]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv1.cxx
More exact rounding function, but also much slower.
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
dee197d3 17Revision 1.15 2001/05/21 10:59:49 morsch
18Lost changes from revision 1.13 recovered.
19
1592ac65 20Revision 1.14 2001/05/21 09:39:28 morsch
21Minor modifications on the geometry. (Tapan Nayak)
22
23Revision 1.13 2001/05/16 14:57:19 alibrary
24New files for folders and Stack
25
9e1a0ddb 26Revision 1.12 2001/05/14 14:01:04 morsch
27AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak.
28
c4561145 29*/
30//
31///////////////////////////////////////////////////////////////////////////////
32// //
33// Photon Multiplicity Detector Version 1 //
34// //
35//Begin_Html
36/*
37<img src="picts/AliPMDv1Class.gif">
38*/
39//End_Html
40// //
41///////////////////////////////////////////////////////////////////////////////
42////
43
44#include "AliPMDv1.h"
45#include "AliRun.h"
46#include "AliMC.h"
47#include "AliConst.h"
48#include "AliMagF.h"
49#include "iostream.h"
50
51static Int_t kdet, ncell_sm, ncell_hole;
52static Float_t zdist, zdist1;
53static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
54static Float_t boundary, th_base, th_air, th_pcb;
55static Float_t th_lead, th_steel;
56
57ClassImp(AliPMDv1)
58
59 //_____________________________________________________________________________
60 AliPMDv1::AliPMDv1()
61{
62 //
63 // Default constructor
64 //
65 fMedSens=0;
66}
67
68//_____________________________________________________________________________
69AliPMDv1::AliPMDv1(const char *name, const char *title)
70 : AliPMD(name,title)
71{
72 //
73 // Standard constructor
74 //
75 fMedSens=0;
76}
77
78//_____________________________________________________________________________
79void AliPMDv1::CreateGeometry()
80{
81 //
82 // Create geometry for Photon Multiplicity Detector Version 3 :
83 // April 2, 2001
84 //
85 //Begin_Html
86 /*
87 <img src="picts/AliPMDv1.gif">
88 */
89 //End_Html
90 //Begin_Html
91 /*
92 <img src="picts/AliPMDv1Tree.gif">
93 */
94 //End_Html
95 GetParameters();
96 CreateSupermodule();
97 CreatePMD();
98}
99
100//_____________________________________________________________________________
101void AliPMDv1::CreateSupermodule()
102{
103 //
104 // Creates the geometry of the cells, places them in supermodule which
105 // is a rhombus object.
106
107 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
108 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
109 // -- Author : S. Chattopadhyay, 02/04/1999.
110
111 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
112 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
113 // in radius gives the dimension of half width of each cell wall.
114 // These cells are placed as 72 x 72 array in a
115 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
116 // to have closed packed structure.
117 //
118 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
119 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
120 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
121 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
122 //
123 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
124 // and EMFE (iron support)
125
126 // EMM1 made of
127 // ESMB --> Normal supermodule, mirror image of ESMA
128 // EMPB --> Pb converter
129 // EMFE --> Fe backing
130 // ESMA --> Normal supermodule
131 //
132 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
133 // and EMFE (iron support)
134
135 // EMM2 made of
136 // ESMY --> Special supermodule, mirror image of ESMX,
137 // EMPB --> Pb converter
138 // EMFE --> Fe backing
139 // ESMX --> First of the two Special supermodules near the hole
140
141 // EMM3 made of
142 // ESMQ --> Special supermodule, mirror image of ESMX,
143 // EMPB --> Pb converter
144 // EMFE --> Fe backing
145 // ESMP --> Second of the two Special supermodules near the hole
146
147 // EMM2 and EMM3 are used to create the hexagonal HOLE
148
149 //
150 // EPMD
151 // |
152 // |
153 // ---------------------------------------------------------------------------
154 // | | | | |
155 // EHOL EMM1 EMM2 EMM3 EALM
156 // | | |
157 // -------------------- -------------------- --------------------
158 // | | | | | | | | | | | |
159 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
160 // | | |
161 // ------------ ------------ -------------
162 // | | | | | | | | |
163 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
164 // | | |
165 // ECCU ECCU ECCU
166 // | | |
167 // ECAR ECAR ECAR
168
169
170 Int_t i, j;
171 Float_t xb, yb, zb;
172 Int_t number;
173 Int_t ihrotm,irotdm;
174 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
175 Int_t *idtmed = fIdtmed->GetArray()-599;
176
177 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
178 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
