]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv1.cxx
Further modifications in OpenOutput and WriteCluster
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
ef61784c 17Revision 1.18 2002/11/21 22:57:02 alibrary
18Removing AliMC and AliMCProcess
19
4c475d27 20Revision 1.17 2002/10/23 07:36:35 alibrary
21Introducing Riostream.h
22
93bdec82 23Revision 1.16 2001/05/21 17:44:04 hristov
24Backslash to continue strings
25
dee197d3 26Revision 1.15 2001/05/21 10:59:49 morsch
27Lost changes from revision 1.13 recovered.
28
1592ac65 29Revision 1.14 2001/05/21 09:39:28 morsch
30Minor modifications on the geometry. (Tapan Nayak)
31
32Revision 1.13 2001/05/16 14:57:19 alibrary
33New files for folders and Stack
34
9e1a0ddb 35Revision 1.12 2001/05/14 14:01:04 morsch
36AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak.
37
c4561145 38*/
39//
40///////////////////////////////////////////////////////////////////////////////
41// //
42// Photon Multiplicity Detector Version 1 //
43// //
44//Begin_Html
45/*
46<img src="picts/AliPMDv1Class.gif">
47*/
48//End_Html
49// //
50///////////////////////////////////////////////////////////////////////////////
51////
52
53#include "AliPMDv1.h"
54#include "AliRun.h"
c4561145 55#include "AliConst.h"
56#include "AliMagF.h"
93bdec82 57#include "Riostream.h"
c4561145 58
59static Int_t kdet, ncell_sm, ncell_hole;
60static Float_t zdist, zdist1;
61static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
62static Float_t boundary, th_base, th_air, th_pcb;
63static Float_t th_lead, th_steel;
64
65ClassImp(AliPMDv1)
66
67 //_____________________________________________________________________________
68 AliPMDv1::AliPMDv1()
69{
70 //
71 // Default constructor
72 //
73 fMedSens=0;
74}
75
76//_____________________________________________________________________________
77AliPMDv1::AliPMDv1(const char *name, const char *title)
78 : AliPMD(name,title)
79{
80 //
81 // Standard constructor
82 //
83 fMedSens=0;
84}
85
86//_____________________________________________________________________________
87void AliPMDv1::CreateGeometry()
88{
89 //
90 // Create geometry for Photon Multiplicity Detector Version 3 :
91 // April 2, 2001
92 //
93 //Begin_Html
94 /*
95 <img src="picts/AliPMDv1.gif">
96 */
97 //End_Html
98 //Begin_Html
99 /*
100 <img src="picts/AliPMDv1Tree.gif">
101 */
102 //End_Html
103 GetParameters();
104 CreateSupermodule();
105 CreatePMD();
106}
107
108//_____________________________________________________________________________
109void AliPMDv1::CreateSupermodule()
110{
111 //
112 // Creates the geometry of the cells, places them in supermodule which
113 // is a rhombus object.
114
115 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
116 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
117 // -- Author : S. Chattopadhyay, 02/04/1999.
118
119 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
120 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
121 // in radius gives the dimension of half width of each cell wall.
122 // These cells are placed as 72 x 72 array in a
123 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
124 // to have closed packed structure.
