", idtmed[618], dboxSS1, 3);
466
467 //--------------------------------------------------------------------//
f117e3aa 468
f117e3aa 469
24c5571f 470
f117e3aa 471
24c5571f 472 // ============ PMD FEE BOARDS IMPLEMENTATION ======================//
473
474 // FEE board
475 // It is FR4 board of length * breadth :: 7cm * 2.4 cm
476 // and thickness 0.2cm
477 // Material medium is same as G10
f117e3aa 478
24c5571f 479 Float_t dboxFEE[3];
480 dboxFEE[0] = 0.2/2.;
481 dboxFEE[1] = 7.0/2.;
482 dboxFEE[2] = 2.4/2.;
f117e3aa 483
24c5571f 484 gMC->Gsvolu("EFEE","BOX", idtmed[607], dboxFEE, 3);
f117e3aa 485
24c5571f 486 // Now to create the Mother volume to accomodate FEE boards
487 // It should have the dimension few mm smaller than the back plane
488 // But, we have taken it as big as EUM1 or EUV1
489 // It is to compensate the Stainless Steel medium of EUM1 or EUV1
f117e3aa 490
24c5571f 491 // Create Mother volume of Air : Long TYPE
f117e3aa 492
24c5571f 493 Float_t dboxFEEBPlaneA[3];
494 dboxFEEBPlaneA[0] = dboxSS1[0];
495 dboxFEEBPlaneA[1] = dboxSS1[1];
496 dboxFEEBPlaneA[2] = 2.4/2.;
497
498 //Volume of same dimension as EUM1 or EUV1 of Material AIR
499 gMC->Gsvolu("EFBA","BOX", idtmed[698], dboxFEEBPlaneA, 3);
500
501 //Placing the FEE boards in the Mother volume of AIR
502
f117e3aa 503
24c5571f 504 Float_t xFee; // X-position of FEE board
505 Float_t yFee; // Y-position of FEE board
506 Float_t zFee = 0.0; // Z-position of FEE board
507
508 Float_t xA = 0.5; //distance from the border to 1st FEE board/Translator
509 Float_t yA = 4.00; //distance from the border to 1st FEE board
510 Float_t xSepa = 1.70; //Distance between two FEE boards in X-side
511 Float_t ySepa = 8.00; //Distance between two FEE boards in Y-side
512
513
514
515 // FEE Boards EFEE placed inside EFBA
516
517 yFee = dboxFEEBPlaneA[1] - yA - 0.1 - 0.3;
518 // 0.1cm and 0.3cm are subtracted to shift the FEE Boards on their actual positions
519 // As the positions are changed, because we have taken the dimension of EFBA equal
520 // to the dimension of EUM1 or EUV1
521 number = 1;
522 // The loop for six rows of FEE Board
523 for (i = 1; i <= 6; ++i)
524 {
525 // First we place the translator board
526 xFee = -dboxFEEBPlaneA[0] + xA + 0.1 +0.3;
527
528 gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY");
529
530 // The first FEE board is 11mm from the translator board
531 xFee += 1.1;
532 number += 1;
533
534 for (j = 1; j <= 12; ++j)
535 {
536 gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY");
537 xFee += xSepa;
538 number += 1;
539 }
540 yFee -= ySepa;
541 }
542
543
544 // Now Place EEGA, EDGA, EHC1 and EFBA in EUM1 & EUV1 to complete the unit module
545
546
547 // FOR PRE SHOWER //
548 // Placing of all components of UM in AIR BOX EUM1 //
549
550 //(1) FIRST PUT the 4mm G10 Box : EDGA
551 Float_t zedga = -dboxSS1[2] + fgkThBotG10/2.;
552 gMC->Gspos("EDGA", 1, "EUM1", 0., 0., zedga, 0, "ONLY");
553
554 //(2) NEXT PLACING the Honeycomb EHC1
555 Float_t zehc1 = zedga + fgkThBotG10/2. + fgkCellDepth/2.;
556 gMC->Gspos("EHC1", 1, "EUM1", 0., 0., zehc1, 0, "ONLY");
557
558 //(3) NEXT PLACING the 3.3mm G10 Box : EEGA
559 Float_t zeega = zehc1 + fgkCellDepth/2. + fgkThTopG10/2.;
560 gMC->Gspos("EEGA", 1, "EUM1", 0., 0., zeega, 0, "ONLY");
561
562 //(4) NEXT PLACING the FEE BOARD : EFBA
563 Float_t zfeeboardA = zeega + fgkThTopG10/2. +1.2;
564 gMC->Gspos("EFBA", 1, "EUM1", 0., 0., zfeeboardA, 0, "ONLY");
565
566 // FOR VETO //
567 // Placing of all components of UM in AIR BOX EUV1 //
568
569 //(1) FIRST PUT the FEE BOARD : EFBA
570 zfeeboardA = -dboxSS1[2] + 1.2;
571 gMC->Gspos("EFBA", 1, "EUV1", 0., 0., zfeeboardA, 0, "ONLY");
572
573 //(2) FIRST PLACING the 3.3mm G10 Box : EEGA
574 zeega = zfeeboardA + 1.2 + fgkThTopG10/2.;
575 gMC->Gspos("EEGA", 1, "EUV1", 0., 0., zeega, 0, "ONLY");
576
577 //(3) NEXT PLACING the Honeycomb EHC1
578 zehc1 = zeega + fgkThTopG10/2 + fgkCellDepth/2.;
579 gMC->Gspos("EHC1", 1, "EUV1", 0., 0., zehc1, 0, "ONLY");
580
581 //(4) NEXT PUT THE 4mm G10 Box : EDGA
582 zedga = zehc1 + fgkCellDepth/2.+ fgkThBotG10/2.;
583 gMC->Gspos("EDGA", 1, "EUV1", 0., 0., zedga, 0, "ONLY");
584
f117e3aa 585
24c5571f 586 //=================== LONG TYPE COMPLETED =========================//
587 //------------ Lets do the same thing for UM Short Type -------------//
588 // 4mm G10 Box : Bottom PCB + Air Gap + Base Plate
589 //================================================
590 // Make a 4mm thick G10 Box for Unit module ShortType
591 // X-dimension is EHC2 - ehcExt
592 // Y-dimension is EHC2 - ehcExt
593 // EHC2 was extended 0.15cm(ehcExt) on both sides
594 // Z-dimension 0.4/2 = 0.2 cm
595 // Integer assigned to G10 medium is 607
596
597 Float_t dboxCGB[3];
598 dboxCGB[0] = dbox4[0] - ehcExt;
599 dboxCGB[1] = dbox4[1] - ehcExt;
600 dboxCGB[2] = 0.4/2.;
601
602 //Create a G10 BOX
603 gMC->Gsvolu("EDGB","BOX", idtmed[607], dboxCGB, 3);
604
605 //-------------------------------------------------//
606 // 3.3mm G10 Box : PCB + Air Gap + Back Plane
607 //================================================
608 // Make a 3.3mm thick G10 Box for Unit module Short Type
609 // X-dimension is EHC2 - ehcExt
610 // Y-dimension is EHC2 - ehcExt
611 // EHC2 was extended 0.15cm(ehcExt) on both sides
612 // Z-dimension 0.33/2 = 0.165 cm
613
614 Float_t dboxEEGB[3];
615 dboxEEGB[0] = dboxCGB[0];
616 dboxEEGB[1] = dboxCGB[1];
617 dboxEEGB[2] = 0.33/2.;
618
619 // Create a G10 BOX
620 gMC->Gsvolu("EEGB","BOX", idtmed[607], dboxEEGB, 3);
621
622
623 //Stainless Steel Bounadry : EUM2 & EUV2
f117e3aa 624 //==================================
24c5571f 625 // Make a 3.63cm thick Stainless Steel boundary for Unit module Short Type
626 // 3.63cm equivalent to EDGB(0.4cm)+EHC2(0.5cm)+EEGB(0.33cm)+FEE Board(2.4cm)
627 // X-dimension is EEGB + fgkSSBoundary
628 // Y-dimension is EEGB + fgkSSBoundary
629 // Z-dimension 1.23/2 + 2.4/2.
630 // FEE Boards are 2.4cm thick
631 // Integer assigned to Stainless Steel medium is 618
f117e3aa 632 //------------------------------------------------------//
633 // A Stainless Steel Boundary Channel to house the unit module
24c5571f 634 // along with the FEE Boards
f117e3aa 635
24c5571f 636
637 Float_t dboxSS2[3];
638 dboxSS2[0] = dboxCGB[0] + fgkSSBoundary;
639 dboxSS2[1] = dboxCGB[1] + fgkSSBoundary;
640 dboxSS2[2] = fgkThSS/2.+ 2.4/2.;
641
642 //PRESHOWER
f117e3aa 643 //Stainless Steel boundary - Material Stainless Steel
24c5571f 644 gMC->Gsvolu("EUM2","BOX", idtmed[618], dboxSS2, 3);
645
646 //VETO
f117e3aa 647 //Stainless Steel boundary - Material Stainless Steel
24c5571f 648 gMC->Gsvolu("EUV2","BOX", idtmed[618], dboxSS2, 3);
649
f117e3aa 650 //----------------------------------------------------------------//
24c5571f 651 //NOW THE FEE BOARD IMPLEMENTATION
652
653 // To create the Mother volume to accomodate FEE boards
654 // It should have the dimension few mm smaller than the back plane
655 // But, we have taken it as big as EUM2 or EUV2
656 // It is to compensate the Stainless Steel medium of EUM2 or EUV2
f117e3aa 657
24c5571f 658 // Create Mother volume of Air : SHORT TYPE
659 //------------------------------------------------------//
f117e3aa 660
661
24c5571f 662 Float_t dboxFEEBPlaneB[3];
663 dboxFEEBPlaneB[0] = dboxSS2[0];
664 dboxFEEBPlaneB[1] = dboxSS2[1];
665 dboxFEEBPlaneB[2] = 2.4/2.;
666
667 //Volume of same dimension as EUM2 or EUV2 of Material AIR
668 gMC->Gsvolu("EFBB","BOX", idtmed[698], dboxFEEBPlaneB, 3);
669
670
671 // FEE Boards EFEE placed inside EFBB
672
673 yFee = dboxFEEBPlaneB[1] - yA -0.1 -0.3;
674 // 0.1cm and 0.3cm are subtracted to shift the FEE Boards on their actual positions
675 // As the positions are changed, because we have taken the dimension of EFBB equal
676 // to the dimension of EUM2 or EUV2
677 number = 1;
678 for (i = 1; i <= 3; ++i)
679 {
680 xFee = -dboxFEEBPlaneB[0] + xA + 0.1 +0.3;
681
682 //First we place the translator board
683 gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY");
684 // The first FEE board is 11mm from the translator board
685 xFee+=1.1;
686 number+=1;
687
688 for (j = 1; j <= 12; ++j)
689 {
690 gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY");
691 xFee += xSepa;
692 number += 1;
693 }
694
695 //Now we place Bridge Board
696 xFee = xFee - xSepa + 0.8 ;
697 //Bridge Board is at a distance 8mm from FEE board
698 gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY");
699
700 number+=1;
701 xFee+=0.8;
702
703 for (j = 1; j <= 12; ++j)
704 {
705 gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY");
706 xFee += xSepa;
707 number += 1;
708 }
709 yFee -= ySepa;
710 }
711
712
713
714 // Now Place EEGB, EDGB, EHC2 and EFBB in EUM2 & EUV2 to complete the unit module
715
716 // FOR PRE SHOWER
