]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PMD/AliPMDv1.cxx
Use fStepBack = 1 only in debug mode.
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
9e1a0ddb 17Revision 1.12 2001/05/14 14:01:04 morsch
18AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak.
19
c4561145 20*/
21//
22///////////////////////////////////////////////////////////////////////////////
23// //
24// Photon Multiplicity Detector Version 1 //
25// //
26//Begin_Html
27/*
28<img src="picts/AliPMDv1Class.gif">
29*/
30//End_Html
31// //
32///////////////////////////////////////////////////////////////////////////////
33////
34
35#include "AliPMDv1.h"
36#include "AliRun.h"
37#include "AliMC.h"
38#include "AliConst.h"
39#include "AliMagF.h"
40#include "iostream.h"
41
42static Int_t kdet, ncell_sm, ncell_hole;
43static Float_t zdist, zdist1;
44static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
45static Float_t boundary, th_base, th_air, th_pcb;
46static Float_t th_lead, th_steel;
47
48ClassImp(AliPMDv1)
49
50 //_____________________________________________________________________________
51 AliPMDv1::AliPMDv1()
52{
53 //
54 // Default constructor
55 //
56 fMedSens=0;
57}
58
59//_____________________________________________________________________________
60AliPMDv1::AliPMDv1(const char *name, const char *title)
61 : AliPMD(name,title)
62{
63 //
64 // Standard constructor
65 //
66 fMedSens=0;
67}
68
69//_____________________________________________________________________________
70void AliPMDv1::CreateGeometry()
71{
72 //
73 // Create geometry for Photon Multiplicity Detector Version 3 :
74 // April 2, 2001
75 //
76 //Begin_Html
77 /*
78 <img src="picts/AliPMDv1.gif">
79 */
80 //End_Html
81 //Begin_Html
82 /*
83 <img src="picts/AliPMDv1Tree.gif">
84 */
85 //End_Html
86 GetParameters();
87 CreateSupermodule();
88 CreatePMD();
89}
90
91//_____________________________________________________________________________
92void AliPMDv1::CreateSupermodule()
93{
94 //
95 // Creates the geometry of the cells, places them in supermodule which
96 // is a rhombus object.
97
98 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
99 // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
100 // -- Author : S. Chattopadhyay, 02/04/1999.
101
102 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
103 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
104 // in radius gives the dimension of half width of each cell wall.
105 // These cells are placed as 72 x 72 array in a
106 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
107 // to have closed packed structure.
108 //
109 // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
110 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
111 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
112 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
113 //
114 // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
115 // and EMFE (iron support)
116
117 // EMM1 made of
118 // ESMB --> Normal supermodule, mirror image of ESMA
119 // EMPB --> Pb converter
120 // EMFE --> Fe backing
121 // ESMA --> Normal supermodule
122 //
123 // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
124 // and EMFE (iron support)
125
126 // EMM2 made of
127 // ESMY --> Special supermodule, mirror image of ESMX,
128 // EMPB --> Pb converter
129 // EMFE --> Fe backing
130 // ESMX --> First of the two Special supermodules near the hole
131
132 // EMM3 made of
133 // ESMQ --> Special supermodule, mirror image of ESMX,
134 // EMPB --> Pb converter
135 // EMFE --> Fe backing
136 // ESMP --> Second of the two Special supermodules near the hole
137
138 // EMM2 and EMM3 are used to create the hexagonal HOLE
139
140 //
141 // EPMD
142 // |
143 // |
144 // ---------------------------------------------------------------------------
145 // | | | | |
146 // EHOL EMM1 EMM2 EMM3 EALM
147 // | | |
148 // -------------------- -------------------- --------------------
149 // | | | | | | | | | | | |
150 // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
151 // | | |
152 // ------------ ------------ -------------
153 // | | | | | | | | |
154 // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
155 // | | |
156 // ECCU ECCU ECCU
157 // | | |
158 // ECAR ECAR ECAR
159
160
161 Int_t i, j;
162 Float_t xb, yb, zb;
163 Int_t number;
164 Int_t ihrotm,irotdm;
165 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
166 Int_t *idtmed = fIdtmed->GetArray()-599;
167
168 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
169 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
170
171 zdist = TMath::Abs(zdist1);
172
173
174 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
175 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