125 //
126 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
127 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
128 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
129 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
130 //
131 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
132 // and EMFE (iron support)
133
134 // EMM1 made of
135 // ESMB --> Normal supermodule, mirror image of ESMA
136 // EMPB --> Pb converter
137 // EMFE --> Fe backing
138 // ESMA --> Normal supermodule
139 //
140 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
141 // and EMFE (iron support)
142
143 // EMM2 made of
144 // ESMY --> Special supermodule, mirror image of ESMX,
145 // EMPB --> Pb converter
146 // EMFE --> Fe backing
147 // ESMX --> First of the two Special supermodules near the hole
148
149 // EMM3 made of
150 // ESMQ --> Special supermodule, mirror image of ESMX,
151 // EMPB --> Pb converter
152 // EMFE --> Fe backing
153 // ESMP --> Second of the two Special supermodules near the hole
154
155 // EMM2 and EMM3 are used to create the hexagonal HOLE
156
157 //
158 // EPMD
159 // |
160 // |
161 // ---------------------------------------------------------------------------
162 // | | | | |
163 // EHOL EMM1 EMM2 EMM3 EALM
164 // | | |
165 // -------------------- -------------------- --------------------
166 // | | | | | | | | | | | |
167 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
168 // | | |
169 // ------------ ------------ -------------
170 // | | | | | | | | |
171 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
172 // | | |
173 // ECCU ECCU ECCU
174 // | | |
175 // ECAR ECAR ECAR
176
177
178 Int_t i, j;
179 Float_t xb, yb, zb;
180 Int_t number;
181 Int_t ihrotm,irotdm;
182 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
183 Int_t *idtmed = fIdtmed->GetArray()-599;
184
185 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
186 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
187
188 zdist = TMath::Abs(zdist1);
189
190
191 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
192 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
193 //(1mm tolerance on both side and 5mm thick G10 wall)
194 //
195
196 // **** CELL SIZE 20 mm^2 EQUIVALENT
197
198 // Inner hexagon filled with gas (Ar+CO2)
199
200 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
201
202 hexd2[4]= - cell_depth/2.;
203 hexd2[7]= cell_depth/2.;
204 hexd2[6]= cell_radius - cell_wall;
205 hexd2[9]= cell_radius - cell_wall;
206
207 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
208 gMC->Gsatt("ECAR", "SEEN", 0);
209
210 // Outer hexagon made of Copper
211
212 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
213 //total wall thickness=0.2*2
214
215 hexd1[4]= - cell_depth/2.;
216 hexd1[7]= cell_depth/2.;
217 hexd1[6]= cell_radius;
218 hexd1[9]= cell_radius;
219
220 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
221 gMC->Gsatt("ECCU", "SEEN", 1);
222
223 // --- place inner hex inside outer hex
224
ef61784c 225 gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
c4561145 226
227// Rhombus shaped supermodules (defined by PARA)
228
229// volume for SUPERMODULE
230
231 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
232 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
233 dpara_sm1[1] = dpara_sm1[0] *root3_2;
234 dpara_sm1[2] = sm_thick/2.;
235
236//
237 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
238 gMC->Gsatt("ESMA", "SEEN", 0);
239 //
240 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
241 gMC->Gsatt("ESMB", "SEEN", 0);
242
243 // Air residing between the PCB and the base
244
245 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
246 dpara_air[0]= dpara_sm1[0];
247 dpara_air[1]= dpara_sm1[1];
248 dpara_air[2]= th_air/2.;
249
250 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
251 gMC->Gsatt("EAIR", "SEEN", 0);
252
253 // volume for honeycomb chamber EHC1
254
255 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
256 dpara1[0] = dpara_sm1[0];
257 dpara1[1] = dpara_sm1[1];
258 dpara1[2] = cell_depth/2.;
259
260 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
261 gMC->Gsatt("EHC1", "SEEN", 1);
262
263
264
265 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
266
267 Int_t xrow=1;
268
269 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
270 zb = 0.;
271
272 for (j = 1; j <= ncell_sm; ++j) {
273 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
274 if(xrow >= 2){
275 xb = xb+(xrow-1)*hexd1[6];
276 }
277 for (i = 1; i <= ncell_sm; ++i) {
278 number = i+(j-1)*ncell_sm;
ef61784c 279 gMC->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY");
c4561145 280 xb += (hexd1[6]*2.);
281 }
282 xrow = xrow+1;
283 yb += (hexd1[6]*TMath::Sqrt(3.));
284 }
285
286
287 // Place EHC1 and EAIR into ESMA and ESMB
288
289 Float_t z_air1,z_air2,z_gas;
290
291 //ESMA is normal supermodule with base at bottom, with EHC1
292 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
293 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
294 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
295 gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
296 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
297 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
298
299 // ESMB is mirror image of ESMA, with base at top, with EHC1
300
301 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
302 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
303 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
304 gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