179
180 zdist = TMath::Abs(zdist1);
181
182
183 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
184 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
185 //(1mm tolerance on both side and 5mm thick G10 wall)
186 //
187
188 // **** CELL SIZE 20 mm^2 EQUIVALENT
189
190 // Inner hexagon filled with gas (Ar+CO2)
191
192 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
193
194 hexd2[4]= - cell_depth/2.;
195 hexd2[7]= cell_depth/2.;
196 hexd2[6]= cell_radius - cell_wall;
197 hexd2[9]= cell_radius - cell_wall;
198
199 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
200 gMC->Gsatt("ECAR", "SEEN", 0);
201
202 // Outer hexagon made of Copper
203
204 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
205 //total wall thickness=0.2*2
206
207 hexd1[4]= - cell_depth/2.;
208 hexd1[7]= cell_depth/2.;
209 hexd1[6]= cell_radius;
210 hexd1[9]= cell_radius;
211
212 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
213 gMC->Gsatt("ECCU", "SEEN", 1);
214
215 // --- place inner hex inside outer hex
216
217 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
218
219// Rhombus shaped supermodules (defined by PARA)
220
221// volume for SUPERMODULE
222
223 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
224 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
225 dpara_sm1[1] = dpara_sm1[0] *root3_2;
226 dpara_sm1[2] = sm_thick/2.;
227
228//
229 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
230 gMC->Gsatt("ESMA", "SEEN", 0);
231 //
232 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
233 gMC->Gsatt("ESMB", "SEEN", 0);
234
235 // Air residing between the PCB and the base
236
237 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
238 dpara_air[0]= dpara_sm1[0];
239 dpara_air[1]= dpara_sm1[1];
240 dpara_air[2]= th_air/2.;
241
242 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
243 gMC->Gsatt("EAIR", "SEEN", 0);
244
245 // volume for honeycomb chamber EHC1
246
247 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
248 dpara1[0] = dpara_sm1[0];
249 dpara1[1] = dpara_sm1[1];
250 dpara1[2] = cell_depth/2.;
251
252 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
253 gMC->Gsatt("EHC1", "SEEN", 1);
254
255
256
257 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
258
259 Int_t xrow=1;
260
261 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
262 zb = 0.;
263
264 for (j = 1; j <= ncell_sm; ++j) {
265 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
266 if(xrow >= 2){
267 xb = xb+(xrow-1)*hexd1[6];
268 }
269 for (i = 1; i <= ncell_sm; ++i) {
270 number = i+(j-1)*ncell_sm;
271 gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
272 xb += (hexd1[6]*2.);
273 }
274 xrow = xrow+1;
275 yb += (hexd1[6]*TMath::Sqrt(3.));
276 }
277
278
279 // Place EHC1 and EAIR into ESMA and ESMB
280
281 Float_t z_air1,z_air2,z_gas;
282
283 //ESMA is normal supermodule with base at bottom, with EHC1
284 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
285 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
286 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
287 gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
288 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
289 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
290
291 // ESMB is mirror image of ESMA, with base at top, with EHC1
292
293 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
294 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
295 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
296 gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
297 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
298 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
299
300
301// special supermodule EMM2(GEANT only) containing 6 unit modules
302
303// volume for SUPERMODULE
304
305 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
306 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
307 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
308 dpara_sm2[2] = sm_thick/2.;
309
310 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
311 gMC->Gsatt("ESMX", "SEEN", 0);
312 //
313 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
314 gMC->Gsatt("ESMY", "SEEN", 0);
315
316 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
317 dpara2[0] = dpara_sm2[0];
318 dpara2[1] = dpara_sm2[1];
319 dpara2[2] = cell_depth/2.;
320
321 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
322 gMC->Gsatt("EHC2", "SEEN", 1);
323
324
325 // Air residing between the PCB and the base
326
327 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
328 dpara2_air[0]= dpara_sm2[0];
329 dpara2_air[1]= dpara_sm2[1];
330 dpara2_air[2]= th_air/2.;
331
332 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
333 gMC->Gsatt("EAIX", "SEEN", 0);
334
335 // Place hexagonal single cells ECCU inside EHC2
336 // skip cells which go into the hole in top left corner.