176 //(1mm tolerance on both side and 5mm thick G10 wall)
177 //
178
179 // **** CELL SIZE 20 mm^2 EQUIVALENT
180
181 // Inner hexagon filled with gas (Ar+CO2)
182
183 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
184
185 hexd2[4]= - cell_depth/2.;
186 hexd2[7]= cell_depth/2.;
187 hexd2[6]= cell_radius - cell_wall;
188 hexd2[9]= cell_radius - cell_wall;
189
190 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
191 gMC->Gsatt("ECAR", "SEEN", 0);
192
193 // Outer hexagon made of Copper
194
195 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
196 //total wall thickness=0.2*2
197
198 hexd1[4]= - cell_depth/2.;
199 hexd1[7]= cell_depth/2.;
200 hexd1[6]= cell_radius;
201 hexd1[9]= cell_radius;
202
203 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
204 gMC->Gsatt("ECCU", "SEEN", 1);
205
206 // --- place inner hex inside outer hex
207
208 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
209
210// Rhombus shaped supermodules (defined by PARA)
211
212// volume for SUPERMODULE
213
214 Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.};
215 dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ;
216 dpara_sm1[1] = dpara_sm1[0] *root3_2;
217 dpara_sm1[2] = sm_thick/2.;
218
219//
220 gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6);
221 gMC->Gsatt("ESMA", "SEEN", 0);
222 //
223 gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6);
224 gMC->Gsatt("ESMB", "SEEN", 0);
225
226 // Air residing between the PCB and the base
227
228 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
229 dpara_air[0]= dpara_sm1[0];
230 dpara_air[1]= dpara_sm1[1];
231 dpara_air[2]= th_air/2.;
232
233 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
234 gMC->Gsatt("EAIR", "SEEN", 0);
235
236 // volume for honeycomb chamber EHC1
237
238 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
239 dpara1[0] = dpara_sm1[0];
240 dpara1[1] = dpara_sm1[1];
241 dpara1[2] = cell_depth/2.;
242
243 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
244 gMC->Gsatt("EHC1", "SEEN", 1);
245
246
247
248 // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
249
250 Int_t xrow=1;
251
252 yb = -dpara1[1] + (1./root3_2)*hexd1[6];
253 zb = 0.;
254
255 for (j = 1; j <= ncell_sm; ++j) {
256 xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
257 if(xrow >= 2){
258 xb = xb+(xrow-1)*hexd1[6];
259 }
260 for (i = 1; i <= ncell_sm; ++i) {
261 number = i+(j-1)*ncell_sm;
262 gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
263 xb += (hexd1[6]*2.);
264 }
265 xrow = xrow+1;
266 yb += (hexd1[6]*TMath::Sqrt(3.));
267 }
268
269
270 // Place EHC1 and EAIR into ESMA and ESMB
271
272 Float_t z_air1,z_air2,z_gas;
273
274 //ESMA is normal supermodule with base at bottom, with EHC1
275 z_air1= -dpara_sm1[2] + th_base + dpara_air[2];
276 gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY");
277 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
278 gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY");
279 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
280 gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY");
281
282 // ESMB is mirror image of ESMA, with base at top, with EHC1
283
284 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2];
285 gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY");
286 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2];
287 gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY");
288 z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2];
289 gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY");
290
291
292// special supermodule EMM2(GEANT only) containing 6 unit modules
293
294// volume for SUPERMODULE
295
296 Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.};
297 dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ;
298 dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6];
299 dpara_sm2[2] = sm_thick/2.;
300
301 gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6);
302 gMC->Gsatt("ESMX", "SEEN", 0);
303 //
304 gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6);
305 gMC->Gsatt("ESMY", "SEEN", 0);
306
307 Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
308 dpara2[0] = dpara_sm2[0];
309 dpara2[1] = dpara_sm2[1];
310 dpara2[2] = cell_depth/2.;
311
312 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
313 gMC->Gsatt("EHC2", "SEEN", 1);
314
315
316 // Air residing between the PCB and the base
317
318 Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.};
319 dpara2_air[0]= dpara_sm2[0];
320 dpara2_air[1]= dpara_sm2[1];
321 dpara2_air[2]= th_air/2.;
322
323 gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6);
324 gMC->Gsatt("EAIX", "SEEN", 0);
325
326 // Place hexagonal single cells ECCU inside EHC2
327 // skip cells which go into the hole in top left corner.