305 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
306 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
307
308
309// special supermodule EMM2(GEANT only) containing 6 unit modules
310
311// volume for SUPERMODULE
312
313 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
314 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
315 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
316 dpara_sm2[2] = sm_thick/2.;
317
318 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
319 gMC->Gsatt("ESMX", "SEEN", 0);
320 //
321 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
322 gMC->Gsatt("ESMY", "SEEN", 0);
323
324 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
325 dpara2[0] = dpara_sm2[0];
326 dpara2[1] = dpara_sm2[1];
327 dpara2[2] = cell_depth/2.;
328
329 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
330 gMC->Gsatt("EHC2", "SEEN", 1);
331
332
333 // Air residing between the PCB and the base
334
335 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
336 dpara2_air[0]= dpara_sm2[0];
337 dpara2_air[1]= dpara_sm2[1];
338 dpara2_air[2]= th_air/2.;
339
340 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
341 gMC->Gsatt("EAIX", "SEEN", 0);
342
343 // Place hexagonal single cells ECCU inside EHC2
344 // skip cells which go into the hole in top left corner.
345
346 xrow=1;
347 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
348 zb = 0.;
349 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
350 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
351 if(xrow >= 2){
352 xb = xb+(xrow-1)*hexd1[6];
353 }
354 for (i = 1; i <= ncell_sm; ++i) {
355 number = i+(j-1)*ncell_sm;
ef61784c 356 gMC->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY");
c4561145 357 xb += (hexd1[6]*2.);
358 }
359 xrow = xrow+1;
360 yb += (hexd1[6]*TMath::Sqrt(3.));
361 }
362
363
364 // ESMX is normal supermodule with base at bottom, with EHC2
365
366 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
367 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
368 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
369 gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
370 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
371 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
372
373 // ESMY is mirror image of ESMX with base at bottom, with EHC2
374
375 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
376 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
377 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
378 gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
379 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
380 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
381
382//
383
384
385// special supermodule EMM3 (GEANT only) containing 2 unit modules
386
387// volume for SUPERMODULE
388
389 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
390 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
391 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
392 dpara_sm3[2] = sm_thick/2.;
393
394 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
395 gMC->Gsatt("ESMP", "SEEN", 0);
396 //
397 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
398 gMC->Gsatt("ESMQ", "SEEN", 0);
399
400 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
401 dpara3[0] = dpara_sm3[0];
402 dpara3[1] = dpara_sm3[1];
403 dpara3[2] = cell_depth/2.;
404
405 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
406 gMC->Gsatt("EHC3", "SEEN", 1);
407
408
409 // Air residing between the PCB and the base
410
411 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
412 dpara3_air[0]= dpara_sm3[0];
413 dpara3_air[1]= dpara_sm3[1];
414 dpara3_air[2]= th_air/2.;
415
416 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
417 gMC->Gsatt("EAIP", "SEEN", 0);
418
419
420 // Place hexagonal single cells ECCU inside EHC3
421 // skip cells which go into the hole in top left corner.
422
423 xrow=1;
424 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
425 zb = 0.;
426 for (j = 1; j <= ncell_hole; ++j) {
427 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
428 if(xrow >= 2){
429 xb = xb+(xrow-1)*hexd1[6];
430 }
431 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
432 number = i+(j-1)*(ncell_sm - ncell_hole);
ef61784c 433 gMC->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY");
c4561145 434 xb += (hexd1[6]*2.);
435 }
436 xrow = xrow+1;
437 yb += (hexd1[6]*TMath::Sqrt(3.));
438 }
439
440 // ESMP is normal supermodule with base at bottom, with EHC3
441
442 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
443 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
444 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
445 gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
446 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
447 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
448
449 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
450
451 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
452 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
453 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
454 gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
455 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
456 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
457
458}
459
460//_____________________________________________________________________________
461
462void AliPMDv1::CreatePMD()
463{
464 //
465 // Create final detector from supermodules
466 //
467 // -- Author : Y.P. VIYOGI, 07/05/1996.