337
338 xrow=1;
339 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
340 zb = 0.;
341 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
342 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
343 if(xrow >= 2){
344 xb = xb+(xrow-1)*hexd1[6];
345 }
346 for (i = 1; i <= ncell_sm; ++i) {
347 number = i+(j-1)*ncell_sm;
348 gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
349 xb += (hexd1[6]*2.);
350 }
351 xrow = xrow+1;
352 yb += (hexd1[6]*TMath::Sqrt(3.));
353 }
354
355
356 // ESMX is normal supermodule with base at bottom, with EHC2
357
358 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
359 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
360 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
361 gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
362 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
363 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
364
365 // ESMY is mirror image of ESMX with base at bottom, with EHC2
366
367 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
368 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
369 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
370 gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
371 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
372 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
373
374//
375
376
377// special supermodule EMM3 (GEANT only) containing 2 unit modules
378
379// volume for SUPERMODULE
380
381 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
382 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
383 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
384 dpara_sm3[2] = sm_thick/2.;
385
386 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
387 gMC->Gsatt("ESMP", "SEEN", 0);
388 //
389 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
390 gMC->Gsatt("ESMQ", "SEEN", 0);
391
392 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
393 dpara3[0] = dpara_sm3[0];
394 dpara3[1] = dpara_sm3[1];
395 dpara3[2] = cell_depth/2.;
396
397 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
398 gMC->Gsatt("EHC3", "SEEN", 1);
399
400
401 // Air residing between the PCB and the base
402
403 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
404 dpara3_air[0]= dpara_sm3[0];
405 dpara3_air[1]= dpara_sm3[1];
406 dpara3_air[2]= th_air/2.;
407
408 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
409 gMC->Gsatt("EAIP", "SEEN", 0);
410
411
412 // Place hexagonal single cells ECCU inside EHC3
413 // skip cells which go into the hole in top left corner.
414
415 xrow=1;
416 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
417 zb = 0.;
418 for (j = 1; j <= ncell_hole; ++j) {
419 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
420 if(xrow >= 2){
421 xb = xb+(xrow-1)*hexd1[6];
422 }
423 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
424 number = i+(j-1)*(ncell_sm - ncell_hole);
425 gMC->Gsposp("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
426 xb += (hexd1[6]*2.);
427 }
428 xrow = xrow+1;
429 yb += (hexd1[6]*TMath::Sqrt(3.));
430 }
431
432 // ESMP is normal supermodule with base at bottom, with EHC3
433
434 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
435 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
436 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
437 gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
438 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
439 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
440
441 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
442
443 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
444 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
445 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
446 gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
447 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
448 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
449
450}
451
452//_____________________________________________________________________________
453
454void AliPMDv1::CreatePMD()
455{
456 //
457 // Create final detector from supermodules
458 //
459 // -- Author : Y.P. VIYOGI, 07/05/1996.
460 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
461 // -- Modified: For New Geometry YPV, March 2001.
462
463
464 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
465 const Float_t pi = 3.14159;
466 Int_t i,j;
467
468 Float_t xp, yp, zp;
469
470 Int_t num_mod;
471 Int_t jhrot12,jhrot13, irotdm;
472
473 Int_t *idtmed = fIdtmed->GetArray()-599;
474
475 // VOLUMES Names : begining with "E" for all PMD volumes,
476 // The names of SIZE variables begin with S and have more meaningful
477 // characters as shown below.
478
479 // VOLUME SIZE MEDIUM : REMARKS
480 // ------ ----- ------ : ---------------------------
481
482 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
483
484 // *** Define the EPMD Volume and fill with air ***
485
486
487 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
488
489
490 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
491
492 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
493 gaspmd[8] = gaspmd[5];
494
495 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
496 gMC->Gsatt("EPMD", "SEEN", 0);
497
498 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
499
500 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
501 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
502
503
504 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
505
506 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
507 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
508 // EMM1 : normal volume as in old cases
509
510
511 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
512 dpara_emm1[0] = sm_length/2.;
513 dpara_emm1[1] = dpara_emm1[0] *root3_2;
514 dpara_emm1[2] = dm_thick/2.;
515
516 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
517 gMC->Gsatt("EMM1", "SEEN", 1);
518
519 //
520 // --- DEFINE Modules, iron, and lead volumes
521
522 // Pb Convertor for EMM1
523 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
524 dpara_pb1[0] = sm_length/2.;
525 dpara_pb1[1] = dpara_pb1[0] * root3_2;
526 dpara_pb1[2] = th_lead/2.;
527
528 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
529 gMC->Gsatt ("EPB1", "SEEN", 0);
530
531 // Fe Support for EMM1
532 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
533 dpara_fe1[0] = dpara_pb1[0];
534 dpara_fe1[1] = dpara_pb1[1];
535 dpara_fe1[2] = th_steel/2.;
536
537 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
538 gMC->Gsatt ("EFE1", "SEEN", 0);
539
540
541
542 //
543 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
544
545 Float_t z_ps,z_pb,z_fe,z_cv;
546
547 z_ps = - dpara_emm1[2] + sm_thick/2.;
548 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
549 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
550 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
551 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
552 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
553 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
554 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
555
556
557
558 // EMM2 : special master module having full row of cells but the number
559 // of rows limited by hole.
