Effective C++ warnings fixed (Timur Pocheptsov)
[u/mrichter/AliRoot.git] / PMD / AliPMDv1.cxx
CommitLineData
c4561145 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
d49fe99a 15/* $Id$ */
fe9578d7 16
c4561145 17//
18///////////////////////////////////////////////////////////////////////////////
19// //
20// Photon Multiplicity Detector Version 1 //
f117e3aa 21// Bedanga Mohanty : February 14th 2006
c4561145 22// //
23//Begin_Html
24/*
25<img src="picts/AliPMDv1Class.gif">
26*/
27//End_Html
28// //
29///////////////////////////////////////////////////////////////////////////////
30////
31
788c3ee6 32#include "Riostream.h"
33#include <TVirtualMC.h>
bff3a244 34
35#include "AliConst.h"
4951e003 36#include "AliLog.h"
bff3a244 37#include "AliMC.h"
38#include "AliMagF.h"
39#include "AliPMDv1.h"
40#include "AliRun.h"
c4561145 41
5c3a1290 42const Int_t AliPMDv1::fgkNcolUM1 = 48; // Number of cols in UM, type 1
43const Int_t AliPMDv1::fgkNcolUM2 = 96; // Number of cols in UM, type 2
44const Int_t AliPMDv1::fgkNrowUM1 = 96; // Number of rows in UM, type 1
45const Int_t AliPMDv1::fgkNrowUM2 = 48; // Number of rows in UM, type 2
46const Float_t AliPMDv1::fgkCellRadius = 0.25; // Radius of a hexagonal cell
47const Float_t AliPMDv1::fgkCellWall = 0.02; // Thickness of cell Wall
48const Float_t AliPMDv1::fgkCellDepth = 0.50; // Gas thickness
f117e3aa 49const Float_t AliPMDv1::fgkThBase = 0.2; // Thickness of Base plate
50const Float_t AliPMDv1::fgkThBKP = 0.1; // Thickness of Back plane
51const Float_t AliPMDv1::fgkThAir = 1.03; // Thickness of Air
5c3a1290 52const Float_t AliPMDv1::fgkThPCB = 0.16; // Thickness of PCB
53const Float_t AliPMDv1::fgkThLead = 1.5; // Thickness of Pb
54const Float_t AliPMDv1::fgkThSteel = 0.5; // Thickness of Steel
55const Float_t AliPMDv1::fgkGap = 0.025; // Air Gap
56const Float_t AliPMDv1::fgkZdist = 361.5; // z-position of the detector
57const Float_t AliPMDv1::fgkSqroot3 = 1.7320508;// Square Root of 3
58const Float_t AliPMDv1::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2
f117e3aa 59const Float_t AliPMDv1::fgkSSBoundary = 0.3;
60const Float_t AliPMDv1::fgkThSS = 1.03;
61const Float_t AliPMDv1::fgkThG10 = 1.03;
c4561145 62ClassImp(AliPMDv1)
63
a48edddd 64//_____________________________________________________________________________
65AliPMDv1::AliPMDv1():
66 fSMthick(0.),
67 fDthick(0.),
68 fSMLengthax(0.),
69 fSMLengthay(0.),
70 fSMLengthbx(0.),
71 fSMLengthby(0.),
72 fMedSens(0)
c4561145 73{
74 //
75 // Default constructor
76 //
a48edddd 77 for (Int_t i = 0; i < 3; i++)
78 {
79 fDboxmm1[i] = 0.;
80 fDboxmm12[i] = 0.;
81 fDboxmm2[i] = 0.;
82 fDboxmm22[i] = 0.;
83 }
c4561145 84}
85
86//_____________________________________________________________________________
a48edddd 87AliPMDv1::AliPMDv1(const char *name, const char *title):
88 AliPMD(name,title),
89 fSMthick(0.),
90 fDthick(0.),
91 fSMLengthax(0.),
92 fSMLengthay(0.),
93 fSMLengthbx(0.),
94 fSMLengthby(0.),
95 fMedSens(0)
c4561145 96{
97 //
98 // Standard constructor
99 //
a48edddd 100 for (Int_t i = 0; i < 3; i++)
101 {
102 fDboxmm1[i] = 0.;
103 fDboxmm12[i] = 0.;
104 fDboxmm2[i] = 0.;
105 fDboxmm22[i] = 0.;
106 }
c4561145 107}
108
109//_____________________________________________________________________________
110void AliPMDv1::CreateGeometry()
111{
b1952773 112 // Create geometry for Photon Multiplicity Detector
113
c4561145 114 GetParameters();
115 CreateSupermodule();
116 CreatePMD();
117}
118
119//_____________________________________________________________________________
120void AliPMDv1::CreateSupermodule()
121{
b1952773 122 //
123 // Creates the geometry of the cells of PMD, places them in supermodule
124 // which is a rectangular object.