468 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
469 // -- Modified: For New Geometry YPV, March 2001.
470
471
472 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
473 const Float_t pi = 3.14159;
474 Int_t i,j;
475
476 Float_t xp, yp, zp;
477
478 Int_t num_mod;
479 Int_t jhrot12,jhrot13, irotdm;
480
481 Int_t *idtmed = fIdtmed->GetArray()-599;
482
483 // VOLUMES Names : begining with "E" for all PMD volumes,
484 // The names of SIZE variables begin with S and have more meaningful
485 // characters as shown below.
486
487 // VOLUME SIZE MEDIUM : REMARKS
488 // ------ ----- ------ : ---------------------------
489
490 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
491
492 // *** Define the EPMD Volume and fill with air ***
493
494
495 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
496
497
498 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
499
500 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
501 gaspmd[8] = gaspmd[5];
502
503 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
504 gMC->Gsatt("EPMD", "SEEN", 0);
505
506 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
507
508 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
509 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
510
511
512 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
513
514 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
515 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
516 // EMM1 : normal volume as in old cases
517
518
519 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
520 dpara_emm1[0] = sm_length/2.;
521 dpara_emm1[1] = dpara_emm1[0] *root3_2;
522 dpara_emm1[2] = dm_thick/2.;
523
524 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
525 gMC->Gsatt("EMM1", "SEEN", 1);
526
527 //
528 // --- DEFINE Modules, iron, and lead volumes
529
530 // Pb Convertor for EMM1
531 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
532 dpara_pb1[0] = sm_length/2.;
533 dpara_pb1[1] = dpara_pb1[0] * root3_2;
534 dpara_pb1[2] = th_lead/2.;
535
536 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
537 gMC->Gsatt ("EPB1", "SEEN", 0);
538
539 // Fe Support for EMM1
540 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
541 dpara_fe1[0] = dpara_pb1[0];
542 dpara_fe1[1] = dpara_pb1[1];
543 dpara_fe1[2] = th_steel/2.;
544
545 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
546 gMC->Gsatt ("EFE1", "SEEN", 0);
547
548
549
550 //
551 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
552
553 Float_t z_ps,z_pb,z_fe,z_cv;
554
555 z_ps = - dpara_emm1[2] + sm_thick/2.;
556 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
557 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
558 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
559 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
560 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
561 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
562 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
563
564
565
566 // EMM2 : special master module having full row of cells but the number
567 // of rows limited by hole.
568
569 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
570 dpara_emm2[0] = sm_length/2.;
571 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
572 dpara_emm2[2] = dm_thick/2.;
573
574 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
575 gMC->Gsatt("EMM2", "SEEN", 1);
576
577
578 // Pb Convertor for EMM2
579 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
580 dpara_pb2[0] = dpara_emm2[0];
581 dpara_pb2[1] = dpara_emm2[1];
582 dpara_pb2[2] = th_lead/2.;
583
584 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
585 gMC->Gsatt ("EPB2", "SEEN", 0);
586
587 // Fe Support for EMM2
588 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
589 dpara_fe2[0] = dpara_pb2[0];
590 dpara_fe2[1] = dpara_pb2[1];
591 dpara_fe2[2] = th_steel/2.;
592
593 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
594 gMC->Gsatt ("EFE2", "SEEN", 0);
595
596
597
598 // position supermodule ESMX, ESMY inside EMM2
599
600 z_ps = - dpara_emm2[2] + sm_thick/2.;
601 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
602 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
603 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
604 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
605 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
606 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
607 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
608 //
609
610
611 // EMM3 : special master module having truncated rows and columns of cells
612 // limited by hole.