717 //- Placing of all components of UM in AIR BOX EUM2--//
718 //(1) FIRST PUT the G10 Box : EDGB
719 Float_t zedgb = -dboxSS2[2] + 0.4/2.;
720 gMC->Gspos("EDGB", 1, "EUM2", 0., 0., zedgb, 0, "ONLY");
721
722 //(2) NEXT PLACING the Honeycomb EHC2
723 Float_t zehc2 = zedgb + 0.4/2. + fgkCellDepth/2.;
724 gMC->Gspos("EHC2", 1, "EUM2", 0., 0., zehc2, 0, "ONLY");
725
726 //(3) NEXT PLACING the G10 Box : EEGB
727 Float_t zeegb = zehc2 + fgkCellDepth/2. + 0.33/2.;
728 gMC->Gspos("EEGB", 1, "EUM2", 0., 0., zeegb, 0, "ONLY");
729
730 //(4) NEXT PLACING FEE BOARDS : EFBB
731 Float_t zfeeboardB = zeegb + 0.33/2.+1.2;
732 gMC->Gspos("EFBB", 1, "EUM2", 0., 0., zfeeboardB, 0, "ONLY");
733
734 // FOR VETO
735 // Placing of all components of UM in AIR BOX EUV2 //
736
737 //(1) FIRST PUT the FEE BOARD : EUV2
738 zfeeboardB = -dboxSS2[2] + 1.2;
739 gMC->Gspos("EFBB", 1, "EUV2", 0., 0., zfeeboardB, 0, "ONLY");
740
741 //(2) FIRST PLACING the G10 Box : EEGB
742 zeegb = zfeeboardB + 1.2 + 0.33/2.;
743 gMC->Gspos("EEGB", 1, "EUV2", 0., 0., zeegb, 0, "ONLY");
744
745 //(3) NEXT PLACING the Honeycomb EHC2
746 zehc2 = zeegb + 0.33/2. + fgkCellDepth/2.;
747 gMC->Gspos("EHC2", 1, "EUV2", 0., 0., zehc2, 0, "ONLY");
748
749 //(4) NEXT PUT THE G10 Box : EDGB
750 zedgb = zehc2 + fgkCellDepth/2.+ 0.4/2.;
751 gMC->Gspos("EDGB", 1, "EUV2", 0., 0., zedgb, 0, "ONLY");
752
753
754 //===================================================================//
755 //---------------------- UM Type B completed ------------------------//
756
757}
758
759//_______________________________________________________________________
760
761void AliPMDv1::CreatePMD()
762{
763 // Create final detector from Unit Modules
764 // -- Author : Bedanga and Viyogi June 2003
765
766
767 Float_t zp = fgkZdist; //Z-distance of PMD from Interaction Point
768
769 Int_t jhrot12,jhrot13, irotdm;
770 Int_t *idtmed = fIdtmed->GetArray()-599;
771
772 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
773 AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.);
774 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
775
776 // Now We Will Calculate Position Co-ordinates of EUM1 & EUV1 in EPM1 & EPM2
777
778 Float_t dbox1[3];
779 dbox1[0] = fgkCellRadius/fgkSqroot3by2;
780 dbox1[1] = fgkNrowUM1*fgkCellRadius;
781 dbox1[2] = fgkCellDepth/2.;
782
783 Float_t dbox3[3];
784 dbox3[0] = (dbox1[0]*fgkNcolUM1)-
785 (fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.) + 0.15 + 0.05 + 0.05;
786 dbox3[1] = dbox1[1]+fgkCellRadius/2. + 0.15 + 0.05 + 0.05;
787 dbox3[2] = fgkCellDepth/2.;
788
789 Float_t dboxCGA[3];
790 dboxCGA[0] = dbox3[0] - 0.15;
791 dboxCGA[1] = dbox3[1] - 0.15;
792 dboxCGA[2] = 0.4/2.;
793
794 Float_t dboxSS1[3];
795 dboxSS1[0] = dboxCGA[0]+fgkSSBoundary;
796 dboxSS1[1] = dboxCGA[1]+fgkSSBoundary;
797 dboxSS1[2] = fgkThSS/2.;
f117e3aa 798
c2518432 799 Float_t dboxUM1[3];
800 dboxUM1[0] = dboxSS1[0];
801 dboxUM1[1] = dboxSS1[1];
24c5571f 802 dboxUM1[2] = fgkThSS/2. + 1.2;
f117e3aa 803
24c5571f 804 Float_t dboxSM1[3];
805 dboxSM1[0] = fSMLengthax + 0.05; // 0.05cm for the ESC1,2
806 dboxSM1[1] = fSMLengthay;
807 dboxSM1[2] = dboxUM1[2];
808
809 // Position co-ordinates of the unit modules in EPM1 & EPM2
810 Float_t xa1,xa2,xa3,ya1,ya2;
811 xa1 = dboxSM1[0] - dboxUM1[0];
812 xa2 = xa1 - dboxUM1[0] - 0.1 - dboxUM1[0];
813 xa3 = xa2 - dboxUM1[0] - 0.1 - dboxUM1[0];
814 ya1 = dboxSM1[1] - 0.2 - dboxUM1[1];
815 ya2 = ya1 - dboxUM1[1] - 0.3 - dboxUM1[1];
816
817 // Next to Calculate Position Co-ordinates of EUM2 & EUV2 in EPM3 & EPM4
818
819 Float_t dbox2[3];
820 dbox2[1] = fgkNrowUM2*fgkCellRadius;
821 dbox2[0] = dbox1[0];
822 dbox2[2] = dbox1[2];
823
824 Float_t dbox4[3];
825 dbox4[0] =(dbox2[0]*fgkNcolUM2)-
826 (fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.) + 0.15 + 0.05 + 0.05;
827 dbox4[1] = dbox2[1] + fgkCellRadius/2. + 0.15 + 0.05 + 0.05;
828 dbox4[2] = dbox3[2];
829
830 Float_t dboxCGB[3];
831 dboxCGB[0] = dbox4[0] - 0.15;
832 dboxCGB[1] = dbox4[1] - 0.15;
833 dboxCGB[2] = 0.4/2.;
834
835 Float_t dboxSS2[3];
836 dboxSS2[0] = dboxCGB[0] + fgkSSBoundary;
837 dboxSS2[1] = dboxCGB[1] + fgkSSBoundary;
838 dboxSS2[2] = fgkThSS/2.;
839
840 Float_t dboxUM2[3];
841 dboxUM2[0] = dboxSS2[0];
842 dboxUM2[1] = dboxSS2[1];
843 dboxUM2[2] = fgkThSS/2. + 2.4/2.; // 2.4 cm is added for FEE Board thickness
f117e3aa 844
24c5571f 845 Float_t dboxSM2[3];
846 dboxSM2[0] = fSMLengthbx + 0.05; // 0.05cm for the ESC3,4
847 dboxSM2[1] = fSMLengthby;
848 dboxSM2[2] = dboxUM2[2];
849
850 // Position co-ordinates of the unit modules in EPM3 & EPM4
851 // Space is added to provide a gapping for HV between UM's
852 Float_t xb1,xb2,yb1,yb2,yb3;
853 xb1 = dboxSM2[0] - 0.1 - dboxUM2[0];
854 xb2 = xb1 - dboxUM2[0] - 0.1 - dboxUM2[0];
855 yb1 = dboxSM2[1] - 0.2 - dboxUM2[1];
954e52e8 856 yb2 = yb1 - dboxUM2[1] - 0.2 - dboxUM2[1];
857 yb3 = yb2 - dboxUM2[1] - 0.3- dboxUM2[1];
858
24c5571f 859
860 // Create Volumes for Lead(Pb) Plates
861
862 // Lead Plate For LONG TYPE
863 // X-dimension of Lead Plate = 3*(X-dimension of EUM1 or EUV1) + gap provided between unit modules
864 // Y-dimension of Lead Plate = 2*(Y-dimension of EUM1 or EUV1) + thickness of SS channels
865 // + tolerance
866 // Z-demension of Lead Plate = 1.5cm
867 // Integer assigned to Pb-medium is 600
868
869 Float_t dboxLeadA[3];
870 dboxLeadA[0] = fSMLengthax;
871 dboxLeadA[1] = fSMLengthay;
872 dboxLeadA[2] = fgkThLead/2.;
873
874 gMC->Gsvolu("ELDA","BOX", idtmed[600], dboxLeadA, 3);
875
876 //LEAD Plate For SHORT TYPE
877 // X-dimension of Lead Plate = 2*(X-dimension of EUM2 or EUV2) + gap provided between unit modules
878 // Y-dimension of Lead Plate = 3*(Y-dimension of EUM2 or EUV2) + thickness of SS channels
879 // + tolerance
880 // Z-demension of Lead Plate = 1.5cm
881 // Integer assigned to Pb-medium is 600
882
883 Float_t dboxLeadB[3];
884 dboxLeadB[0] = fSMLengthbx;
885 dboxLeadB[1] = fSMLengthby;
886 dboxLeadB[2] = fgkThLead/2.;
887
888 gMC->Gsvolu("ELDB","BOX", idtmed[600], dboxLeadB, 3);
889
890 //=========== CREATE MOTHER VOLUMES FOR PMD ===========================/
891
892 Float_t serviceX = 23.2;
893 Float_t serviceYa = 5.2;
894 Float_t serviceYb = 9.8;
895 Float_t serviceXext = 16.0;
896
897 // Five Mother Volumes of PMD are Created
898 // Two Volumes EPM1 & EPM2 of Long Type
899 // Other Two Volumes EPM3 & EPM4 for Short Type
900 // Fifth Volume EFGD for Girders and its Carriage
901 // Four Volmes EPM1, EPM2, EPM3 & EPM4 are Placed such that
902 // to create a hole and avoid overlap with Beam Pipe
903
904 // Create Volume FOR EPM1
905 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) +
906 // Extension in Module(16cm) for full coverage of Detector + 1mm thick SS-Plate
907 // Y-dimension = fSMLengthay + Extended Iron Support(5.2cm)
908 // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side
909 // Note:- EPM1 is a Volume of Air
910
911 Float_t gaspmd1[3];
912 gaspmd1[0] = fSMLengthax + serviceX/2.+ serviceXext/2. + 0.05; //0.05cm for the thickness of
913 gaspmd1[1] = fSMLengthay + serviceYa/2.; //SS-plate for cooling encloser
914 gaspmd1[2] = fSMthick/2.;
915
916 gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd1, 3);
917
918
919 // Create Volume FOR EPM2
920
921 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) +
922 // Extension in Module(16cm) for full coverage of Detector + 1mm thick SS-Plate
923 // Y-dimension = fSMLengthay + Extended Iron Support(9.8cm)
924 // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side
925 // Note:- EPM2 is a Volume of Air
926
927 Float_t gaspmd2[3];
928 gaspmd2[0] = fSMLengthax + serviceX/2. + serviceXext/2. + 0.05; //0.05cm for the thickness of
929 gaspmd2[1] = fSMLengthay + serviceYb/2.; //SS-plate for cooling encloser
930 gaspmd2[2] = fSMthick/2.;
931
932 gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd2, 3);
933
934 // Create Volume FOR EPM3
f117e3aa 935
24c5571f 936 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) +
937 // Extension in Module(16cm) for full coverage of Detector
938 // Y-dimension = fSMLengthby + Extended Iron Support(5.2cm)
939 // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side
940 // Note:- EPM3 is a Volume of Air
941
942
943 Float_t gaspmd3[3];
944 gaspmd3[0] = fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05; //0.05cm for the thickness of
945 gaspmd3[1] = fSMLengthby + serviceYa/2.; //SS-plate for cooling encloser
946 gaspmd3[2] = fSMthick/2.;
947
948 gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd3, 3);
949
950 // Create Volume FOR EPM4
951
952 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) +
953 // Extension in Module(16cm) for full coverage of Detector
954 // Y-dimension = fSMLengthby + Extended Iron Support(9.8cm)
955 // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side