125 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is
126 // placed inside another hexagonal cell made of Cu (ECCU) with larger
127 // radius, compared to ECAR. The difference in radius gives the dimension
128 // of half width of each cell wall.
129 // These cells are placed in a rectangular strip which are of 2 types
130 // EST1 and EST2
131 // 2 types of unit modules are made EUM1 and EUM2 which contains these strips
132 // placed repeatedly
133 // Each supermodule (ESMA, ESMB), made of G10 is filled with following
f117e3aa 134 //components. They have 6 unit moudles inside them
b1952773 135 // ESMA, ESMB are placed in EPMD along with EMPB (Pb converter)
c4561145 136 // and EMFE (iron support)
137
c4561145 138
b1952773 139 Int_t i,j;
c4561145 140 Int_t number;
141 Int_t ihrotm,irotdm;
3cdb4e97 142 Float_t xb, yb, zb;
143
c4561145 144 Int_t *idtmed = fIdtmed->GetArray()-599;
145
146 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
147 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
148
f117e3aa 149 // STEP - I
150 //******************************************************//
b1952773 151 // First create the sensitive medium of a hexagon cell (ECAR)
c4561145 152 // Inner hexagon filled with gas (Ar+CO2)
b1952773 153
c4561145 154 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
3cdb4e97 155 hexd2[4] = -fgkCellDepth/2.;
156 hexd2[7] = fgkCellDepth/2.;
157 hexd2[6] = fgkCellRadius - fgkCellWall;
158 hexd2[9] = fgkCellRadius - fgkCellWall;
c4561145 159
160 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
161 gMC->Gsatt("ECAR", "SEEN", 0);
f117e3aa 162 //******************************************************//
163
164 // STEP - II
165 //******************************************************//
b1952773 166 // Place the sensitive medium inside a hexagon copper cell (ECCU)
c4561145 167 // Outer hexagon made of Copper
b1952773 168
c4561145 169 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
3cdb4e97 170 hexd1[4] = -fgkCellDepth/2.;
171 hexd1[7] = fgkCellDepth/2.;
172 hexd1[6] = fgkCellRadius;
173 hexd1[9] = fgkCellRadius;
c4561145 174
175 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
b1952773 176 gMC->Gsatt("ECCU", "SEEN", 0);
f117e3aa 177 gMC->Gsatt("ECCU", "COLO", 4);
c4561145 178
b1952773 179 // Place inner hex (sensitive volume) inside outer hex (copper)
180
a978c9e3 181 gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
f117e3aa 182 //******************************************************//
183
184 // STEP - III
185 //******************************************************//
b1952773 186 // Now create Rectangular TWO strips (EST1, EST2)
187 // of 1 column and 48 or 96 cells length
c4561145 188
b1952773 189 // volume for first strip EST1 made of AIR
c4561145 190
b1952773 191 Float_t dbox1[3];
f117e3aa 192 dbox1[0] = fgkCellRadius/fgkSqroot3by2;
193 dbox1[1] = fgkNrowUM1*fgkCellRadius;
3cdb4e97 194 dbox1[2] = fgkCellDepth/2.;
b1952773 195
196 gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3);
197 gMC->Gsatt("EST1", "SEEN", 0);
c4561145 198
b1952773 199 // volume for second strip EST2
c4561145 200
f117e3aa 201
b1952773 202 Float_t dbox2[3];
f117e3aa 203 dbox2[1] = fgkNrowUM2*fgkCellRadius;
204 dbox2[0] = dbox1[0];
b1952773 205 dbox2[2] = dbox1[2];
c4561145 206
b1952773 207 gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3);
208 gMC->Gsatt("EST2", "SEEN", 0);
c4561145 209
b1952773 210 // Place hexagonal cells ECCU placed inside EST1
f117e3aa 211 xb = 0.;
b1952773 212 zb = 0.;
f117e3aa 213 yb = (dbox1[1]) - fgkCellRadius;
214 for (i = 1; i <= fgkNrowUM1; ++i)
a978c9e3 215 {
216 number = i;
f117e3aa 217 gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, 0, "ONLY");
218 yb -= (fgkCellRadius*2.);
a978c9e3 219 }
f117e3aa 220
b1952773 221 // Place hexagonal cells ECCU placed inside EST2
f117e3aa 222 xb = 0.;
a978c9e3 223 zb = 0.;
f117e3aa 224 yb = (dbox2[1]) - fgkCellRadius;
225 for (i = 1; i <= fgkNrowUM2; ++i)
a978c9e3 226 {
227 number = i;
f117e3aa 228 gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, 0, "ONLY");
229 //PH cout << "ECCU in EST2 ==> " << number << "\t"<<xb << "\t"<<yb <<endl;
230 yb -= (fgkCellRadius*2.);
a978c9e3 231 }
c4561145 232
f117e3aa 233
234 //******************************************************//
235
236
237 // STEP - IV
238 //******************************************************//
239 // 2 types of rectangular shaped unit modules EUM1 and EUM2 (defined by BOX)
240 //---------------------------------EHC1 Start----------------------//
241 // Create EHC1 : The honey combs for a unit module type 1
242 // First step is to create a honey comb unit module.