613
614 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
615 dpara_emm3[0] = dpara_emm2[1]/root3_2;
616 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
617 dpara_emm3[2] = dm_thick/2.;
618
619 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
620 gMC->Gsatt("EMM3", "SEEN", 1);
621
622
623 // Pb Convertor for EMM3
624 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
625 dpara_pb3[0] = dpara_emm3[0];
626 dpara_pb3[1] = dpara_emm3[1];
627 dpara_pb3[2] = th_lead/2.;
628
629 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
630 gMC->Gsatt ("EPB3", "SEEN", 0);
631
632 // Fe Support for EMM3
633 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
634 dpara_fe3[0] = dpara_pb3[0];
635 dpara_fe3[1] = dpara_pb3[1];
636 dpara_fe3[2] = th_steel/2.;
637
638 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
639 gMC->Gsatt ("EFE3", "SEEN", 0);
640
641
642
643 // position supermodule ESMP, ESMQ inside EMM3
644
645 z_ps = - dpara_emm3[2] + sm_thick/2.;
646 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
647 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
648 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
649 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
650 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
651 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
652 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
653 //
654
655 // EHOL is a tube structure made of air
656 //
657 //Float_t d_hole[3];
658 //d_hole[0] = 0.;
659 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
660 //d_hole[2] = dm_thick/2.;
661 //
662 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
663 //gMC->Gsatt("EHOL", "SEEN", 1);
664
665 //Al-rod as boundary of the supermodules
666
667 Float_t Al_rod[3] ;
668 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
76ad67b5 669 Al_rod[1] = boundary - 0.5*cell_radius*root3_2;
c4561145 670 Al_rod[2] = dm_thick/2.;
671
672 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
673 gMC->Gsatt ("EALM", "SEEN", 1);
674 Float_t xalm[3];
675 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
676 xalm[1]=-xalm[0]/2.;
677 xalm[2]=xalm[1];
678
679 Float_t yalm[3];
680 yalm[0]=0.;
681 yalm[1]=xalm[0]*root3_2;
682 yalm[2]=-yalm[1];
683
684 // delx = full side of the supermodule
685 Float_t delx=sm_length * 3.;
686 Float_t x1= delx*root3_2 /2.;
687 Float_t x4=delx/4.;
688
689
690 // placing master modules and Al-rod in PMD
691
692 Float_t dx = sm_length;
693 Float_t dy = dx * root3_2;
694
695 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
696 -dx, 0., dx,
697 -3.*dx/2., -dx/2., dx/2.};
698
699 Float_t ysup[9] = {dy, dy, dy,
700 0., 0., 0.,
701 -dy, -dy, -dy};
702
703 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
704
705 Float_t xoff = boundary * TMath::Tan(pi/6.);
706 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
707 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
708 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
709
710 Float_t xemm2 = sm_length/2. -
711 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
712 + xoff;
713 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
714 - boundary;
715
716 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
717 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
718
719 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
720 Int_t irotate[3] = {0, jhrot12, jhrot13};
721
722 num_mod=0;
723 for (j=0; j<3; ++j)
724 {
ef61784c 725 gMC->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY");
c4561145 726 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
727 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
728
ef61784c 729 gMC->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY");
c4561145 730
731 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
732 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
733
ef61784c 734 gMC->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY");
c4561145 735
736 for (i=1; i<9; ++i)
737 {
738 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
739 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
740
1592ac65 741 if(fDebug)
742 printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
c4561145 743
744 num_mod = num_mod+1;
745
1592ac65 746 if(fDebug)
747 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
c4561145 748
ef61784c 749 gMC->Gspos("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY");
c4561145 750
751 }
752 }
753
754
755 // place EHOL in the centre of EPMD
756 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
757
758 // --- Place the EPMD in ALICE
759 xp = 0.;
760 yp = 0.;
761 zp = zdist1;
762
763 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
764
765}
766
767