956 // Note:- EPM4 is a Volume of Air
f117e3aa 957
24c5571f 958 Float_t gaspmd4[3];
959 gaspmd4[0] = fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05; //0.05cm for the thickness of
960 gaspmd4[1] = fSMLengthby + serviceYb/2.; //SS-plate for cooling encloser
961 gaspmd4[2] = fSMthick/2.;
f117e3aa 962
24c5571f 963 gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd4, 3);
964
965 // Create the Fifth Mother Volume of Girders and its Carriage
966 //-------------------------------------------------------------//
967 // Create the Girders
968
969 // X-dimension = 238.7cm
970 // Y-dimension = 12.0cm
971 // Z-dimension = 7.0cm
972 // Girders are the Volume of Iron
973 // And the Integer Assigned to SS is 618
974
975 Float_t grdr[3];
976 grdr[0] = 238.7/2.;
977 grdr[1] = 12.0/2.;
978 grdr[2] = 7.0/2.;
979
980 gMC->Gsvolu("EGDR", "BOX", idtmed[618], grdr, 3);
981
982 // Create Air Strip for Girders as the Girders are hollow
983 // Girders are 1cm thick in Y and Z on both sides
984
985 Float_t airgrdr[3];
986 airgrdr[0] = grdr[0];
987 airgrdr[1] = grdr[1] - 1.0;
988 airgrdr[2] = grdr[2] - 1.0;
989
990 gMC->Gsvolu("EAIR", "BOX", idtmed[698], airgrdr, 3);
f117e3aa 991
24c5571f 992 // Positioning the air strip EAIR in girder EGDR
993 gMC->Gspos("EAIR", 1, "EGDR", 0., 0., 0., 0, "ONLY");
f117e3aa 994
24c5571f 995 // Create the Carriage for Girders
996 // Originally, Carriage is divided in two parts
997 // 64.6cm on -X side, 44.2cm on +X side and 8.2cm is the gap between two
998 // In approximation we have taken these together as a single Volume
999 // With X = 64.6cm + 44.2cm + 8.2cm
1000 // Y-dimension = 4.7cm
1001 // Z-dimension = 18.5cm
1002 // Carriage is a Volume of SS
1003
1004 Float_t xgrdr[3];
1005 xgrdr[0] = (64.6 + 44.2 + 8.2)/2.;
1006 xgrdr[1] = 4.7/2.;
1007 xgrdr[2] = 18.5/2.;
f117e3aa 1008
24c5571f 1009 gMC->Gsvolu("EXGD", "BOX", idtmed[618], xgrdr, 3);
1010
1011 // Create Air Strip for the Carriage EXGD as it is hollow
1012 // Carriage is 1cm thick in Y on one side and in Z on both sides
f117e3aa 1013
24c5571f 1014 Float_t xairgrdr[3];
1015 xairgrdr[0] = xgrdr[0];
1016 xairgrdr[1] = xgrdr[1] - 0.5;
1017 xairgrdr[2] = xgrdr[2] - 1.0;
f117e3aa 1018
24c5571f 1019 gMC->Gsvolu("EXIR", "BOX", idtmed[698], xairgrdr, 3);
1020
1021 // Positioning the air strip EXIR in CArriage EXGD
1022 gMC->Gspos("EXIR", 1, "EXGD", 0., -0.05, 0., 0, "ONLY");
1023
1024 // Now Create the master volume of air containing Girders & Carriage
1025
1026 // X-dimension = same as X-dimension of Girders(EGDR)
1027 // Y-dimension = Y of Girder(EGDR) + Y of Carriage(EXGD) + gap between two
1028 // Z-dimenson = same as Z of Carriage(EXGD)
1029 // Note:- It is a volume of Air
f117e3aa 1030
24c5571f 1031 Float_t fulgrdr[3];
1032 fulgrdr[0] = 238.7/2.;
1033 fulgrdr[1] = 17.5/2.;
1034 fulgrdr[2] = 18.5/2.;
f117e3aa 1035
24c5571f 1036 gMC->Gsvolu("EFGD", "BOX", idtmed[698], fulgrdr, 3);
f117e3aa 1037
24c5571f 1038 // Positioning the EGDR and EXGD in EFGD
1039
1040 gMC->Gspos("EXGD", 1, "EFGD", 0., 6.4, 0., 0, "ONLY");
1041 gMC->Gspos("EGDR", 1, "EFGD", 0., -2.75, -5.75, 0, "ONLY");
1042 gMC->Gspos("EGDR", 2, "EFGD", 0., -2.75, 5.75, 0, "ONLY");
1043
1044 //=========== Mother Volumes are Created ============================//
1045
1046 // Create the Volume of 1mm thick SS-Plate for cooling encloser
1047 // These are placed on the side close to the Beam Pipe
1048 // SS-Plate is perpendicular to the plane of Detector
1049
1050 // For LONG TYPE
1051
1052 // For EPM1
1053 // X-dimension = 0.1cm
1054 // Y-dimension = same as Y of EPM1
1055 // Z-dimension = Y of EPM1 - 0.1; 0.1cm is subtracted as 1mm thick
1056 // FR4 sheets for the detector encloser placed on both sides
1057 // It is a Volume of SS
1058 // Integer assigned to SS is 618
1059
1060 Float_t sscoolencl1[3];
1061 sscoolencl1[0] = 0.05;
1062 sscoolencl1[1] = gaspmd1[1];
1063 sscoolencl1[2] = gaspmd1[2] - 0.2/2.;
1064
1065 gMC->Gsvolu("ESC1", "BOX", idtmed[618], sscoolencl1, 3);
1066
1067 // Placement of ESC1 in EPM1
1068 gMC->Gspos("ESC1", 1, "EPM1", -gaspmd1[0] + 0.05, 0., 0., 0, "ONLY");
1069
1070
1071 // For EPM2
1072 // X-dimension = 0.1cm
1073 // Y-dimension = same as Y of EPM2
1074 // Z-dimension = Y of EPM2 - 0.1; 0.1cm is subtracted as 1mm thick
1075 // FR4 sheets for the detector encloser placed on both sides
1076 // It is a Volume of SS
1077
1078 Float_t sscoolencl2[3];
1079 sscoolencl2[0] = 0.05;
1080 sscoolencl2[1] = gaspmd2[1];
1081 sscoolencl2[2] = gaspmd2[2] - 0.2/2.;
1082
1083 gMC->Gsvolu("ESC2", "BOX", idtmed[618], sscoolencl2, 3);
1084
1085 // Placement of ESC2 in EPM2
1086 gMC->Gspos("ESC2", 1, "EPM2", gaspmd2[0] - 0.05 , 0., 0., 0, "ONLY");
1087
1088 // For SHORT TYPE
1089
1090 // For EPM3
1091 // X-dimension = 0.1cm
1092 // Y-dimension = same as Y of EPM3
1093 // Z-dimension = Y of EPM3 - 0.1; 0.1cm is subtracted as 1mm thick
1094 // FR4 sheets for the detector encloser placed on both sides
1095 // It is a Volume of SS
f117e3aa 1096
24c5571f 1097 Float_t sscoolencl3[3];
1098 sscoolencl3[0] = 0.05;
1099 sscoolencl3[1] = gaspmd3[1];
1100 sscoolencl3[2] = gaspmd3[2] - 0.2/2.;
f117e3aa 1101
24c5571f 1102 gMC->Gsvolu("ESC3", "BOX", idtmed[618], sscoolencl3, 3);
f117e3aa 1103
24c5571f 1104 // Placement of ESC3 in EPM3
1105 gMC->Gspos("ESC3", 1, "EPM3", gaspmd3[0] - 0.05 , 0., 0., 0, "ONLY");
f117e3aa 1106
f117e3aa 1107
24c5571f 1108 // For EPM4
1109 // X-dimension = 0.1cm
1110 // Y-dimension = same as Y of EPM4
1111 // Z-dimension = Y of EPM4 - 0.1; 0.1cm is subtracted as 1mm thick
1112 // FR4 sheets for the detector encloser placed on both sides
1113 // It is a Volume of SS
1114
1115 Float_t sscoolencl4[3];
1116 sscoolencl4[0] = 0.05;
1117 sscoolencl4[1] = gaspmd4[1];
1118 sscoolencl4[2] = gaspmd4[2] - 0.2/2.;
f117e3aa 1119
24c5571f 1120 gMC->Gsvolu("ESC4", "BOX", idtmed[618], sscoolencl4, 3);
f117e3aa 1121
24c5571f 1122 // Placement of ESC4 in EPM4
1123 gMC->Gspos("ESC4", 1, "EPM4", -gaspmd4[0] + 0.05 , 0., 0., 0, "ONLY");
f117e3aa 1124
24c5571f 1125 //======== CREATE SS SUPPORTS FOR EPM1, EPM2, EPM3 & EPM4 =========//
1126 // --- DEFINE SS volumes for EPM1 & EPM2 ---
c2518432 1127
24c5571f 1128 // Create SS Support For EPM1
1129
1130 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm)
1131 // Y-dimension = fSMLengthay + Extended Iron Support(5.2cm)
1132 // Z-dimension = thickness of Iron support(0.5cm)
1133 // It is a Volume of SS
1134 // Integer assigned to SS is 618
1135
1136 Float_t dboxFea1[3];
1137 dboxFea1[0] = fSMLengthax + serviceX/2.;
1138 dboxFea1[1] = fSMLengthay + serviceYa/2.;
1139 dboxFea1[2] = fgkThSteel/2.;
f117e3aa 1140
24c5571f 1141 gMC->Gsvolu("EFE1","BOX", idtmed[618], dboxFea1, 3);
f117e3aa 1142
f117e3aa 1143
24c5571f 1144 // Create SS Support For EPM2
f117e3aa 1145
24c5571f 1146 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm)
1147 // Y-dimension = fSMLengthay + Extended Iron Support(9.8cm)
1148 // Z-dimension = thickness of Iron support(0.5cm)
1149 // It is a Volume of SS
1150 // Integer assigned to SS is 618
f117e3aa 1151
24c5571f 1152 Float_t dboxFea2[3];
1153 dboxFea2[0] = fSMLengthax + serviceX/2.;
1154 dboxFea2[1] = fSMLengthay + serviceYb/2.;
1155 dboxFea2[2] = fgkThSteel/2.;
1156
1157 gMC->Gsvolu("EFE2","BOX", idtmed[618], dboxFea2, 3);
f117e3aa 1158
24c5571f 1159 // Create SS Support For EPM3
f117e3aa 1160
24c5571f 1161 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm)
1162 // Y-dimension = fSMLengthby + Extended Iron Support(5.2cm)
1163 // Z-dimension = thickness of Iron support(0.5cm)
1164 // It is a Volume of SS
1165 // Integer assigned to SS is 618
f117e3aa 1166
24c5571f 1167 Float_t dboxFea3[3];
1168 dboxFea3[0] = fSMLengthbx + serviceX/2.;
1169 dboxFea3[1] = fSMLengthby + serviceYa/2.;
1170 dboxFea3[2] = fgkThSteel/2.;
1171
1172 gMC->Gsvolu("EFE3","BOX", idtmed[618], dboxFea3, 3);
f117e3aa 1173
24c5571f 1174 // Create SS Support For EPM4
c2518432 1175
24c5571f 1176 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm)
1177 // Y-dimension = fSMLengthby + Extended Iron Support(9.8cm)
1178 // Z-dimension = thickness of Iron support(0.5cm)
1179 // It is a Volume of SS
1180 // Integer assigned to SS is 618
1181
1182 Float_t dboxFea4[3];
1183 dboxFea4[0] = fSMLengthbx + serviceX/2.;
1184 dboxFea4[1] = fSMLengthby + serviceYb/2.;
1185 dboxFea4[2] = fgkThSteel/2.;
1186
1187 gMC->Gsvolu("EFE4","BOX", idtmed[618], dboxFea4, 3);
f117e3aa 1188
f117e3aa 1189
24c5571f 1190 //=============== Volumes for SS support are Completed =============//
1191
1192 // Create FR4 Sheets to enclose the PMD which are Placed parallel to the
1193 // plane of the detector. Four FR4 sheets are created with the dimensions
1194 // corresponding to the Iron Supports
1195 // This is cooling encloser.