560
561 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
562 dpara_emm2[0] = sm_length/2.;
563 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
564 dpara_emm2[2] = dm_thick/2.;
565
566 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
567 gMC->Gsatt("EMM2", "SEEN", 1);
568
569
570 // Pb Convertor for EMM2
571 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
572 dpara_pb2[0] = dpara_emm2[0];
573 dpara_pb2[1] = dpara_emm2[1];
574 dpara_pb2[2] = th_lead/2.;
575
576 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
577 gMC->Gsatt ("EPB2", "SEEN", 0);
578
579 // Fe Support for EMM2
580 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
581 dpara_fe2[0] = dpara_pb2[0];
582 dpara_fe2[1] = dpara_pb2[1];
583 dpara_fe2[2] = th_steel/2.;
584
585 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
586 gMC->Gsatt ("EFE2", "SEEN", 0);
587
588
589
590 // position supermodule ESMX, ESMY inside EMM2
591
592 z_ps = - dpara_emm2[2] + sm_thick/2.;
593 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
594 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
595 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
596 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
597 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
598 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
599 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
600 //
601
602
603 // EMM3 : special master module having truncated rows and columns of cells
604 // limited by hole.
605
606 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
607 dpara_emm3[0] = dpara_emm2[1]/root3_2;
608 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
609 dpara_emm3[2] = dm_thick/2.;
610
611 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
612 gMC->Gsatt("EMM3", "SEEN", 1);
613
614
615 // Pb Convertor for EMM3
616 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
617 dpara_pb3[0] = dpara_emm3[0];
618 dpara_pb3[1] = dpara_emm3[1];
619 dpara_pb3[2] = th_lead/2.;
620
621 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
622 gMC->Gsatt ("EPB3", "SEEN", 0);
623
624 // Fe Support for EMM3
625 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
626 dpara_fe3[0] = dpara_pb3[0];
627 dpara_fe3[1] = dpara_pb3[1];
628 dpara_fe3[2] = th_steel/2.;
629
630 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
631 gMC->Gsatt ("EFE3", "SEEN", 0);
632
633
634
635 // position supermodule ESMP, ESMQ inside EMM3
636
637 z_ps = - dpara_emm3[2] + sm_thick/2.;
638 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
639 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
640 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
641 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
642 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
643 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
644 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
645 //
646
647 // EHOL is a tube structure made of air
648 //
649 //Float_t d_hole[3];
650 //d_hole[0] = 0.;
651 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
652 //d_hole[2] = dm_thick/2.;
653 //
654 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
655 //gMC->Gsatt("EHOL", "SEEN", 1);
656
657 //Al-rod as boundary of the supermodules
658
659 Float_t Al_rod[3] ;
660 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
76ad67b5 661 Al_rod[1] = boundary - 0.5*cell_radius*root3_2;
c4561145 662 Al_rod[2] = dm_thick/2.;
663
664 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
665 gMC->Gsatt ("EALM", "SEEN", 1);
666 Float_t xalm[3];
667 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
668 xalm[1]=-xalm[0]/2.;
669 xalm[2]=xalm[1];
670
671 Float_t yalm[3];
672 yalm[0]=0.;
673 yalm[1]=xalm[0]*root3_2;
674 yalm[2]=-yalm[1];
675
676 // delx = full side of the supermodule
677 Float_t delx=sm_length * 3.;
678 Float_t x1= delx*root3_2 /2.;
679 Float_t x4=delx/4.;
680
681
682 // placing master modules and Al-rod in PMD
683
684 Float_t dx = sm_length;
685 Float_t dy = dx * root3_2;
686
687 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
688 -dx, 0., dx,
689 -3.*dx/2., -dx/2., dx/2.};
690
691 Float_t ysup[9] = {dy, dy, dy,
692 0., 0., 0.,
693 -dy, -dy, -dy};
694
695 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
696
697 Float_t xoff = boundary * TMath::Tan(pi/6.);
698 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
699 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
700 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
701
702 Float_t xemm2 = sm_length/2. -
703 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
704 + xoff;
705 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
706 - boundary;
707
708 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
709 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
710
711 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
712 Int_t irotate[3] = {0, jhrot12, jhrot13};
713
714 num_mod=0;
715 for (j=0; j<3; ++j)
716 {
717 gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
718 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
719 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
720
721 gMC->Gsposp("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY", dpara_emm2, 6);