768//_____________________________________________________________________________
769void AliPMDv1::DrawModule()
770{
771 //
772 // Draw a shaded view of the Photon Multiplicity Detector
773 //
774
775 gMC->Gsatt("*", "seen", -1);
776 gMC->Gsatt("alic", "seen", 0);
777 //
778 // Set the visibility of the components
779 //
780 gMC->Gsatt("ECAR","seen",0);
781 gMC->Gsatt("ECCU","seen",1);
782 gMC->Gsatt("EHC1","seen",1);
783 gMC->Gsatt("EHC1","seen",1);
784 gMC->Gsatt("EHC2","seen",1);
785 gMC->Gsatt("EMM1","seen",1);
786 gMC->Gsatt("EHOL","seen",1);
787 gMC->Gsatt("EPMD","seen",0);
788 //
789 gMC->Gdopt("hide", "on");
790 gMC->Gdopt("shad", "on");
791 gMC->Gsatt("*", "fill", 7);
792 gMC->SetClipBox(".");
793 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
794 gMC->DefaultRange();
795 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
796 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
797
798 //gMC->Gdman(17, 5, "MAN");
799 gMC->Gdopt("hide", "off");
800}
801
802//_____________________________________________________________________________
803void AliPMDv1::CreateMaterials()
804{
805 //
806 // Create materials for the PMD
807 //
808 // ORIGIN : Y. P. VIYOGI
809 //
810
811 // --- The Argon- CO2 mixture ---
812 Float_t ag[2] = { 39.95 };
813 Float_t zg[2] = { 18. };
814 Float_t wg[2] = { .8,.2 };
815 Float_t dar = .001782; // --- Ar density in g/cm3 ---
816 // --- CO2 ---
817 Float_t ac[2] = { 12.,16. };
818 Float_t zc[2] = { 6.,8. };
819 Float_t wc[2] = { 1.,2. };
820 Float_t dc = .001977;
821 Float_t dco = .002; // --- CO2 density in g/cm3 ---
822
823 Float_t absl, radl, a, d, z;
824 Float_t dg;
825 Float_t x0ar;
826 //Float_t x0xe=2.4;
827 //Float_t dxe=0.005858;
828 Float_t buf[1];
829 Int_t nbuf;
830 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
831 Float_t zsteel[4] = { 26.,24.,28.,14. };
832 Float_t wsteel[4] = { .715,.18,.1,.005 };
833
834 Int_t *idtmed = fIdtmed->GetArray()-599;
835 Int_t isxfld = gAlice->Field()->Integ();
836 Float_t sxmgmx = gAlice->Field()->Max();
837
838 // --- Define the various materials for GEANT ---
839 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
840 x0ar = 19.55 / dar;
841 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
842 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
843 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
844 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
845 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
846 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
847 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
848 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
849 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
850 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
851 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
852 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
853 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
854
855 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
856 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
857 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
858 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
859
860 // define gas-mixtures
861
862 char namate[21];
863 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
864 ag[1] = a;
865 zg[1] = z;
866 dg = (dar * 4 + dco) / 5;
867 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
868
869 // Define tracking media
870 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
871 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
872 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
873 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
874 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
875 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
876 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
877 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
878 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
879 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
880 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
881 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
882 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
883 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
884 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
885
886 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
887 gMC->Gstpar(idtmed[600], "LOSS", 3.);
888 gMC->Gstpar(idtmed[600], "DRAY", 1.);
889
890 gMC->Gstpar(idtmed[603], "LOSS", 3.);
891 gMC->Gstpar(idtmed[603], "DRAY", 1.);
892
893 gMC->Gstpar(idtmed[604], "LOSS", 3.);
894 gMC->Gstpar(idtmed[604], "DRAY", 1.);
895
896 gMC->Gstpar(idtmed[605], "LOSS", 3.);
897 gMC->Gstpar(idtmed[605], "DRAY", 1.);
898