1196
1197 // Create FR4 sheet ECC1
1198 // X-dimension = same as EFE1
1199 // Y-dimension = same as EFE1
1200 // Z-dimension = 0.1cm
1201 // FR4 medium is same as that of G10
1202 // Integer assigned to FR4 medium is 607
1203
1204 Float_t enclos1[3];
1205 enclos1[0] = dboxFea1[0];
1206 enclos1[1] = dboxFea1[1];
1207 enclos1[2] = 0.05;
f117e3aa 1208
24c5571f 1209 gMC->Gsvolu("ECC1", "BOX", idtmed[607], enclos1, 3);
1210
1211 // Create FR4 sheet ECC2
1212 // X-dimension = same as EFE2
1213 // Y-dimension = same as EFE2
1214 // Z-dimension = 0.1cm
1215
1216 Float_t enclos2[3];
1217 enclos2[0] = dboxFea2[0];
1218 enclos2[1] = dboxFea2[1];
1219 enclos2[2] = 0.05;
1220
1221 gMC->Gsvolu("ECC2", "BOX", idtmed[607], enclos2, 3);
1222
1223 // Create FR4 sheet ECC3
1224 // X-dimension = same as EFE3
1225 // Y-dimension = same as EFE3
1226 // Z-dimension = 0.1cm
1227
1228 Float_t enclos3[3];
1229 enclos3[0] = dboxFea3[0];
1230 enclos3[1] = dboxFea3[1];
1231 enclos3[2] = 0.05;
1232
1233 gMC->Gsvolu("ECC3", "BOX", idtmed[607], enclos3, 3);
f117e3aa 1234
24c5571f 1235 // Create FR4 sheet ECC4
1236 // X-dimension = same as EFE4
1237 // Y-dimension = same as EFE4
1238 // Z-dimension = 0.1cm
f117e3aa 1239
24c5571f 1240 Float_t enclos4[3];
1241 enclos4[0] = dboxFea4[0];
1242 enclos4[1] = dboxFea4[1];
1243 enclos4[2] = 0.05;
f117e3aa 1244
24c5571f 1245 gMC->Gsvolu("ECC4", "BOX", idtmed[607], enclos4, 3);
1246
1247 //--------------- FR4 SHEETS COMPLETED ---------------------------//
1248
1249 //------------- Create the SS-Channels(Horizontal Rails) to Place
1250 // Unit Modules on SS Support -------------------------------------//
1251
1252 // Two types of SS-Channels are created
1253 // as we have two types of modules
1254
1255 // Create SS-channel for Long Type
1256 // X-dimension = same as Lead Plate ELDA
1257 // Y-dimension = 0.1cm
1258 // Z-dimension = 2.0cm
1259 // Volume medium is SS
1260
1261 Float_t channel12[3];
1262 channel12[0] = fSMLengthax;
1263 channel12[1] = 0.05;
1264 channel12[2] = 2.0/2.;
1265
1266 gMC->Gsvolu("ECHA", "BOX", idtmed[618], channel12, 3);
f117e3aa 1267
24c5571f 1268 // Create SS-channel for Short Type
1269 // X-dimension = same as Lead Plate ELDB
1270 // Y-dimension = 0.1cm
1271 // Z-dimension = 2.0cm
1272 // Volume medium is SS
f117e3aa 1273
24c5571f 1274 Float_t channel34[3];
1275 channel34[0] = fSMLengthbx;
1276 channel34[1] = 0.05;
1277 channel34[2] = 2.0/2.;
f117e3aa 1278
24c5571f 1279 gMC->Gsvolu("ECHB", "BOX", idtmed[618], channel34, 3);
f117e3aa 1280
24c5571f 1281 //----------------- SS-Channels are Copmleted --------------------//
1282
1283 //========= POSITIONING OF SS SUPPORT AND LEAD PLATES IN QUADRANTS =====//
1284
1285 /**************** Z-Distances of different Components **********/
1286
1287 Float_t zcva,zfea,zpba,zpsa,zchanVeto,zchanPS, zelvdbVeto, zelvdbPS;
1288
1289
1290 zpba = - fgkThSteel/2.; //z-position of Pb plate
1291 zfea = fgkThLead/2.; //z-position of SS-Support
1292 zchanVeto = zpba - fgkThLead/2. - channel12[2]; //z-position of SS-channel on Veto
1293 zchanPS = zfea + fgkThSteel/2. + channel12[2]; //z-position of SS-channel on Preshower
1294 zpsa = zfea + fgkThSteel/2. + fDthick; //z-position of Preshower
1295 zcva = zpba - fgkThLead/2.- fDthick; //z-position of Veto
1296
1297 zelvdbVeto = zpba + fgkThLead/2. - 8.9/2.; //z-position of LVDBs on Veto side
1298 zelvdbPS = zfea + fgkThSteel/2. + 7.4/2.; //z-position of LVDBs on Preshower side
1299
1300 // FOR LONG TYPE
1301 Float_t xLead1,yLead1,zLead1, xLead2,yLead2,zLead2;
1302 Float_t xIron1,yIron1,zIron1, xIron2,yIron2,zIron2;
1303
1304
1305 xIron1 = - 16.0/2. + 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed
1306 yIron1 = 0.;
1307 zIron1 = zfea;
1308
1309 xIron2 = 16.0/2. - 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed
1310 yIron2 = 0.;
1311 zIron2 = zfea;
1312
1313
1314 xLead1 = xIron1 - 23.2/2.;
1315 yLead1 = -5.2/2.;
1316 zLead1 = zpba;
1317
1318 xLead2 =xIron2 + 23.2/2.;
1319 yLead2 = 9.8/2.;
1320 zLead2 = zpba;
1321
1322 gMC->Gspos("EFE1", 1, "EPM1", xIron1, yIron1, zfea, 0, "ONLY");
1323 gMC->Gspos("ELDA", 1, "EPM1", xLead1, yLead1, zpba, 0, "ONLY");
1324 gMC->Gspos("EFE2", 1, "EPM2", xIron2, yIron2, zfea, 0, "ONLY");
1325 gMC->Gspos("ELDA", 1, "EPM2", xLead2, yLead2, zpba, jhrot12, "ONLY");
1326
1327
1328 // FOR SHORT TYPE
1329 Float_t xLead3,yLead3,zLead3, xLead4,yLead4,zLead4;
1330 Float_t xIron3,yIron3,zIron3, xIron4,yIron4,zIron4;
1331
1332
1333 xIron3 = 16.0/2.- 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed ;
1334 yIron3 = 0.;
1335 zIron3 = zfea;
1336
1337 xIron4 = - 16.0/2.+ 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed;
1338 yIron4 = 0.;
1339 zIron4 = zfea;
1340
1341 xLead3 = xIron3 + 23.2/2.;
1342 yLead3 = -5.2/2.;
1343 zLead3 = zpba;
1344
1345 xLead4 = xIron4 - 23.2/2.;
1346 yLead4 = 9.8/2.;
1347 zLead4 = zpba;
1348
1349 gMC->Gspos("EFE3", 1, "EPM3", xIron3, yIron3, zfea, 0, "ONLY");
1350 gMC->Gspos("ELDB", 1, "EPM3", xLead3, yLead3, zpba, 0, "ONLY");
1351 gMC->Gspos("EFE4", 1, "EPM4", xIron4, yIron4, zfea, 0, "ONLY");
1352 gMC->Gspos("ELDB", 1, "EPM4", xLead4, yLead4, zpba, jhrot12, "ONLY");
1353
1354 //===================================================================//
1355 // Placement of FR4 sheets as encloser of full profile of PMD
1356
1357 gMC->Gspos("ECC1", 1, "EPM1", xIron1, yIron1, -8.45, 0, "ONLY");
1358 gMC->Gspos("ECC2", 1, "EPM2", xIron2, yIron2, -8.45, 0,"ONLY");
1359 gMC->Gspos("ECC3", 1, "EPM3", xIron3, yIron3, -8.45, 0,"ONLY");
1360 gMC->Gspos("ECC4", 1, "EPM4", xIron4, yIron4, -8.45, 0,"ONLY");
f117e3aa 1361
24c5571f 1362 gMC->Gspos("ECC1", 2, "EPM1", xIron1, yIron1, 8.45, 0, "ONLY");
1363 gMC->Gspos("ECC2", 2, "EPM2", xIron2, yIron2, 8.45, 0,"ONLY");
1364 gMC->Gspos("ECC3", 2, "EPM3", xIron3, yIron3, 8.45, 0,"ONLY");
1365 gMC->Gspos("ECC4", 2, "EPM4", xIron4, yIron4, 8.45, 0,"ONLY");
1366
1367 //----------------- NOW TO PLACE SS-CHANNELS -----------------------//
1368
1369 Float_t xchanepm11, ychanepm11,ychanepm12;
1370 Float_t xchanepm21, ychanepm21,ychanepm22;
1371 Float_t xchanepm31, ychanepm31,ychanepm32,ychanepm33,ychanepm34;
1372 Float_t xchanepm41, ychanepm41,ychanepm42,ychanepm43,ychanepm44;
1373
1374 xchanepm11 = xLead1;
1375 ychanepm11 = ya1 + yLead1 + dboxSS1[1] + 0.1 + 0.1/2.;
1376 ychanepm12 = ya1 + yLead1 - dboxSS1[1] - 0.1 - 0.1/2.;
1377
1378 xchanepm21 = xLead2;
1379 ychanepm21 = -ya1 + yLead2 - dboxSS1[1] - 0.1 - 0.1/2.;
1380 ychanepm22 = -ya1 + yLead2 + dboxSS1[1] + 0.1 + 0.1/2.;
1381
1382 gMC->Gspos("ECHA", 1, "EPM1", xchanepm11, ychanepm11, zchanPS, 0, "ONLY");
1383 gMC->Gspos("ECHA", 2, "EPM1", xchanepm11, ychanepm12, zchanPS, 0, "ONLY");
1384 gMC->Gspos("ECHA", 3, "EPM1", xchanepm11, ychanepm11, zchanVeto, 0, "ONLY");
1385 gMC->Gspos("ECHA", 4, "EPM1", xchanepm11, ychanepm12, zchanVeto, 0, "ONLY");
1386 gMC->Gspos("ECHA", 1, "EPM2", xchanepm21, ychanepm21, zchanPS, 0, "ONLY");
1387 gMC->Gspos("ECHA", 2, "EPM2", xchanepm21, ychanepm22, zchanPS, 0, "ONLY");
1388 gMC->Gspos("ECHA", 3, "EPM2", xchanepm21, ychanepm21, zchanVeto, 0, "ONLY");
1389 gMC->Gspos("ECHA", 4, "EPM2", xchanepm21, ychanepm22, zchanVeto, 0, "ONLY");
1390
1391 xchanepm31 = xLead3;
1392 ychanepm31 = yb1 + yLead3 + dboxSS2[1] + 0.1 + 0.1/2.;
1393 ychanepm32 = yb1 + yLead3 - dboxSS2[1] - 0.1 - 0.1/2.;
1394 ychanepm33 = yb3 + yLead3 + dboxSS2[1] + 0.1 + 0.1/2.;
1395 ychanepm34 = yb3 + yLead3 - dboxSS2[1] - 0.1 - 0.1/2.;
1396
1397 xchanepm41 = xLead4;
1398 ychanepm41 = -yb1 + yLead4 - dboxSS2[1] - 0.1 - 0.1/2.;
1399 ychanepm42 = -yb1 + yLead4 + dboxSS2[1] + 0.1 + 0.1/2.;
1400 ychanepm43 = -yb3 + yLead4 - dboxSS2[1] - 0.1 - 0.1/2.;
1401 ychanepm44 = -yb3 + yLead4 + dboxSS2[1] + 0.1 + 0.1/2.;
1402
1403
1404 gMC->Gspos("ECHB", 1, "EPM3", xchanepm31, ychanepm31, zchanPS, 0, "ONLY");
1405 gMC->Gspos("ECHB", 2, "EPM3", xchanepm31, ychanepm32, zchanPS, 0, "ONLY");
1406 gMC->Gspos("ECHB", 3, "EPM3", xchanepm31, ychanepm33, zchanPS, 0, "ONLY");
954e52e8 1407 gMC->Gspos("ECHB", 4, "EPM3", xchanepm31, ychanepm34 + 0.200005, zchanPS, 0, "ONLY");
1408 // Because of overlaping a factor 0.200005 is added in ychanepm34
1409
24c5571f 1410 gMC->Gspos("ECHB", 5, "EPM3", xchanepm31, ychanepm31, zchanVeto, 0, "ONLY");
1411 gMC->Gspos("ECHB", 6, "EPM3", xchanepm31, ychanepm32, zchanVeto, 0, "ONLY");
1412 gMC->Gspos("ECHB", 7, "EPM3", xchanepm31, ychanepm33, zchanVeto, 0, "ONLY");
954e52e8 1413 gMC->Gspos("ECHB", 8, "EPM3", xchanepm31, ychanepm34 + 0.200005, zchanVeto, 0, "ONLY");
1414 // Because of overlaping a factor 0.200005 is added in ychanepm34
24c5571f 1415
1416 gMC->Gspos("ECHB", 1, "EPM4", xchanepm41, ychanepm41, zchanPS, 0, "ONLY");
1417 gMC->Gspos("ECHB", 2, "EPM4", xchanepm41, ychanepm42, zchanPS, 0, "ONLY");
1418 gMC->Gspos("ECHB", 3, "EPM4", xchanepm41, ychanepm43, zchanPS, 0, "ONLY");
954e52e8 1419 gMC->Gspos("ECHB", 4, "EPM4", xchanepm41, ychanepm44 - 0.200002, zchanPS, 0, "ONLY");
1420 // Because of overlaping a factor 0.200002 is subtracted in ychanepm44
1421