243 // This is named as EHC1, we will lay the EST1 strips of
244 // honey comb cells inside it.
a978c9e3 245
f117e3aa 246 //Dimensions of EHC1
247 //X-dimension = Number of columns + cell radius
248 //Y-dimension = Number of rows * cell radius/sqrt3by2 - (some factor)
249 //Z-dimension = cell depth/2
250
b1952773 251 Float_t dbox3[3];
f117e3aa 252 dbox3[0] = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.);
253 dbox3[1] = dbox1[1]+fgkCellRadius/2.;
3cdb4e97 254 dbox3[2] = fgkCellDepth/2.;
f117e3aa 255
256 //Create a BOX, Material AIR
257 gMC->Gsvolu("EHC1","BOX", idtmed[698], dbox3, 3);
258 gMC->Gsatt("EHC1", "SEEN", 0);
259 // Place rectangular strips EST1 inside EHC1 unit module
260 xb = dbox3[0]-dbox1[0];
b1952773 261
f117e3aa 262 for (j = 1; j <= fgkNcolUM1; ++j)
b1952773 263 {
264 if(j%2 == 0)
265 {
f117e3aa 266 yb = -fgkCellRadius/2.0;
b1952773 267 }
268 else
269 {
f117e3aa 270 yb = fgkCellRadius/2.0;
b1952773 271 }
272 number = j;
f117e3aa 273 gMC->Gspos("EST1",number, "EHC1", xb, yb , 0. , 0, "MANY");
274 //The strips are being placed from top towards bottom of the module
275 //This is because the first cell in a module in hardware is the top
276 //left corner cell
277 xb = (dbox3[0]-dbox1[0])-j*fgkCellRadius*fgkSqroot3;
278
c4561145 279 }
f117e3aa 280 //--------------------EHC1 done----------------------------------//
281
c4561145 282
f117e3aa 283 //---------------------------------EHC2 Start----------------------//
284 // Create EHC2 : The honey combs for a unit module type 2
285 // First step is to create a honey comb unit module.
286 // This is named as EHC2, we will lay the EST2 strips of
287 // honey comb cells inside it.