722
723 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
724 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
725
726 gMC->Gsposp("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY", dpara_emm3, 6);
727
728 for (i=1; i<9; ++i)
729 {
730 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
731 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
732
1592ac65 733 if(fDebug)
734 printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
c4561145 735
736 num_mod = num_mod+1;
737
1592ac65 738 if(fDebug)
739 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
c4561145 740
741 gMC->Gsposp("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
742
743 }
744 }
745
746
747 // place EHOL in the centre of EPMD
748 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
749
750 // --- Place the EPMD in ALICE
751 xp = 0.;
752 yp = 0.;
753 zp = zdist1;
754
755 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
756
757}
758
759
760//_____________________________________________________________________________
761void AliPMDv1::DrawModule()
762{
763 //
764 // Draw a shaded view of the Photon Multiplicity Detector
765 //
766
767 gMC->Gsatt("*", "seen", -1);
768 gMC->Gsatt("alic", "seen", 0);
769 //
770 // Set the visibility of the components
771 //
772 gMC->Gsatt("ECAR","seen",0);
773 gMC->Gsatt("ECCU","seen",1);
774 gMC->Gsatt("EHC1","seen",1);
775 gMC->Gsatt("EHC1","seen",1);
776 gMC->Gsatt("EHC2","seen",1);
777 gMC->Gsatt("EMM1","seen",1);
778 gMC->Gsatt("EHOL","seen",1);
779 gMC->Gsatt("EPMD","seen",0);
780 //
781 gMC->Gdopt("hide", "on");
782 gMC->Gdopt("shad", "on");
783 gMC->Gsatt("*", "fill", 7);
784 gMC->SetClipBox(".");
785 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
786 gMC->DefaultRange();
787 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
788 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
789
790 //gMC->Gdman(17, 5, "MAN");
791 gMC->Gdopt("hide", "off");
792}
793
794//_____________________________________________________________________________
795void AliPMDv1::CreateMaterials()
796{
797 //
798 // Create materials for the PMD
799 //
800 // ORIGIN : Y. P. VIYOGI
801 //
802
803 // --- The Argon- CO2 mixture ---
804 Float_t ag[2] = { 39.95 };
805 Float_t zg[2] = { 18. };
806 Float_t wg[2] = { .8,.2 };
807 Float_t dar = .001782; // --- Ar density in g/cm3 ---
808 // --- CO2 ---
809 Float_t ac[2] = { 12.,16. };
810 Float_t zc[2] = { 6.,8. };
811 Float_t wc[2] = { 1.,2. };
812 Float_t dc = .001977;
813 Float_t dco = .002; // --- CO2 density in g/cm3 ---
814
815 Float_t absl, radl, a, d, z;
816 Float_t dg;
817 Float_t x0ar;
818 //Float_t x0xe=2.4;
819 //Float_t dxe=0.005858;
820 Float_t buf[1];
821 Int_t nbuf;
822 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
823 Float_t zsteel[4] = { 26.,24.,28.,14. };
824 Float_t wsteel[4] = { .715,.18,.1,.005 };
825
826 Int_t *idtmed = fIdtmed->GetArray()-599;
827 Int_t isxfld = gAlice->Field()->Integ();
828 Float_t sxmgmx = gAlice->Field()->Max();
829
830 // --- Define the various materials for GEANT ---
831 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
832 x0ar = 19.55 / dar;
833 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
834 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
835 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
836 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
837 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
838 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
839 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
840 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
841 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
842 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
843 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
844 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
845 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
846
847 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
848 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
849 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
850 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
851
852 // define gas-mixtures
853
854 char namate[21];
855 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
856 ag[1] = a;
857 zg[1] = z;
858 dg = (dar * 4 + dco) / 5;
859 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
860
861 // Define tracking media
862 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
863 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
864 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
865 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
866 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
867 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
868 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
869 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
870 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
871 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
872 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
873 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
874 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
875 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