24c5571f 1422 gMC->Gspos("ECHB", 5, "EPM4", xchanepm41, ychanepm41, zchanVeto, 0, "ONLY");
1423 gMC->Gspos("ECHB", 6, "EPM4", xchanepm41, ychanepm42, zchanVeto, 0, "ONLY");
1424 gMC->Gspos("ECHB", 7, "EPM4", xchanepm41, ychanepm43, zchanVeto, 0, "ONLY");
954e52e8 1425 gMC->Gspos("ECHB", 8, "EPM4", xchanepm41, ychanepm44 -0.200002, zchanVeto, 0, "ONLY");
1426 // Because of overlaping a factor 0.200002 is subtracted in ychanepm44
1427
24c5571f 1428 //================= Channel Placement Completed ======================//
1429 //============ Now to Create Al Box and then LVDBs and Cables //
1430 // are Placed inside it //
f117e3aa 1431
24c5571f 1432 // Eight Al Boxes are created, four on Preshower side
1433 // and four on Veto side
f117e3aa 1434
24c5571f 1435 // FOR PRESHOWER
f117e3aa 1436
24c5571f 1437 // First to Create hollow Al Box
1438 // there are two types of modules, therefore, two Al box of
1439 // long type and two of short type are created
f117e3aa 1440
24c5571f 1441 // For Long Type
1442 // X-dimension = 16.5cm
1443 // Y-dimension = same as EFE1
1444 // Z-dimension = 7.4cm
1445 // Integer assigned to Al medium is 603
c4561145 1446
24c5571f 1447 Float_t esvdA1[3];
1448 esvdA1[0]= 16.5/2.;
1449 esvdA1[1]= dboxFea1[1];
1450 esvdA1[2]= 7.4/2.;
1451
1452 gMC->Gsvolu("ESV1", "BOX", idtmed[603], esvdA1, 3);
1453 gMC->Gsvolu("ESV2", "BOX", idtmed[603], esvdA1, 3);
1454
1455 // Create Air strip for Al Boxes type-A
1456 // Al boxes are 3mm thick In X and Z on both sides
1457 // X-dimension = 16.5cm - 0.3cm
1458 // Y-dimension = same as EFE1
1459 // Z-dimension = 7.4cm - 0.3cm
1460
1461 Float_t eairA1[3];
1462 eairA1[0]= esvdA1[0] - 0.3;
1463 eairA1[1]= esvdA1[1];
1464 eairA1[2]= esvdA1[2] - 0.3;
1465
1466 gMC->Gsvolu("EIR1", "BOX", idtmed[698], eairA1, 3);
954e52e8 1467 gMC->Gsvolu("EIR2", "BOX", idtmed[698], eairA1, 3);
24c5571f 1468
954e52e8 1469 // Put air strips EIR1 & EIR2 inside ESV1 & ESV2 respectively
24c5571f 1470 gMC->Gspos("EIR1", 1, "ESV1", 0., 0., 0., 0, "ONLY");
954e52e8 1471 gMC->Gspos("EIR2", 1, "ESV2", 0., 0., 0., 0, "ONLY");
b1952773 1472
b1952773 1473
24c5571f 1474 // For Short Type
1475 // X-dimension = 16.5cm
1476 // Y-dimension = same as EFE3
1477 // Z-dimension = 7.4cm
1478
1479 Float_t esvdA2[3];
1480 esvdA2[0]= esvdA1[0];
1481 esvdA2[1]= dboxFea3[1];
1482 esvdA2[2]= esvdA1[2];
f117e3aa 1483
24c5571f 1484 gMC->Gsvolu("ESV3", "BOX", idtmed[603], esvdA2, 3);
1485 gMC->Gsvolu("ESV4", "BOX", idtmed[603], esvdA2, 3);
a978c9e3 1486
24c5571f 1487 // Create Air strip for Al Boxes type-B
1488 // Al boxes are 3mm thick In X and Z on both sides
1489 // X-dimension = 16.5cm - 0.3cm
1490 // Y-dimension = same as EFE3
1491 // Z-dimension = 7.4cm - 0.3cm
1492
1493 Float_t eairA2[3];
1494 eairA2[0]= esvdA2[0] - 0.3;
1495 eairA2[1]= esvdA2[1];
1496 eairA2[2]= esvdA2[2] - 0.3;
1497
954e52e8 1498 gMC->Gsvolu("EIR3", "BOX", idtmed[698], eairA2, 3);
1499 gMC->Gsvolu("EIR4", "BOX", idtmed[698], eairA2, 3);
24c5571f 1500
954e52e8 1501 // Put air strips EIR3 & EIR4 inside ESV3 & ESV4 respectively
1502 gMC->Gspos("EIR3", 1, "ESV3", 0., 0., 0., 0, "ONLY");
1503 gMC->Gspos("EIR4", 1, "ESV4", 0., 0., 0., 0, "ONLY");
24c5571f 1504
1505
1506 // FOR VETO
f117e3aa 1507
24c5571f 1508 // First to Create hollow Al Box
1509 // there are two types of modules, therefore, two Al box of
1510 // long type and two of short type are created
f117e3aa 1511
24c5571f 1512 // For Long Type
1513 // X-dimension = 16.5cm
1514 // Y-dimension = same as EFE1
1515 // Z-dimension = 8.9cm
1516 // Integer assigned to Al medium is 603
1517
1518 Float_t esvdB1[3];
1519 esvdB1[0]= 16.5/2.;
1520 esvdB1[1]= dboxFea1[1];
1521 esvdB1[2]= 8.9/2.;
1522
1523 gMC->Gsvolu("EVV1", "BOX", idtmed[603], esvdB1, 3);
1524 gMC->Gsvolu("EVV2", "BOX", idtmed[603], esvdB1, 3);
1525
1526 // Create Air strip for Al Boxes long type
1527 // Al boxes are 3mm thick In X and Z on both sides
1528 // X-dimension = 16.5cm - 0.3cm
1529 // Y-dimension = same as EFE1
1530 // Z-dimension = 8.9cm - 0.3cm
1531
1532 Float_t eairB1[3];
1533 eairB1[0]= esvdB1[0] - 0.3;
1534 eairB1[1]= esvdB1[1];
1535 eairB1[2]= esvdB1[2] - 0.3;
1536
954e52e8 1537 gMC->Gsvolu("EIR5", "BOX", idtmed[698], eairB1, 3);
1538 gMC->Gsvolu("EIR6", "BOX", idtmed[698], eairB1, 3);
24c5571f 1539
954e52e8 1540 // Put air strips EIR5 & EIR6 inside EVV1 & EVV2 respectively
1541 gMC->Gspos("EIR5", 1, "EVV1", 0., 0., 0., 0, "ONLY");
1542 gMC->Gspos("EIR6", 1, "EVV2", 0., 0., 0., 0, "ONLY");
b1952773 1543
f117e3aa 1544
24c5571f 1545 // For Short Type
1546 // X-dimension = 16.5cm
1547 // Y-dimension = same as EFE3
1548 // Z-dimension = 8.9cm
1549 // Integer assigned to Al medium is 603
1550
1551 Float_t esvdB2[3];
1552 esvdB2[0]= esvdB1[0];
1553 esvdB2[1]= dboxFea3[1];
1554 esvdB2[2]= esvdB1[2];
b1952773 1555
24c5571f 1556 gMC->Gsvolu("EVV3", "BOX", idtmed[603], esvdB2, 3);
1557 gMC->Gsvolu("EVV4", "BOX", idtmed[603], esvdB2, 3);
1558
1559
1560 // Create Air strip for Al Boxes short type
1561 // Al boxes are 3mm thick In X and Z on both sides
1562 // X-dimension = 16.5cm - 0.3cm
1563 // Y-dimension = same as EFE3
1564 // Z-dimension = 8.9cm - 0.3cm
1565
1566 Float_t eairB2[3];
1567 eairB2[0]= esvdB2[0] - 0.3;
1568 eairB2[1]= esvdB2[1];
1569 eairB2[2]= esvdB2[2] - 0.3;
1570
954e52e8 1571 gMC->Gsvolu("EIR7", "BOX", idtmed[698], eairB2, 3);
1572 gMC->Gsvolu("EIR8", "BOX", idtmed[698], eairB2, 3);
24c5571f 1573
954e52e8 1574 // Put air strips EIR7 & EIR8 inside EVV3 & EVV4 respectively
1575 gMC->Gspos("EIR7", 1, "EVV3", 0., 0., 0., 0, "ONLY");
1576 gMC->Gspos("EIR8", 1, "EVV4", 0., 0., 0., 0, "ONLY");
24c5571f 1577
1578 //------------ Al Boxes Completed ----------------------/
1579
1580 //--------------Now Create LVDBs----------------------/
1581
1582 // LVDBs are the volumes of G10
1583 // X-dimension = 10.0cm
1584 // Y-dimension = 8.0cm
1585 // Z-dimension = 0.2cm
1586 // Integer assigned to the G10 medium is 607
1587
1588 Float_t elvdb[3];
1589 elvdb[0]= 10.0/2.;
1590 elvdb[1]= 8.0/2.;
1591 elvdb[2]= 0.2/2.;
1592
1593 gMC->Gsvolu("ELVD", "BOX", idtmed[607], elvdb, 3);
1594
954e52e8 1595
1596 // Put the LVDBs inside Air Boxes
24c5571f 1597 Float_t yesvd = dboxFea1[1] - 25.0 - 4.0;
1598
1599 for(Int_t jj =1; jj<=6; jj++){
1600
954e52e8 1601 gMC->Gspos("ELVD", jj, "EIR1", 0., yesvd, 0., 0, "ONLY");
1602 gMC->Gspos("ELVD", jj, "EIR2", 0., yesvd, 0., 0, "ONLY");
1603
24c5571f 1604 yesvd = yesvd - 4.0 - 0.5 - 4.0;
1605
1606 }
1607
1608 yesvd = dboxFea3[1] - 15.0 - 4.0;
1609
1610 for(Int_t jj =1; jj<=6; jj++){
1611
954e52e8 1612 gMC->Gspos("ELVD", jj, "EIR3", 0., yesvd, 0., 0, "ONLY");
1613 gMC->Gspos("ELVD", jj, "EIR4", 0., yesvd, 0., 0, "ONLY");
1614
24c5571f 1615 yesvd = yesvd - 4.0 - 0.5 - 4.0;
1616 }
1617
1618 yesvd = dboxFea1[1] - 25.0 - 4.0;
1619
1620 for(Int_t jj =1; jj<=6; jj++){
1621
954e52e8 1622 gMC->Gspos("ELVD", jj, "EIR5", 0., yesvd, 0., 0, "ONLY");
1623 gMC->Gspos("ELVD", jj, "EIR6", 0., yesvd, 0., 0, "ONLY");
1624
24c5571f 1625 yesvd = yesvd - 4.0 - 0.5 - 4.0;
1626 }
1627
1628 yesvd = dboxFea3[1] - 15.0 - 4.0;
1629
1630 for(Int_t jj =1; jj<=6; jj++){
1631
954e52e8 1632 gMC->Gspos("ELVD", jj, "EIR7", 0., yesvd, 0., 0, "ONLY");
1633 gMC->Gspos("ELVD", jj, "EIR8", 0., yesvd, 0., 0, "ONLY");
1634
24c5571f 1635 yesvd = yesvd - 4.0 - 0.5 - 4.0;
1636 }
954e52e8 1637
24c5571f 1638
1639 //----------------- LVDBs Placement Completed--------------//
1640
1641 // ------------ Now Create Cables ------------------------//
1642
1643 // There are a number of cables
1644 // We have reduced the number of volumes to 4
1645 // And these 4 Volumes of Cables are placed repeatedly
1646 // in the four quadrants (EPM1,2,3,4)
1647 // The placement of Cables are in good approximations
1648 // The material medium for Cables is a mixture of Plastic
1649 // and Copper(Cu). Therefore, in a good approximation a mixture
1650 // is created and Integer assigned to this medium is 631
1651
1652 Float_t cable1[3];
1653 cable1[0] = 2.5/2.;
1654 cable1[1] = dboxFea1[1];
1655 cable1[2] = 2.4/2.;
1656
1657 gMC->Gsvolu("ECB1", "BOX", idtmed[631], cable1, 3);
1658
1659 Float_t cable2[3];
1660 cable2[0] = 2.5/2.;
1661 cable2[1] = dboxFea3[1];
1662 cable2[2] = 2.4/2.;
1663
1664 gMC->Gsvolu("ECB2", "BOX", idtmed[631], cable2, 3);
1665
1666 Float_t cable3[3];
1667 cable3[0] = 2.5/2.;
1668 cable3[1] = dboxFea3[1] - dboxUM2[1];
1669 cable3[2] = 2.4/2.;
1670
1671 gMC->Gsvolu("ECB3", "BOX", idtmed[631], cable3, 3);
1672
1673 Float_t cable4[3];
1674 cable4[0] = 2.5/2.;
1675 cable4[1] = dboxUM2[1];
1676 cable4[2] = 2.4/2.;
1677
1678 gMC->Gsvolu("ECB4", "BOX", idtmed[631], cable4, 3);
1679
1680 // Calculation of the co-ordinates of Cables
1681
1682 Float_t xcable11pm2, xcable12pm2, xcable2pm1, xcable2pm2, xcable21pm4, xcable22pm4;
1683 Float_t xcable3pm1, xcable3pm3, xcable3pm4, xcable4pm3;
1684
1685 Float_t ycable2pm1, ycable2pm2;
1686 Float_t ycable3pm1, ycable3pm3, ycable3pm4, ycable4pm3;
1687
1688 Float_t zcablePS, zcableVeto;
1689
1690 xcable2pm1 = esvdA1[0] - 3.0 - cable1[0];
1691 xcable3pm1 = xcable2pm1 - cable1[0] - 0.5 - cable1[0];