328
329 xrow=1;
330 yb = -dpara2[1] + (1./root3_2)*hexd1[6];
331 zb = 0.;
332 for (j = 1; j <= (ncell_sm - ncell_hole); ++j) {
333 xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
334 if(xrow >= 2){
335 xb = xb+(xrow-1)*hexd1[6];
336 }
337 for (i = 1; i <= ncell_sm; ++i) {
338 number = i+(j-1)*ncell_sm;
339 gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
340 xb += (hexd1[6]*2.);
341 }
342 xrow = xrow+1;
343 yb += (hexd1[6]*TMath::Sqrt(3.));
344 }
345
346
347 // ESMX is normal supermodule with base at bottom, with EHC2
348
349 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2];
350 gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY");
351 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
352 gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY");
353 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
354 gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY");
355
356 // ESMY is mirror image of ESMX with base at bottom, with EHC2
357
358 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2];
359 gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY");
360 z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2];
361 gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY");
362 z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2];
363 gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY");
364
365//
366
367
368// special supermodule EMM3 (GEANT only) containing 2 unit modules
369
370// volume for SUPERMODULE
371
372 Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.};
373 dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ;
374 dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2;
375 dpara_sm3[2] = sm_thick/2.;
376
377 gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6);
378 gMC->Gsatt("ESMP", "SEEN", 0);
379 //
380 gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6);
381 gMC->Gsatt("ESMQ", "SEEN", 0);
382
383 Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
384 dpara3[0] = dpara_sm3[0];
385 dpara3[1] = dpara_sm3[1];
386 dpara3[2] = cell_depth/2.;
387
388 gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
389 gMC->Gsatt("EHC3", "SEEN", 1);
390
391
392 // Air residing between the PCB and the base
393
394 Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.};
395 dpara3_air[0]= dpara_sm3[0];
396 dpara3_air[1]= dpara_sm3[1];
397 dpara3_air[2]= th_air/2.;
398
399 gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6);
400 gMC->Gsatt("EAIP", "SEEN", 0);
401
402
403 // Place hexagonal single cells ECCU inside EHC3
404 // skip cells which go into the hole in top left corner.
405
406 xrow=1;
407 yb = -dpara3[1] + (1./root3_2)*hexd1[6];
408 zb = 0.;
409 for (j = 1; j <= ncell_hole; ++j) {
410 xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
411 if(xrow >= 2){
412 xb = xb+(xrow-1)*hexd1[6];
413 }
414 for (i = 1; i <= (ncell_sm - ncell_hole); ++i) {
415 number = i+(j-1)*(ncell_sm - ncell_hole);
416 gMC->Gsposp("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
417 xb += (hexd1[6]*2.);
418 }
419 xrow = xrow+1;
420 yb += (hexd1[6]*TMath::Sqrt(3.));
421 }
422
423 // ESMP is normal supermodule with base at bottom, with EHC3
424
425 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2];
426 gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY");
427 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
428 gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY");
429 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
430 gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY");
431
432 // ESMQ is mirror image of ESMP with base at bottom, with EHC3
433
434 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2];
435 gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY");
436 z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2];
437 gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY");
438 z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2];
439 gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY");
440
441}
442
443//_____________________________________________________________________________
444
445void AliPMDv1::CreatePMD()
446{
447 //
448 // Create final detector from supermodules
449 //
450 // -- Author : Y.P. VIYOGI, 07/05/1996.