876 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
877
878 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
879 gMC->Gstpar(idtmed[600], "LOSS", 3.);
880 gMC->Gstpar(idtmed[600], "DRAY", 1.);
881
882 gMC->Gstpar(idtmed[603], "LOSS", 3.);
883 gMC->Gstpar(idtmed[603], "DRAY", 1.);
884
885 gMC->Gstpar(idtmed[604], "LOSS", 3.);
886 gMC->Gstpar(idtmed[604], "DRAY", 1.);
887
888 gMC->Gstpar(idtmed[605], "LOSS", 3.);
889 gMC->Gstpar(idtmed[605], "DRAY", 1.);
890
891 gMC->Gstpar(idtmed[606], "LOSS", 3.);
892 gMC->Gstpar(idtmed[606], "DRAY", 1.);
893
894 gMC->Gstpar(idtmed[607], "LOSS", 3.);
895 gMC->Gstpar(idtmed[607], "DRAY", 1.);
896
897 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
898 // --- without affecting the hit patterns ---
899 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
900 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
901 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
902 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
903 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
904 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
905 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
906 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
907 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
908 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
909 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
910 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
911 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
912 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
913 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
914 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
915 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
916 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
917 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
918 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
919
920 // --- Prevent particles stopping in the gas due to energy cut-off ---
921 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
922 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
923 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
924 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
925 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
926}
927
928//_____________________________________________________________________________
929void AliPMDv1::Init()
930{
931 //
932 // Initialises PMD detector after it has been built
933 //
934 Int_t i;
935 kdet=1;
936 //
1592ac65 937 if(fDebug) {
938 printf("\n%s: ",ClassName());
939 for(i=0;i<35;i++) printf("*");
940 printf(" PMD_INIT ");
941 for(i=0;i<35;i++) printf("*");
942 printf("\n%s: ",ClassName());
943 printf(" PMD simulation package (v1) initialised\n");
944 printf("%s: parameters of pmd\n",ClassName());
dee197d3 945 printf("%s: %10.2f %10.2f %10.2f \
1592ac65 946 %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
947 printf("%s: ",ClassName());
948 for(i=0;i<80;i++) printf("*");
949 printf("\n");
950 }
c4561145 951
952 Int_t *idtmed = fIdtmed->GetArray()-599;
953 fMedSens=idtmed[605-1];
954}
955
956//_____________________________________________________________________________
957void AliPMDv1::StepManager()
958{
959 //
960 // Called at each step in the PMD
961 //
962 Int_t copy;
963 Float_t hits[4], destep;
964 Float_t center[3] = {0,0,0};
965 Int_t vol[5];
966 //char *namep;
967
968 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
969
970 gMC->CurrentVolID(copy);
971
972 //namep=gMC->CurrentVolName();
973 //printf("Current vol is %s \n",namep);
974
975 vol[0]=copy;
976 gMC->CurrentVolOffID(1,copy);
977
978 //namep=gMC->CurrentVolOffName(1);
979 //printf("Current vol 11 is %s \n",namep);
980
981 vol[1]=copy;
982 gMC->CurrentVolOffID(2,copy);
983
984 //namep=gMC->CurrentVolOffName(2);
985 //printf("Current vol 22 is %s \n",namep);
986
987 vol[2]=copy;
988
989 // if(strncmp(namep,"EHC1",4))vol[2]=1;
990
991 gMC->CurrentVolOffID(3,copy);
992
993 //namep=gMC->CurrentVolOffName(3);
994 //printf("Current vol 33 is %s \n",namep);
995
996 vol[3]=copy;
997 gMC->CurrentVolOffID(4,copy);
998
999 //namep=gMC->CurrentVolOffName(4);
1000 //printf("Current vol 44 is %s \n",namep);
1001
1002 vol[4]=copy;
1003 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
1004
1005 gMC->Gdtom(center,hits,1);
1006 hits[3] = destep*1e9; //Number in eV
1007 AddHit(gAlice->CurrentTrack(), vol, hits);
1008 }
1009}
1010
1011
1012//------------------------------------------------------------------------
1013// Get parameters
1014
1015void AliPMDv1::GetParameters()
1016{
1017 Int_t ncell_um, num_um;
1018 ncell_um=24;
1019 num_um=3;
1020 ncell_hole=24;
1021 cell_radius=0.25;
1022 cell_wall=0.02;
1023 cell_depth=0.25 * 2.;
1024 //
1025 boundary=0.7;
1026 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1027 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1028 //
1029 th_base=0.3;
1030 th_air=0.1;
1031 th_pcb=0.16;
1032 //
1033 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1034 //
1035 th_lead=1.5;
1036 th_steel=0.5;
1037 //
1038 zdist1 = -365.;
1039}
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052