288
289 //Dimensions of EHC2
290 //X-dimension = Number of columns + cell radius
291 //Y-dimension = Number of rows * cell radius/sqrt3by2 - (some factor)
292 //Z-dimension = cell depth/2
293
294 dbox3[0] = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.);
295 dbox3[1] = dbox1[1]+fgkCellRadius/2.;
296 dbox3[2] = fgkCellDepth/2.;
c4561145 297
b1952773 298 Float_t dbox4[3];
f117e3aa 299
300 dbox4[0] =(dbox2[0]*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.);
301 dbox4[1] = dbox2[1] + fgkCellRadius/2.;
b1952773 302 dbox4[2] = dbox3[2];
a978c9e3 303
f117e3aa 304 //Create a BOX of AIR
305 gMC->Gsvolu("EHC2","BOX", idtmed[698], dbox4, 3);
306 gMC->Gsatt("EHC2", "SEEN", 0);
307
308 // Place rectangular strips EST2 inside EHC2 unit module
309 xb = dbox4[0]-dbox2[0];
310 for (j = 1; j <= fgkNcolUM2; ++j)
311 {
312 if(j%2 == 0)
313 {
314 yb = -fgkCellRadius/2.0;
315 }
316 else
317 {
318 yb = +fgkCellRadius/2.0;
319 }
320 number = j;
321 gMC->Gspos("EST2",number, "EHC2", xb, yb , 0. ,0, "MANY");
322 xb = (dbox4[0]-dbox2[0])-j*fgkCellRadius*fgkSqroot3;
323 }
a978c9e3 324
f117e3aa 325
326 //--------------------EHC2 done----------------------------------//
327
328
329 // Now the job is to assmeble an Unit module
330 // It will have the following components
331 // (a) Base plate of G10 of 0.2 cm
332 // (b) Air gap of 0.05 cm
333 // (c) Bottom PCB of 0.16 cm G10
334 // (d) Honey comb 0f 0.5 cm
335 // (e) Top PCB of 0.16 cm G10
336 // (f) Air gap of 0.16 cm
337 // (g) Back Plane of 0.1 cm G10
338 // (h) Then all around then we have an air gap of 0.5mm
339 // (i) Then all around 0.5mm thick G10 insulation
340 // (h) Then all around Stainless Steel boundary channel 0.3 cm thick
341 //Let us first create them one by one
342 //---------------------------------------------------//
343
344 // ---------------- Lets do it first for UM Type A -----//
345
346 //--------------------------------------------------//
347 //Bottom and Top PCB : EPCA
348 //===========================
349 // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module A
350 // X-dimension same as EHC1 - dbox3[0]
351 // Y-dimension same as EHC1 - dbox3[1]
352 // Z-dimension 0.16/2 = 0.08 cm
353 //-------------------------------------------------//
354 Float_t dboxPcbA[3];
355 dboxPcbA[0] = dbox3[0];
356 dboxPcbA[1] = dbox3[1];
357 dboxPcbA[2] = fgkThPCB/2.;
a978c9e3 358
f117e3aa 359 //Top and Bottom PCB is a BOX of Material G10
360 gMC->Gsvolu("EPCA","BOX", idtmed[607], dboxPcbA, 3);
361 gMC->Gsatt("EPCA", "SEEN", 0);
362 //--------------------------------------------------------//
363 //Back Plane : EBKA
364 //==================
365 // Make a 1.0mm thick Back Plane PCB for Unit module A
366 // X-dimension same as EHC1 - dbox3[0]
367 // Y-dimension same as EHC1 - dbox3[1]
368 // Z-dimension 0.1/2 = 0.05 cm
369 //------------------------------------------------------//
370 Float_t dboxBPlaneA[3];
371 dboxBPlaneA[0] = dbox3[0];
372 dboxBPlaneA[1] = dbox3[1];
373 dboxBPlaneA[2] = fgkThBKP/2.;
374
375 //Back PLane PCB of MAterial G10
376 gMC->Gsvolu("EBKA","BOX", idtmed[607], dboxBPlaneA, 3);
377 gMC->Gsatt("EBKA", "SEEN", 0);
378 //-------------------------------------------------------------//
379
380 //---------- That was all in the Z -direction of Unit Module A----//
381
382 // Now lets us construct the boundary arround the Unit Module --//
383 // This boundary has
384 // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap
385 // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10
386 // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel
387
388
389
390 //-------------------------------------------------//
391 //AIR GAP between UM and Boundary : ECGA FOR PRESHOWER PLANE
392 //==========================================================
393 // Make a 10.3mm thick Air gap for Unit module A
394 // X-dimension same as EHC1+0.05
395 // Y-dimension same as EHC1+0.05