899 gMC->Gstpar(idtmed[606], "LOSS", 3.);
900 gMC->Gstpar(idtmed[606], "DRAY", 1.);
901
902 gMC->Gstpar(idtmed[607], "LOSS", 3.);
903 gMC->Gstpar(idtmed[607], "DRAY", 1.);
904
905 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
906 // --- without affecting the hit patterns ---
907 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
908 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
909 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
910 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
911 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
912 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
913 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
914 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
915 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
916 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
917 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
918 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
919 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
920 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
921 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
922 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
923 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
924 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
925 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
926 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
927
928 // --- Prevent particles stopping in the gas due to energy cut-off ---
929 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
930 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
931 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
932 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
933 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
934}
935
936//_____________________________________________________________________________
937void AliPMDv1::Init()
938{
939 //
940 // Initialises PMD detector after it has been built
941 //
942 Int_t i;
943 kdet=1;
944 //
1592ac65 945 if(fDebug) {
946 printf("\n%s: ",ClassName());
947 for(i=0;i<35;i++) printf("*");
948 printf(" PMD_INIT ");
949 for(i=0;i<35;i++) printf("*");
950 printf("\n%s: ",ClassName());
951 printf(" PMD simulation package (v1) initialised\n");
952 printf("%s: parameters of pmd\n",ClassName());
dee197d3 953 printf("%s: %10.2f %10.2f %10.2f \
1592ac65 954 %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
955 printf("%s: ",ClassName());
956 for(i=0;i<80;i++) printf("*");
957 printf("\n");
958 }
c4561145 959
960 Int_t *idtmed = fIdtmed->GetArray()-599;
961 fMedSens=idtmed[605-1];
962}
963
964//_____________________________________________________________________________
965void AliPMDv1::StepManager()
966{
967 //
968 // Called at each step in the PMD
969 //
970 Int_t copy;
971 Float_t hits[4], destep;
972 Float_t center[3] = {0,0,0};
973 Int_t vol[5];
974 //char *namep;
975
976 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
977
978 gMC->CurrentVolID(copy);
979
980 //namep=gMC->CurrentVolName();
981 //printf("Current vol is %s \n",namep);
982
983 vol[0]=copy;
984 gMC->CurrentVolOffID(1,copy);
985
986 //namep=gMC->CurrentVolOffName(1);
987 //printf("Current vol 11 is %s \n",namep);
988
989 vol[1]=copy;
990 gMC->CurrentVolOffID(2,copy);
991
992 //namep=gMC->CurrentVolOffName(2);
993 //printf("Current vol 22 is %s \n",namep);
994
995 vol[2]=copy;
996
997 // if(strncmp(namep,"EHC1",4))vol[2]=1;
998
999 gMC->CurrentVolOffID(3,copy);
1000
1001 //namep=gMC->CurrentVolOffName(3);
1002 //printf("Current vol 33 is %s \n",namep);
1003
1004 vol[3]=copy;
1005 gMC->CurrentVolOffID(4,copy);
1006
1007 //namep=gMC->CurrentVolOffName(4);
1008 //printf("Current vol 44 is %s \n",namep);
1009
1010 vol[4]=copy;
1011 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
1012
1013 gMC->Gdtom(center,hits,1);
1014 hits[3] = destep*1e9; //Number in eV
1015 AddHit(gAlice->CurrentTrack(), vol, hits);
1016 }
1017}
1018
1019
1020//------------------------------------------------------------------------
1021// Get parameters
1022
1023void AliPMDv1::GetParameters()
1024{
1025 Int_t ncell_um, num_um;
1026 ncell_um=24;
1027 num_um=3;
1028 ncell_hole=24;
1029 cell_radius=0.25;
1030 cell_wall=0.02;
1031 cell_depth=0.25 * 2.;
1032 //
1033 boundary=0.7;
1034 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1035 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1036 //
1037 th_base=0.3;
1038 th_air=0.1;
1039 th_pcb=0.16;
1040 //
1041 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1042 //
1043 th_lead=1.5;
1044 th_steel=0.5;
1045 //
1046 zdist1 = -365.;
1047}
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
ef61784c 1061