1692
1693 xcable11pm2 = -esvdA1[0]+ 3.0 + cable1[0];
1694 xcable12pm2 = xcable11pm2 + cable1[0] + 0.5 + cable1[0];
1695 xcable2pm2 = xcable12pm2 + cable1[0] + 0.5 + cable1[0];
1696
1697 xcable3pm3 = -esvdB1[0] + 3.0 + cable1[0];
1698 xcable4pm3 = xcable3pm3 + cable1[0] + 0.5 + cable1[0];
1699
1700 xcable21pm4 = esvdB1[0] - 3.0 - cable1[0];
1701 xcable22pm4 = xcable21pm4 - cable1[0] -0.5 - cable1[0];
1702 xcable3pm4 = xcable22pm4 - cable1[0] -0.5 -cable1[0];
1703
1704 ycable2pm1 = -(esvdA1[1] - esvdA2[1]);
1705 ycable3pm1 = -esvdA1[1] + cable3[1];
1706
1707 ycable2pm2 = -(esvdA1[1] - esvdA2[1]);
1708
1709 ycable3pm3 = -dboxUM2[1];
1710 ycable4pm3 = -esvdA2[1] + dboxUM2[1];
1711
1712 ycable3pm4 = -dboxUM2[1];
1713
1714 zcablePS = -esvdA1[2] + 0.3 + cable1[2];
1715 zcableVeto = esvdB1[2] - 0.3 - cable1[2];
954e52e8 1716
1717
1718
1719 // Placement of Cables in Air Boxes
1720 gMC->Gspos("ECB2", 1, "EIR1", xcable2pm1, ycable2pm1, zcablePS, 0, "ONLY");
1721 gMC->Gspos("ECB3", 1, "EIR1", xcable3pm1, ycable3pm1, zcablePS, 0, "ONLY");
1722 gMC->Gspos("ECB2", 1, "EIR5", xcable2pm1, ycable2pm1, zcableVeto, 0, "ONLY");
1723 gMC->Gspos("ECB3", 1, "EIR5", xcable3pm1, ycable3pm1, zcableVeto, 0, "ONLY");
1724
1725 gMC->Gspos("ECB1", 1, "EIR2", xcable11pm2, 0., zcablePS, 0, "ONLY");
1726 gMC->Gspos("ECB1", 2, "EIR2", xcable12pm2, 0., zcablePS, 0, "ONLY");
1727 gMC->Gspos("ECB2", 1, "EIR2", xcable2pm2, ycable2pm2, zcablePS, 0, "ONLY");
1728 gMC->Gspos("ECB1", 1, "EIR6", xcable11pm2, 0., zcableVeto, 0, "ONLY");
1729 gMC->Gspos("ECB1", 2, "EIR6", xcable12pm2, 0., zcableVeto, 0, "ONLY");
1730 gMC->Gspos("ECB2", 1, "EIR6", xcable2pm2, ycable2pm2, zcableVeto, 0, "ONLY");
24c5571f 1731
954e52e8 1732 gMC->Gspos("ECB3", 1, "EIR3", xcable3pm3, ycable3pm3, zcablePS, 0, "ONLY");
1733 gMC->Gspos("ECB4", 1, "EIR3", xcable4pm3, ycable4pm3, zcablePS, 0, "ONLY");
1734 gMC->Gspos("ECB3", 1, "EIR7", xcable3pm3, ycable3pm3, zcableVeto, 0, "ONLY");
1735 gMC->Gspos("ECB4", 1, "EIR7", xcable4pm3, ycable4pm3, zcableVeto, 0, "ONLY");
24c5571f 1736
954e52e8 1737 gMC->Gspos("ECB2", 1, "EIR4", xcable21pm4, 0., zcablePS, 0, "ONLY");
1738 gMC->Gspos("ECB2", 2, "EIR4", xcable22pm4, 0., zcablePS, 0, "ONLY");
1739 gMC->Gspos("ECB3", 1, "EIR4", xcable3pm4, ycable3pm4, zcablePS, 0, "ONLY");
1740 gMC->Gspos("ECB2", 1, "EIR8", xcable21pm4, 0., zcableVeto, 0, "ONLY");
1741 gMC->Gspos("ECB2", 2, "EIR8", xcable22pm4, 0., zcableVeto, 0, "ONLY");
1742 gMC->Gspos("ECB3", 1, "EIR8", xcable3pm4, ycable3pm4, zcableVeto, 0, "ONLY");
24c5571f 1743
1744
954e52e8 1745
24c5571f 1746 //=============== NOW POSITIONING THE Al Boxes IN EPM'S================//
1747
1748
1749 gMC->Gspos("ESV1", 1, "EPM1", dboxFea1[0] - esvdA1[0] - 8.0, 0., zelvdbPS, 0, "ONLY");
1750 gMC->Gspos("EVV1", 1, "EPM1", dboxFea1[0] - esvdB1[0] - 8.0, 0., zelvdbVeto, 0, "ONLY");
1751
1752 gMC->Gspos("ESV2", 1, "EPM2", -dboxFea2[0] + esvdA1[0] + 8.0, 2.3, zelvdbPS, 0, "ONLY");
1753 gMC->Gspos("EVV2", 1, "EPM2", -dboxFea2[0] + esvdB1[0] + 8.0, 2.3, zelvdbVeto, 0, "ONLY");
1754
1755 gMC->Gspos("ESV3", 1, "EPM3", -dboxFea3[0] + esvdA1[0] + 8.0, 0., zelvdbPS, 0, "ONLY");
1756 gMC->Gspos("EVV3", 1, "EPM3", -dboxFea3[0] + esvdB1[0] + 8.0, 0., zelvdbVeto, 0, "ONLY");
1757
1758 gMC->Gspos("ESV4", 1, "EPM4", dboxFea4[0] - esvdA1[0] - 8.0, 2.3, zelvdbPS, 0, "ONLY");
1759 gMC->Gspos("EVV4", 1, "EPM4", dboxFea4[0] - esvdB1[0] - 8.0, 2.3, zelvdbVeto, 0, "ONLY");
1760
1761 //==================================================================//
1762 //====================== LAST THING IS TO INSTALL ELMB ================//
1763
1764 // ELMB,s are the G10 Volumes
1765
1766 // First to create Air Volume to place ELMBs
1767 Float_t xelmb[3];
954e52e8 1768 xelmb[0] = 10.0;
1769 xelmb[1] = 4.0;
1770 xelmb[2] = 0.5;
24c5571f 1771
1772 gMC->Gsvolu("ELMB", "BOX", idtmed[698], xelmb, 3);
1773
1774 // There are more G10 Volumes
1775 // But in approximation, we reduced them to two
1776 // ELM1 & ELM2
1777
1778 Float_t xelmb1[3];
954e52e8 1779 xelmb1[0] = 9.7;
1780 xelmb1[1] = 3.6;
1781 xelmb1[2] = 0.1;
24c5571f 1782
1783 gMC->Gsvolu("ELM1", "BOX", idtmed[607], xelmb1, 3);
1784
1785 Float_t xelmb2[3];
954e52e8 1786 xelmb2[0] = 6.0;
1787 xelmb2[1] = 3.0;
1788 xelmb2[2] = 0.1;
24c5571f 1789
1790 gMC->Gsvolu("ELM2", "BOX", idtmed[607], xelmb2, 3);
1791
1792 /******** NOW POSITIONING THE G10 VOLUMES ELM1 & ELM2 IN ELMB **********/
1793
1794 gMC->Gspos("ELM1", 1, "ELMB", 0., 0., -0.3, 0, "ONLY");
1795 gMC->Gspos("ELM2", 1, "ELMB", 0., 0., 0.3, 0, "ONLY");
1796
1797 // Position co-ordinates of ELMBs in EPM2 & EPM4
1798
1799 Float_t xelmbepm2, xelmbepm4, yelmbepm2, yelmbepm4, zelmbPS, zelmbVeto;
1800
1801 xelmbepm2 = -gaspmd2[0] + 16.0 +23.2 + 2.5 + xelmb[0];
1802 xelmbepm4 = gaspmd4[0] - 16.0 -23.2 - 2.5 - xelmb[0];
1803
1804 yelmbepm2 = -gaspmd2[1] + 1.0 + xelmb[1];
1805 yelmbepm4 = -gaspmd4[1] + 1.0 + xelmb[1];
1806
1807 zelmbPS = zfea + fgkThSteel/2.+ xelmb[2];
1808 zelmbVeto = zfea - fgkThSteel/2.- xelmb[2];
1809
1810 /************ NOW PLACE ELMB'S IN EPM2 & EPM4 *********************/
1811
1812 // There are total of 14 ELMB volumes
1813 // three on both sides of EPM2 (total of 6)
1814 // and four on both sides of EPM4 (total of 8)
1815 // The ELMBs are placed at the bottom of
1816 // SS support, which is the extended part
1817
1818 // Placement of ELMBs on EPM2
1819 for(Int_t kk=1;kk<=3;kk++){
1820 gMC->Gspos("ELMB", kk, "EPM2", xelmbepm2, yelmbepm2, zelmbPS, 0, "ONLY");
1821 xelmbepm2 = xelmbepm2 + xelmb[0] + 0.5 + xelmb[0];
1822 }
1823
1824 xelmbepm2 = -gaspmd2[0] + 16.0 +23.2 + 2.5 + xelmb[0];
1825
1826 for(Int_t kk=4;kk<=6;kk++){
1827 gMC->Gspos("ELMB", kk, "EPM2", xelmbepm2, yelmbepm2, zelmbVeto, 0, "ONLY");
1828 xelmbepm2 = xelmbepm2 + xelmb[0] + 0.5 + xelmb[0];
1829 }
1830
1831 // Placement of ELMBs on EPM4
1832 for(Int_t kk=1;kk<=4;kk++){
1833 gMC->Gspos("ELMB", kk, "EPM4", xelmbepm4, yelmbepm4, zelmbPS, 0, "ONLY");
1834 xelmbepm4 = xelmbepm4 - xelmb[0] - 0.5 - xelmb[0];
1835 }
1836
1837 xelmbepm4 = gaspmd4[0] - 16.0 -23.2 - 2.5 - xelmb[0];
1838 for(Int_t kk=5;kk<=8;kk++){
1839 gMC->Gspos("ELMB", kk, "EPM4", xelmbepm4, yelmbepm4, zelmbVeto, 0, "ONLY");
1840 xelmbepm4 = xelmbepm4 - xelmb[0] - 0.5 - xelmb[0];
1841 }
b1952773 1842
24c5571f 1843 //========= Placement of ELMBs Completed ============================/
a978c9e3 1844
24c5571f 1845 // ------------- Now to Place Unit Modules in four quadrants
1846 // EPM1, EPM2, EPM3 & EPM4 ---------------------//
b1952773 1847
24c5571f 1848 // Position co-ordinates of Unit Modules
f117e3aa 1849
24c5571f 1850 Double_t xcord[24];
1851 Double_t ycord[24];
f117e3aa 1852
24c5571f 1853 xcord[0] = xa1;
1854 xcord[1] = xa2;
1855 xcord[2] = xa3;
1856 xcord[3] = xa1;
1857 xcord[4] = xa2;
1858 xcord[5] = xa3;
1859 xcord[6] = -xa1;
1860 xcord[7] = -xa2;
1861 xcord[8] = -xa3;
1862 xcord[9] = -xa1;
1863 xcord[10] = -xa2;
1864 xcord[11] = -xa3;
1865 xcord[12] = xb1;
1866 xcord[13] = xb2;
1867 xcord[14] = xb1;
1868 xcord[15] = xb2;
1869 xcord[16] = xb1;
1870 xcord[17] = xb2;
1871 xcord[18] = -xb1;
1872 xcord[19] = -xb2;
1873 xcord[20] = -xb1;
1874 xcord[21] = -xb2;
1875 xcord[22] = -xb1;
1876 xcord[23] = -xb2;
1877
24c5571f 1878 ycord[0] = ya1;
1879 ycord[1] = ya1;
1880 ycord[2] = ya1;
1881 ycord[3] = ya2;
1882 ycord[4] = ya2;
1883 ycord[5] = ya2;
1884 ycord[6] = -ya1;
1885 ycord[7] = -ya1;
1886 ycord[8] = -ya1;
1887 ycord[9] = -ya2;
1888 ycord[10] = -ya2;
1889 ycord[11] = -ya2;
1890 ycord[12] = yb1;
1891 ycord[13] = yb1;
1892 ycord[14] = yb2;
1893 ycord[15] = yb2;
954e52e8 1894 ycord[16] = yb3+0.100007; //Because of overlapping the factor 0.100007
1895 ycord[17] = yb3+0.100007; // is added
24c5571f 1896 ycord[18] = -yb1;
1897 ycord[19] = -yb1;
1898 ycord[20] = -yb2;
1899 ycord[21] = -yb2;
954e52e8 1900 ycord[22] = -yb3-0.100004; //Because of overlapping the factor 0.100007
1901 ycord[23] = -yb3-0.100004; // is added
1902
24c5571f 1903
1904 // Placement of unit modules EUM1 & EUV1(long type)
1905 // and EUM2 & EUV2(short type)
1906 // in the four quadrants EPM1, EPM2, EPM3 & EPM4
f117e3aa 1907
24c5571f 1908 for(Int_t ii=0;ii<=5;ii++){
1909 if(fModStatus[ii]){
1910 gMC->Gspos("EUM1", ii, "EPM1", xcord[ii]+xLead1,ycord[ii]+yLead1, zpsa, 0, "ONLY");
1911 }
1912 }
f117e3aa 1913
24c5571f 1914 for(Int_t ii=6;ii<=11;ii++){
1915 if(fModStatus[ii]) {
1916 gMC->Gspos("EUM1", ii, "EPM2", xcord[ii]+xLead2, ycord[ii]+yLead2, zpsa, jhrot12, "ONLY");
1917 }
1918 }
f117e3aa 1919
24c5571f 1920 for(Int_t ii=12;ii<=17;ii++){
1921 if(fModStatus[ii]) {
1922 gMC->Gspos("EUM2", ii, "EPM3", xcord[ii]+xLead3, ycord[ii]+yLead3, zpsa, 0, "ONLY");
1923 }
1924 }
f117e3aa 1925
24c5571f 1926 for(Int_t ii=18;ii<=23;ii++){
1927 if(fModStatus[ii]) {
1928 gMC->Gspos("EUM2", ii, "EPM4", xcord[ii]+xLead4, ycord[ii]+yLead4, zpsa, jhrot12, "ONLY");
f117e3aa 1929 }
24c5571f 1930 }
1931
1932 for(Int_t ii=24;ii<=29;ii++){
1933 if(fModStatus[ii]) {
1934 gMC->Gspos("EUV1", ii, "EPM1", xcord[ii-24]+xLead1, ycord[ii-24]+yLead1, zcva, 0, "ONLY");
f117e3aa 1935 }
24c5571f 1936 }
c4561145 1937