451 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
452 // -- Modified: For New Geometry YPV, March 2001.
453
454
455 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
456 const Float_t pi = 3.14159;
457 Int_t i,j;
458
459 Float_t xp, yp, zp;
460
461 Int_t num_mod;
462 Int_t jhrot12,jhrot13, irotdm;
463
464 Int_t *idtmed = fIdtmed->GetArray()-599;
465
466 // VOLUMES Names : begining with "E" for all PMD volumes,
467 // The names of SIZE variables begin with S and have more meaningful
468 // characters as shown below.
469
470 // VOLUME SIZE MEDIUM : REMARKS
471 // ------ ----- ------ : ---------------------------
472
473 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
474
475 // *** Define the EPMD Volume and fill with air ***
476
477
478 // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
479
480
481 Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
482
483 gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2;
484 gaspmd[8] = gaspmd[5];
485
486 gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
487 gMC->Gsatt("EPMD", "SEEN", 0);
488
489 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
490
491 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
492 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
493
494
495 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
496
497 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
498 // EMM1 is a master module of type 1, which has 24 copies in the PMD.
499 // EMM1 : normal volume as in old cases
500
501
502 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
503 dpara_emm1[0] = sm_length/2.;
504 dpara_emm1[1] = dpara_emm1[0] *root3_2;
505 dpara_emm1[2] = dm_thick/2.;
506
507 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
508 gMC->Gsatt("EMM1", "SEEN", 1);
509
510 //
511 // --- DEFINE Modules, iron, and lead volumes
512
513 // Pb Convertor for EMM1
514 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.};
515 dpara_pb1[0] = sm_length/2.;
516 dpara_pb1[1] = dpara_pb1[0] * root3_2;
517 dpara_pb1[2] = th_lead/2.;
518
519 gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6);
520 gMC->Gsatt ("EPB1", "SEEN", 0);
521
522 // Fe Support for EMM1
523 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.};
524 dpara_fe1[0] = dpara_pb1[0];
525 dpara_fe1[1] = dpara_pb1[1];
526 dpara_fe1[2] = th_steel/2.;
527
528 gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6);
529 gMC->Gsatt ("EFE1", "SEEN", 0);
530
531
532
533 //
534 // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
535
536 Float_t z_ps,z_pb,z_fe,z_cv;
537
538 z_ps = - dpara_emm1[2] + sm_thick/2.;
539 gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY");
540 z_pb=z_ps+sm_thick/2.+dpara_pb1[2];
541 gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
542 z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2];
543 gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
544 z_cv=z_fe+dpara_fe1[2]+sm_thick/2.;
545 gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
546
547
548
549 // EMM2 : special master module having full row of cells but the number
550 // of rows limited by hole.
551
552 Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.};
553 dpara_emm2[0] = sm_length/2.;
554 dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2;
555 dpara_emm2[2] = dm_thick/2.;
556
557 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6);
558 gMC->Gsatt("EMM2", "SEEN", 1);
559
560
561 // Pb Convertor for EMM2
562 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.};
563 dpara_pb2[0] = dpara_emm2[0];
564 dpara_pb2[1] = dpara_emm2[1];
565 dpara_pb2[2] = th_lead/2.;
566
567 gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6);
568 gMC->Gsatt ("EPB2", "SEEN", 0);
569
570 // Fe Support for EMM2
571 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.};
572 dpara_fe2[0] = dpara_pb2[0];
573 dpara_fe2[1] = dpara_pb2[1];
574 dpara_fe2[2] = th_steel/2.;
575
576 gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6);
577 gMC->Gsatt ("EFE2", "SEEN", 0);
578
579
580
581 // position supermodule ESMX, ESMY inside EMM2
582
583 z_ps = - dpara_emm2[2] + sm_thick/2.;
584 gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY");
585 z_pb = z_ps + sm_thick/2.+dpara_pb2[2];
586 gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
587 z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2];
588 gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
589 z_cv = z_fe + dpara_fe2[2]+sm_thick/2.;
590 gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
591 //
592
593
594 // EMM3 : special master module having truncated rows and columns of cells
595 // limited by hole.