24c5571f 1938 for(Int_t ii=30;ii<=35;ii++){
1939 if(fModStatus[ii]) {
1940 gMC->Gspos("EUV1", ii, "EPM2", xcord[ii-24]+xLead2, ycord[ii-24]+yLead2, zcva, jhrot12, "ONLY");
1941 }
1942 }
c4561145 1943
24c5571f 1944 for(Int_t ii=36;ii<=41;ii++){
1945 if(fModStatus[ii]) {
1946 gMC->Gspos("EUV2", ii, "EPM3", xcord[ii-24]+xLead3, ycord[ii-24]+yLead3, zcva, 0, "ONLY");
1947 }
1948 }
b1952773 1949
24c5571f 1950 for(Int_t ii=42;ii<=47;ii++){
1951 if(fModStatus[ii]) {
1952 gMC->Gspos("EUV2", ii, "EPM4", xcord[ii-24]+xLead4, ycord[ii-24]+yLead4, zcva, jhrot12, "ONLY");
1953 }
1954 }
b1952773 1955
24c5571f 1956 //-------------- Placement of Unit Modules Completed ---------------//
1957
1958 // ========== PLACE THE EPMD IN ALICE ======================//
1959
1960 // Now the Job to assemble the five mother volumes of PMD in ALICE
1961
1962 // Z-distance of PMD from Interaction Point
f117e3aa 1963
3cdb4e97 1964 zp = fgkZdist;
24c5571f 1965
1966 // X and Y-positions of the EPM1, EPM2, EPM3 & EPM4
f117e3aa 1967 Float_t xfinal,yfinal;
24c5571f 1968 Float_t xsm1, xsm2, xsm3, xsm4;
1969 Float_t ysm1, ysm2, ysm3, ysm4;
f117e3aa 1970
24c5571f 1971 xfinal = (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05) + 0.48/2. +
1972 (fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05);
f117e3aa 1973
24c5571f 1974 //Extra width of the SS plate on Support Structure on X-side and 1mm thick SS for cooling encloser
1975 //Extra width of the SS plate on Support Structure on X-side for B-Type
1976
1977 yfinal = (fSMLengthay + serviceYa/2.)+ 0.20/2 + (fSMLengthby + serviceYb/2.);
f117e3aa 1978
24c5571f 1979 //serviceYa is the Extra width of the SS plate on Support Structur on Y-side for EPM1 & EPM3
1980 //serviceYb is the Extra width of the SS plate on Support Structur on Y-side for EPM2 & EPM4
1981
1982
1983 xsm1 = xfinal - (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05);
1984 ysm1 = yfinal - (fSMLengthay + serviceYa/2.) - 2.3;
1985
1986 xsm2 = -xfinal + (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05);
1987 ysm2 = -yfinal + (fSMLengthay + serviceYb/2.) - 2.3;
1988
1989 xsm3 = -xfinal + (fSMLengthbx + serviceX/2. + serviceXext/2. + 0.05);
1990 ysm3 = yfinal - (fSMLengthby + serviceYa/2.) - 2.3;
1991
1992 xsm4 = xfinal - (fSMLengthbx + serviceX/2. + serviceXext/2. + 0.05);
1993 ysm4 = -yfinal + (fSMLengthby + serviceYb/2.) - 2.3;
1994
1995 //Position Full PMD in ALICE
1996 //
1997 // EPM1 EPM3
1998 //
1999 // EPM4 EPM2
2000 // (rotated EPM3) (rotated EPM1)
2001 //
2002 // EFGD
2003 // (Girders and its Carriage)
2004
2005 gMC->Gspos("EPM1", 1, "ALIC", xsm1,ysm1,zp, 0, "ONLY");
2006 gMC->Gspos("EPM2", 1, "ALIC", xsm2,ysm2,zp, 0, "ONLY");
954e52e8 2007
24c5571f 2008 gMC->Gspos("EPM3", 1, "ALIC", xsm3,ysm3,zp, 0, "ONLY");
2009 gMC->Gspos("EPM4", 1, "ALIC", xsm4,ysm4,zp, 0, "ONLY");
2010
2011 gMC->Gspos("EFGD", 1, "ALIC", 0., yfinal + fulgrdr[1], zp, 0, "ONLY");
c4561145 2012}
2013
c4561145 2014//_____________________________________________________________________________
24c5571f 2015
c4561145 2016void AliPMDv1::CreateMaterials()
2017{
c4561145 2018 // Create materials for the PMD
2019 //
2020 // ORIGIN : Y. P. VIYOGI
2021 //
36031625 2022 // cout << " Inside create materials " << endl;
24c5571f 2023
cad3294f 2024 Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ();
2025 Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max();
c4561145 2026
2027 // --- Define the various materials for GEANT ---
24c5571f 2028
c4561145 2029 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
f017d70a 2030
2031 // Argon
24c5571f 2032
f017d70a 2033 Float_t dAr = 0.001782; // --- Ar density in g/cm3 ---
2034 Float_t x0Ar = 19.55 / dAr;
2035 AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4);
24c5571f 2036
f017d70a 2037 // --- CO2 ---
24c5571f 2038
f017d70a 2039 Float_t aCO2[2] = { 12.,16. };
2040 Float_t zCO2[2] = { 6.,8. };
2041 Float_t wCO2[2] = { 1.,2. };
2042 Float_t dCO2 = 0.001977;
2043 AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2);
24c5571f 2044
c4561145 2045 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
24c5571f 2046
f017d70a 2047 // ArCO2
24c5571f 2048
f017d70a 2049 Float_t aArCO2[3] = {39.948,12.0107,15.9994};
2050 Float_t zArCO2[3] = {18.,6.,8.};
2051 Float_t wArCO2[3] = {0.7,0.08,0.22};
2052 Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3;
2053 AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2);
24c5571f 2054
c4561145 2055 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
24c5571f 2056
f017d70a 2057 // G10
c4561145 2058
f017d70a 2059 Float_t aG10[4]={1.,12.011,15.9994,28.086};
2060 Float_t zG10[4]={1.,6.,8.,14.};
d49fe99a 2061 Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714};
f017d70a 2062 AliMixture(8,"G10",aG10,zG10,1.7,4,wG10);
c4561145 2063
f017d70a 2064 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
24c5571f 2065
f017d70a 2066 // Steel
2067 Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 };
2068 Float_t zSteel[4] = { 26.,24.,28.,14. };
2069 Float_t wSteel[4] = { .715,.18,.1,.005 };
2070 Float_t dSteel = 7.88;
2071 AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel);
24c5571f 2072
2073
2074 // --- CH2 : PLASTIC ---
2075
2076 Float_t aCH2[2] = { 12.,1.};
2077 Float_t zCH2[2] = { 6.,1.};
2078 Float_t wCH2[2] = { 1.,2.};
2079 Float_t dCH2 = 0.95;
2080 AliMixture(31, "CH2 $", aCH2, zCH2, dCH2, -2, wCH2);
2081
2082 // --- CABLES : 80% Plastic and 20% Copper ---
2083
2084 Float_t aCABLE[3] = { 12.,1.,63.5 };
2085 Float_t zCABLE[3] = { 6.,1.,29. };
2086 Float_t wCABLE[3] = { 0.6857, 0.1143, 0.2};
2087 Float_t dCABLE = dCH2*0.8 + 8.96*0.2;
2088 AliMixture(32, "CABLE $", aCABLE, zCABLE, dCABLE, 3, wCABLE);
f017d70a 2089
24c5571f 2090
2091
f017d70a 2092 //Air
24c5571f 2093
f017d70a 2094 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
2095 Float_t zAir[4]={6.,7.,8.,18.};
2096 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
2097 Float_t dAir1 = 1.20479E-10;
2098 Float_t dAir = 1.20479E-3;
2099 AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir);
2100 AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir);
24c5571f 2101
c4561145 2102 // Define tracking media
f017d70a 2103 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
2104 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
2105 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1);
2106 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
2107 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
2108 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
2109 AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
24c5571f 2110 AliMedium(32, "CABLE $", 32, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
f017d70a 2111 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10);
2112 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1);
c4561145 2113
7235aed2 2114 AliDebug(1,"Outside create materials");
24c5571f 2115
7235aed2 2116}
2117
2118//_____________________________________________________________________________
24c5571f 2119
7235aed2 2120void AliPMDv1::Init()
2121{
2122 //
2123 // Initialises PMD detector after it has been built
2124 //
24c5571f 2125
7235aed2 2126 //
2127 AliDebug(2,"Inside Init");
2128 AliDebug(2,"PMD simulation package (v1) initialised");
2129 AliDebug(2,"parameters of pmd");
2130 AliDebug(2,Form("%10.2f %10.2f %10.2f %10.2f\n",
2131 fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist));
2132 Int_t *idtmed = fIdtmed->GetArray()-599;
2133 fMedSens=idtmed[605-1];
c4561145 2134 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
5b9c7140 2135 // Gstpar is removed from this place and
2136 // the energy cut offs in the medium moved to galice.cuts
2137
2138 //gMC->Gstpar(idtmed[605], "LOSS", 3.);
2139 //gMC->Gstpar(idtmed[605], "DRAY", 1.);
2140
8d6dc7c8 2141 // Visualization of volumes
dd6416aa 2142 gGeoManager->SetVolumeAttribute("ECAR", "SEEN", 0);
2143 gGeoManager->SetVolumeAttribute("ECCU", "SEEN", 1);
2144 gGeoManager->SetVolumeAttribute("ECCU", "COLO", 4);
2145 gGeoManager->SetVolumeAttribute("EST1", "SEEN", 0);
2146 gGeoManager->SetVolumeAttribute("EST2", "SEEN", 0);
2147 gGeoManager->SetVolumeAttribute("EHC1", "SEEN", 0);
2148 gGeoManager->SetVolumeAttribute("EHC2", "SEEN", 0);
2149 gGeoManager->SetVolumeAttribute("EDGA", "SEEN", 1);
2150 gGeoManager->SetVolumeAttribute("EDGB", "SEEN", 1);
2151 gGeoManager->SetVolumeAttribute("EEGA", "SEEN", 1);
2152 gGeoManager->SetVolumeAttribute("EEGB", "SEEN", 1);
2153 gGeoManager->SetVolumeAttribute("EUM1", "SEEN", 0);
2154 gGeoManager->SetVolumeAttribute("EUV1", "SEEN", 0);
2155 gGeoManager->SetVolumeAttribute("EUM2", "SEEN", 0);
2156 gGeoManager->SetVolumeAttribute("EUV2", "SEEN", 0);
24c5571f 2157
2158
dd6416aa 2159 gGeoManager->SetVolumeAttribute("EFEE", "SEEN", 0);
2160 gGeoManager->SetVolumeAttribute("EFEE", "COLO", 4);
2161 gGeoManager->SetVolumeAttribute("EFBA", "SEEN", 1);
2162 gGeoManager->SetVolumeAttribute("EFBA", "COLO", 4);
2163 gGeoManager->SetVolumeAttribute("EFBB", "SEEN", 0);
2164 gGeoManager->SetVolumeAttribute("EFBB", "COLO", 4);
2165
2166 gGeoManager->SetVolumeAttribute("ELDA", "SEEN", 0);
2167 gGeoManager->SetVolumeAttribute("ELDB", "SEEN", 0);
2168
2169 gGeoManager->SetVolumeAttribute("EFE1", "SEEN", 0);
2170 gGeoManager->SetVolumeAttribute("EFE2", "SEEN", 0);
2171 gGeoManager->SetVolumeAttribute("EFE3", "SEEN", 0);
2172 gGeoManager->SetVolumeAttribute("EFE4", "SEEN", 0);
2173
2174 gGeoManager->SetVolumeAttribute("ESC1", "SEEN", 0);
2175 gGeoManager->SetVolumeAttribute("ECC1", "COLO", 2);
2176 gGeoManager->SetVolumeAttribute("ESC2", "SEEN", 0);
2177 gGeoManager->SetVolumeAttribute("ECC2", "COLO", 2);
2178 gGeoManager->SetVolumeAttribute("ESC3", "SEEN", 0);
2179 gGeoManager->SetVolumeAttribute("ECC3", "COLO", 2);
2180 gGeoManager->SetVolumeAttribute("ESC4", "SEEN", 0);
2181 gGeoManager->SetVolumeAttribute("ECC4", "COLO", 2);
2182
2183 gGeoManager->SetVolumeAttribute("ECC1", "SEEN", 0);
2184 gGeoManager->SetVolumeAttribute("ECC2", "SEEN", 0);
2185 gGeoManager->SetVolumeAttribute("ECC3", "SEEN", 0);
2186 gGeoManager->SetVolumeAttribute("ECC4", "SEEN", 0);
2187
2188 gGeoManager->SetVolumeAttribute("EPM1", "SEEN", 1);
2189 gGeoManager->SetVolumeAttribute("EPM2", "SEEN", 1);
2190 gGeoManager->SetVolumeAttribute("EPM3", "SEEN", 1);
2191 gGeoManager->SetVolumeAttribute("EPM4", "SEEN", 1);
2192
2193 gGeoManager->SetVolumeAttribute("ECB1", "SEEN", 0);
2194 gGeoManager->SetVolumeAttribute("ECB2", "SEEN", 0);
2195 gGeoManager->SetVolumeAttribute("ECB3", "SEEN", 0);
2196 gGeoManager->SetVolumeAttribute("ECB4", "SEEN", 0);
2197
2198 gGeoManager->SetVolumeAttribute("ELMB", "SEEN", 0);
2199
2200 gGeoManager->SetVolumeAttribute("ESV1", "SEEN", 0);
2201 gGeoManager->SetVolumeAttribute("ESV2", "SEEN", 0);
2202 gGeoManager->SetVolumeAttribute("ESV3", "SEEN", 0);
2203 gGeoManager->SetVolumeAttribute("ESV4", "SEEN", 0);
2204
2205 gGeoManager->SetVolumeAttribute("EVV1", "SEEN", 0);
2206 gGeoManager->SetVolumeAttribute("EVV2", "SEEN", 0);
2207 gGeoManager->SetVolumeAttribute("EVV3", "SEEN", 0);
2208 gGeoManager->SetVolumeAttribute("EVV4", "SEEN", 0);
2209
2210 gGeoManager->SetVolumeAttribute("EFGD", "SEEN", 0);
c4561145 2211}
2212
2213//_____________________________________________________________________________
24c5571f 2214
c4561145 2215void AliPMDv1::StepManager()
2216{
2217 //
2218 // Called at each step in the PMD
2219 //
24c5571f 2220
c4561145 2221 Int_t copy;
954e52e8 2222 Float_t hits[5], destep;
c4561145 2223 Float_t center[3] = {0,0,0};
24c5571f 2224 Int_t vol[6];
2225 //const char *namep;
2226 // printf("Current vol is ******** %s \n",namep);
f335f3e7 2227 if(gMC->CurrentMedium() == fMedSens && (destep = gMC->Edep())) {
24c5571f 2228
c4561145 2229 gMC->CurrentVolID(copy);
24c5571f 2230 //namep=gMC->CurrentVolName();
2231 // printf("Current vol is %s \n",namep);
c4561145 2232 vol[0]=copy;
24c5571f 2233
b1952773 2234 gMC->CurrentVolOffID(1,copy);
c4561145 2235 //namep=gMC->CurrentVolOffName(1);
f117e3aa 2236 // printf("Current vol 11 is %s \n",namep);
c4561145 2237 vol[1]=copy;
24c5571f 2238
b1952773 2239 gMC->CurrentVolOffID(2,copy);
c4561145 2240 //namep=gMC->CurrentVolOffName(2);
24c5571f 2241 // printf("Current vol 22 is %s \n",namep);
c4561145 2242 vol[2]=copy;
24c5571f 2243
c4561145 2244 gMC->CurrentVolOffID(3,copy);
24c5571f 2245 //namep=gMC->CurrentVolOffName(3);
2246 // printf("Current vol 33 is %s \n",namep);
c4561145 2247 vol[3]=copy;
24c5571f 2248
b1952773 2249 gMC->CurrentVolOffID(4,copy);
24c5571f 2250 //namep=gMC->CurrentVolOffName(4);
f117e3aa 2251 // printf("Current vol 44 is %s \n",namep);
c4561145 2252 vol[4]=copy;
24c5571f 2253
b1952773 2254 gMC->CurrentVolOffID(5,copy);
24c5571f 2255 //namep=gMC->CurrentVolOffName(5);
2256 //printf("Current vol 55 is %s \n",namep);
b1952773 2257 vol[5]=copy;
2258
24c5571f 2259
2260 // printf("volume number %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],destep*1000000);// edep in MeV
2261
b1952773 2262
c4561145 2263 gMC->Gdtom(center,hits,1);
2264 hits[3] = destep*1e9; //Number in eV
954e52e8 2265
2266 // this is for pile-up events
2267 hits[4] = gMC->TrackTime();
2268
5d12ce38 2269 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
c1446131 2270
2271 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kPMD);
2272
c4561145 2273 }
2274}
2275
24c5571f 2276
c4561145 2277//------------------------------------------------------------------------
2278// Get parameters
2279
2280void AliPMDv1::GetParameters()
2281{
36031625 2282 // This gives all the parameters of the detector
3cdb4e97 2283 // such as Length of Supermodules, type A, type B,
2284 // thickness of the Supermodule
b1952773 2285 //
36031625 2286
f117e3aa 2287 fSMLengthax = 32.7434;
2288 //The total length in X is due to the following components
2289 // Factor 3 is because of 3 module length in X for this type
2290 // fgkNcolUM1*fgkCellRadius (48 x 0.25): Total span of each module in X
2291 // fgkCellRadius/2. : There is offset of 1/2 cell
2292 // 0.05+0.05 : Insulation gaps etc
2293 // fgkSSBoundary (0.3) : Boundary frame
2294 // double XA = 3.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.075);
24c5571f 2295
2296 fSMLengthbx = 42.6136;
f117e3aa 2297 //The total length in X is due to the following components
2298 // Factor 2 is because of 2 module length in X for this type
2299 // fgkNcolUM2*fgkCellRadius (96 x 0.25): Total span of each module in X
2300 // fgkCellRadius/2. : There is offset of 1/2 cell
2301 // 0.05+0.05 : Insulation gaps etc
2302 // fgkSSBoundary (0.3) : Boundary frame
24c5571f 2303 //double XB = 2.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.1;
2304
f117e3aa 2305
24c5571f 2306
2307 fSMLengthay = 49.35;
f117e3aa 2308 //The total length in Y is due to the following components
2309 // Factor 2 is because of 2 module length in Y for this type
2310 // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1 (0.25/sqrt3/2 * 96): Total span of each module in Y
2311 // of strips
2312 // 0.05+0.05 : Insulation gaps etc
2313 // fgkSSBoundary (0.3) : Boundary frame
24c5571f 2314 // 0.6cm is the channel width plus tolerance
2315 // double YA = 2.0*(fgkNrowUM1*fgkCellRadius+fgkCellRadius/2.+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.6/2.;
2316
2317 fSMLengthby = 37.925;
f117e3aa 2318 //The total length in Y is due to the following components
2319 // Factor 3 is because of 3 module length in Y for this type
2320 // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2 (0.25/sqrt3/2 * 48): Total span of each module in Y
2321 // of strips
2322 // 0.05+0.05 : Insulation gaps etc
2323 // fgkSSBoundary (0.3) : Boundary frame
24c5571f 2324 // 10mm is the channel width plus tolerance
2325 //double YB = 3.0*((fgkNrowUM2*fgkCellRadius + fgkCellRadius/2.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 1.0/2.;
2326
2327
f117e3aa 2328 //Thickness of a pre/veto plane
24c5571f 2329 fDthick = fgkThSS/2. + 1.2; // 1.2 added as FEE Board are now assembled with pre/veto
2330
f117e3aa 2331 //Thickness of the PMD ; 2.4 added for FEE boards
24c5571f 2332 fSMthickpmd = 2.0*(fgkThSS/2.) +fgkThSteel/2.+fgkThLead/2.0 + 2.4/2.;
2333
2334 fSMthick = 17.; //17 cm is the full profile of PMD
2335
36031625 2336
b1952773 2337}
24c5571f 2338
2339
4b6f3b17 2340// ---------------------------------------------------------------
2341void AliPMDv1::AddAlignableVolumes() const
2342{
2343 //
2344 // Create entries for alignable volumes associating the symbolic volume
2345 // name with the corresponding volume path. Needs to be syncronized with
2346 // eventual changes in the geometry.
2347 //
2348 SetSectorAlignable();
24c5571f 2349
4b6f3b17 2350}
2351// ----------------------------------------------------------------
2352void AliPMDv1::SetSectorAlignable() const
2353{
1f7f8a9c 2354 //
24c5571f 2355
4b6f3b17 2356 TString vpsector = "ALIC_1/EPM";
2357 TString vpappend = "_1";
2358
2359 TString snsector="PMD/Sector";
24c5571f 2360
4b6f3b17 2361 TString volpath, symname;
2362
2363 for(Int_t cnt=1; cnt<=4; cnt++){
24c5571f 2364 //for(Int_t cnt=1; cnt<=4; cnt++){
4b6f3b17 2365 volpath = vpsector;
2366 volpath += cnt;
2367 volpath += vpappend;
2368 symname = snsector;
2369 symname += cnt;
3cf8979e 2370 if(!gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data()))
2371 {
2372 AliFatal("Unable to set alignable entry!");
2373 }
4b6f3b17 2374 }
2375}
2376// ------------------------------------------------------------------
24c5571f 2377void AliPMDv1::SetCpvOff()
2378{
2379 // Set the entire CPV plane off
2380
2381 for (Int_t imodule = 24; imodule < 48; imodule++)
2382 fModStatus[imodule] = 0;
2383}
2384// ------------------------------------------------------------------
2385void AliPMDv1::SetPreOff()
2386{
2387 // Set the entire Preshower plane off
2388
2389 for (Int_t imodule = 0; imodule < 24; imodule++)
2390 fModStatus[imodule] = 0;
2391
2392}
2393// ------------------------------------------------------------------
2394void AliPMDv1::SetModuleOff(Int_t imodule)
2395{
2396 // Set the individual module off
2397
2398 fModStatus[imodule] = 0;
2399
2400}