596
597 Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.};
598 dpara_emm3[0] = dpara_emm2[1]/root3_2;
599 dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2;
600 dpara_emm3[2] = dm_thick/2.;
601
602 gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6);
603 gMC->Gsatt("EMM3", "SEEN", 1);
604
605
606 // Pb Convertor for EMM3
607 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.};
608 dpara_pb3[0] = dpara_emm3[0];
609 dpara_pb3[1] = dpara_emm3[1];
610 dpara_pb3[2] = th_lead/2.;
611
612 gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6);
613 gMC->Gsatt ("EPB3", "SEEN", 0);
614
615 // Fe Support for EMM3
616 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.};
617 dpara_fe3[0] = dpara_pb3[0];
618 dpara_fe3[1] = dpara_pb3[1];
619 dpara_fe3[2] = th_steel/2.;
620
621 gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6);
622 gMC->Gsatt ("EFE3", "SEEN", 0);
623
624
625
626 // position supermodule ESMP, ESMQ inside EMM3
627
628 z_ps = - dpara_emm3[2] + sm_thick/2.;
629 gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY");
630 z_pb = z_ps + sm_thick/2.+dpara_pb3[2];
631 gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY");
632 z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2];
633 gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY");
634 z_cv = z_fe + dpara_fe3[2] + sm_thick/2.;
635 gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY");
636 //
637
638 // EHOL is a tube structure made of air
639 //
640 //Float_t d_hole[3];
641 //d_hole[0] = 0.;
642 //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
643 //d_hole[2] = dm_thick/2.;
644 //
645 //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
646 //gMC->Gsatt("EHOL", "SEEN", 1);
647
648 //Al-rod as boundary of the supermodules
649
650 Float_t Al_rod[3] ;
651 Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ;
652 Al_rod[1] = boundary;
653 Al_rod[2] = dm_thick/2.;
654
655 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
656 gMC->Gsatt ("EALM", "SEEN", 1);
657 Float_t xalm[3];
658 xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary;
659 xalm[1]=-xalm[0]/2.;
660 xalm[2]=xalm[1];
661
662 Float_t yalm[3];
663 yalm[0]=0.;
664 yalm[1]=xalm[0]*root3_2;
665 yalm[2]=-yalm[1];
666
667 // delx = full side of the supermodule
668 Float_t delx=sm_length * 3.;
669 Float_t x1= delx*root3_2 /2.;
670 Float_t x4=delx/4.;
671
672
673 // placing master modules and Al-rod in PMD
674
675 Float_t dx = sm_length;
676 Float_t dy = dx * root3_2;
677
678 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
679 -dx, 0., dx,
680 -3.*dx/2., -dx/2., dx/2.};
681
682 Float_t ysup[9] = {dy, dy, dy,
683 0., 0., 0.,
684 -dy, -dy, -dy};
685
686 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
687
688 Float_t xoff = boundary * TMath::Tan(pi/6.);
689 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
690 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
691 Float_t xpos[9], ypos[9], x2, y2, x3, y3;
692
693 Float_t xemm2 = sm_length/2. -
694 (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5
695 + xoff;
696 Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2
697 - boundary;
698
699 Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff;
700 Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary;
701
702 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
703 Int_t irotate[3] = {0, jhrot12, jhrot13};
704
705 num_mod=0;
706 for (j=0; j<3; ++j)
707 {
708 gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
709 x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
710 y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
711
712 gMC->Gsposp("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY", dpara_emm2, 6);
713
714 x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
715 y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
716
717 gMC->Gsposp("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY", dpara_emm3, 6);
718
719 for (i=1; i<9; ++i)
720 {
721 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
722 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
723
9e1a0ddb 724 if(fDebug)
725 printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
c4561145 726
727 num_mod = num_mod+1;
728
9e1a0ddb 729 if(fDebug)
730 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
c4561145 731
732 gMC->Gsposp("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
733
734 }
735 }
736
737
738 // place EHOL in the centre of EPMD
739 // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
740
741 // --- Place the EPMD in ALICE
742 xp = 0.;
743 yp = 0.;
744 zp = zdist1;
745
746 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
747
748}
749
750
751//_____________________________________________________________________________
752void AliPMDv1::DrawModule()
753{
754 //
755 // Draw a shaded view of the Photon Multiplicity Detector
756 //
757
758 gMC->Gsatt("*", "seen", -1);
759 gMC->Gsatt("alic", "seen", 0);
760 //
761 // Set the visibility of the components
762 //
763 gMC->Gsatt("ECAR","seen",0);
764 gMC->Gsatt("ECCU","seen",1);
765 gMC->Gsatt("EHC1","seen",1);
766 gMC->Gsatt("EHC1","seen",1);
767 gMC->Gsatt("EHC2","seen",1);
768 gMC->Gsatt("EMM1","seen",1);
769 gMC->Gsatt("EHOL","seen",1);
770 gMC->Gsatt("EPMD","seen",0);
771 //
772 gMC->Gdopt("hide", "on");
773 gMC->Gdopt("shad", "on");
774 gMC->Gsatt("*", "fill", 7);
775 gMC->SetClipBox(".");
776 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
777 gMC->DefaultRange();
778 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
779 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
780
781 //gMC->Gdman(17, 5, "MAN");
782 gMC->Gdopt("hide", "off");
783}
784
785//_____________________________________________________________________________
786void AliPMDv1::CreateMaterials()
787{
788 //
789 // Create materials for the PMD
790 //
791 // ORIGIN : Y. P. VIYOGI
792 //
793
794 // --- The Argon- CO2 mixture ---
795 Float_t ag[2] = { 39.95 };
796 Float_t zg[2] = { 18. };
797 Float_t wg[2] = { .8,.2 };
798 Float_t dar = .001782; // --- Ar density in g/cm3 ---
799 // --- CO2 ---
800 Float_t ac[2] = { 12.,16. };
801 Float_t zc[2] = { 6.,8. };
802 Float_t wc[2] = { 1.,2. };
803 Float_t dc = .001977;
804 Float_t dco = .002; // --- CO2 density in g/cm3 ---
805
806 Float_t absl, radl, a, d, z;
807 Float_t dg;
808 Float_t x0ar;
809 //Float_t x0xe=2.4;
810 //Float_t dxe=0.005858;
811 Float_t buf[1];
812 Int_t nbuf;
813 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
814 Float_t zsteel[4] = { 26.,24.,28.,14. };
815 Float_t wsteel[4] = { .715,.18,.1,.005 };
816
817 Int_t *idtmed = fIdtmed->GetArray()-599;
818 Int_t isxfld = gAlice->Field()->Integ();
819 Float_t sxmgmx = gAlice->Field()->Max();
820
821 // --- Define the various materials for GEANT ---
822 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
823 x0ar = 19.55 / dar;
824 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
825 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
826 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
827 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
828 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
829 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
830 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
831 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
832 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
833 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
834 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
835 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
836 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
837
838 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
839 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
840 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
841 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
842
843 // define gas-mixtures
844
845 char namate[21];
846 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
847 ag[1] = a;
848 zg[1] = z;
849 dg = (dar * 4 + dco) / 5;
850 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
851
852 // Define tracking media
853 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
854 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
855 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
856 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
857 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
858 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
859 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
860 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
861 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
862 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
863 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
864 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
865 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
866 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
867 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
868
869 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
870 gMC->Gstpar(idtmed[600], "LOSS", 3.);
871 gMC->Gstpar(idtmed[600], "DRAY", 1.);
872
873 gMC->Gstpar(idtmed[603], "LOSS", 3.);
874 gMC->Gstpar(idtmed[603], "DRAY", 1.);
875
876 gMC->Gstpar(idtmed[604], "LOSS", 3.);
877 gMC->Gstpar(idtmed[604], "DRAY", 1.);
878
879 gMC->Gstpar(idtmed[605], "LOSS", 3.);
880 gMC->Gstpar(idtmed[605], "DRAY", 1.);
881
882 gMC->Gstpar(idtmed[606], "LOSS", 3.);
883 gMC->Gstpar(idtmed[606], "DRAY", 1.);
884
885 gMC->Gstpar(idtmed[607], "LOSS", 3.);
886 gMC->Gstpar(idtmed[607], "DRAY", 1.);
887
888 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
889 // --- without affecting the hit patterns ---
890 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
891 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
892 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
893 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
894 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
895 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
896 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
897 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
898 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
899 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
900 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
901 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
902 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
903 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
904 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
905 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
906 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
907 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
908 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
909 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
910
911 // --- Prevent particles stopping in the gas due to energy cut-off ---
912 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
913 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
914 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
915 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
916 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
917}
918
919//_____________________________________________________________________________
920void AliPMDv1::Init()
921{
922 //
923 // Initialises PMD detector after it has been built
924 //
925 Int_t i;
926 kdet=1;
927 //
9e1a0ddb 928 if(fDebug) {
929 printf("\n%s: ",ClassName());
930 for(i=0;i<35;i++) printf("*");
931 printf(" PMD_INIT ");
932 for(i=0;i<35;i++) printf("*");
933 printf("\n%s: ",ClassName());
934 printf(" PMD simulation package (v1) initialised\n");
935 printf("%s: parameters of pmd\n",ClassName());
936 printf("%s: %10.2f %10.2f %10.2f %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 );
937 printf("%s: ",ClassName());
938 for(i=0;i<80;i++) printf("*");
939 printf("\n");
940 }
c4561145 941
942 Int_t *idtmed = fIdtmed->GetArray()-599;
943 fMedSens=idtmed[605-1];
944}
945
946//_____________________________________________________________________________
947void AliPMDv1::StepManager()
948{
949 //
950 // Called at each step in the PMD
951 //
952 Int_t copy;
953 Float_t hits[4], destep;
954 Float_t center[3] = {0,0,0};
955 Int_t vol[5];
956 //char *namep;
957
958 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
959
960 gMC->CurrentVolID(copy);
961
962 //namep=gMC->CurrentVolName();
963 //printf("Current vol is %s \n",namep);
964
965 vol[0]=copy;
966 gMC->CurrentVolOffID(1,copy);
967
968 //namep=gMC->CurrentVolOffName(1);
969 //printf("Current vol 11 is %s \n",namep);
970
971 vol[1]=copy;
972 gMC->CurrentVolOffID(2,copy);
973
974 //namep=gMC->CurrentVolOffName(2);
975 //printf("Current vol 22 is %s \n",namep);
976
977 vol[2]=copy;
978
979 // if(strncmp(namep,"EHC1",4))vol[2]=1;
980
981 gMC->CurrentVolOffID(3,copy);
982
983 //namep=gMC->CurrentVolOffName(3);
984 //printf("Current vol 33 is %s \n",namep);
985
986 vol[3]=copy;
987 gMC->CurrentVolOffID(4,copy);
988
989 //namep=gMC->CurrentVolOffName(4);
990 //printf("Current vol 44 is %s \n",namep);
991
992 vol[4]=copy;
993 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
994
995 gMC->Gdtom(center,hits,1);
996 hits[3] = destep*1e9; //Number in eV
997 AddHit(gAlice->CurrentTrack(), vol, hits);
998 }
999}
1000
1001
1002//------------------------------------------------------------------------
1003// Get parameters
1004
1005void AliPMDv1::GetParameters()
1006{
1007 Int_t ncell_um, num_um;
1008 ncell_um=24;
1009 num_um=3;
1010 ncell_hole=24;
1011 cell_radius=0.25;
1012 cell_wall=0.02;
1013 cell_depth=0.25 * 2.;
1014 //
1015 boundary=0.7;
1016 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
1017 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
1018 //
1019 th_base=0.3;
1020 th_air=0.1;
1021 th_pcb=0.16;
1022 //
1023 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
1024 //
1025 th_lead=1.5;
1026 th_steel=0.5;
1027 //
1028 zdist1 = -365.;
1029}
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042