396 // Z-dimension 1.03/2 = 0.515 cm
397 Float_t dboxAir3A[3];
398 dboxAir3A[0] = dbox3[0]+(2.0*fgkGap);
399 dboxAir3A[1] = dbox3[1]+(2.0*fgkGap);
400 dboxAir3A[2] = fgkThAir/2.;
401
402 //FOR PRESHOWER
403 //Air gap is a BOX of Material Air
404 gMC->Gsvolu("ECGA","BOX", idtmed[698], dboxAir3A, 3);
405 gMC->Gsatt("ECGA", "SEEN", 0);
406
407 //FOR VETO
408 //Air gap is a BOX of Material Air
409 gMC->Gsvolu("ECVA","BOX", idtmed[698], dboxAir3A, 3);
410 gMC->Gsatt("ECVA", "SEEN", 0);
411 //-------------------------------------------------//
412
413 //-------------------------------------------------//
414 //G10 boundary between honeycomb and SS : EDGA
415 //================================================
416 // Make a 10.3mm thick G10 Boundary for Unit module A
417 // X-dimension same as EHC1+Airgap+0.05
418 // Y-dimension same as EHC1+Airgap+0.05
419 // Z-dimension 1.03/2 = 0.515 cm
420 Float_t dboxGGA[3];
421 dboxGGA[0] = dboxAir3A[0]+(2.0*fgkGap);
422 dboxGGA[1] = dboxAir3A[1]+(2.0*fgkGap);
423 dboxGGA[2] = fgkThG10/2.;
424
425 //FOR PRESHOWER
426 //G10 BOX
427 gMC->Gsvolu("EDGA","BOX", idtmed[607], dboxGGA, 3);
428 gMC->Gsatt("EDGA", "SEEN", 0);
429
430 //FOR VETO
431 //G10 BOX
432 gMC->Gsvolu("EDVA","BOX", idtmed[607], dboxGGA, 3);
433 gMC->Gsatt("EDVA", "SEEN", 0);
434
435 //-------------------------------------------------//
436 //----------------------------------------------------------//
437 //Stainless Steel Bounadry : ESSA
438 //==================================
439 // Make a 10.3mm thick Stainless Steel boundary for Unit module A
440 // X-dimension same as EHC1 + Airgap + G10 + 0.3
441 // Y-dimension same as EHC1 + Airgap + G10 + 0.3
442 // Z-dimension 1.03/2 = 0.515 cm
443 //------------------------------------------------------//
444 // A Stainless Steel Boundary Channel to house the unit module
445 Float_t fDboxss1[3];
446 fDboxss1[0] = dboxGGA[0]+fgkSSBoundary;
447 fDboxss1[1] = dboxGGA[1]+fgkSSBoundary;
448 fDboxss1[2] = fgkThSS/2.;
449
450 //FOR PRESHOWER
451
452 //Stainless Steel boundary - Material Stainless Steel
453 gMC->Gsvolu("ESSA","BOX", idtmed[618], fDboxss1, 3);
454 gMC->Gsatt("ESSA", "SEEN", 0);
455
456 //FOR VETO
457 //Stainless Steel boundary - Material Stainless Steel
458 gMC->Gsvolu("ESVA","BOX", idtmed[618], fDboxss1, 3);
459 gMC->Gsatt("ESVA", "SEEN", 0);
460
461 //----------------------------------------------------------------//
462
463 //----------------------------------------------------------------//
464 // Here we need to place the volume in order ESSA -> EDGA -> ECGA
465 // this makes the SS boundary and the 0.5mm thick FR4 insulation in place,
466 // and the air volume ECGA acts as mother for the rest of components.
467 // The above placeemnt is done at (0.,0.,0.) relative coordiante
468 // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place
469 // unnecessary air volumes now. Just leave the gap as we are placing them
470 // in air only. This also reduces the number of volumes for geant to track.
471
472// Tree structure for different volumes
473//
474// EUM1
475// |
476// --------------------
477// | | |
478// EBPA ESSA EBKA
479// |
480// EDGA
481// |
482// ECGA
483// |
484// --------------------
485// | | |
486// EPCA(1) EHC1 EPCA(2)
487// (bottom) | (top PCB)
488// |
489// Sensitive volume
490// (gas)
491//
492
493
494 //FOR VETO
495//Creating the side channels
496// SS boundary channel, followed by G10 and Air Gap
497 gMC->Gspos("EDVA", 1, "ESVA", 0., 0., 0., 0, "ONLY");
498 gMC->Gspos("ECVA", 1, "EDVA", 0., 0., 0., 0, "ONLY");
499
500//FOR PRESHOWER
501 gMC->Gspos("EDGA", 1, "ESSA", 0., 0., 0., 0, "ONLY");
502 gMC->Gspos("ECGA", 1, "EDGA", 0., 0., 0., 0, "ONLY");
503
504 // now other components, using Bedanga's code, but changing the values.
505 //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR
506
507 //For veto plane
508 //Positioning the Bottom 0.16 cm PCB
509 Float_t zbpcb = -dboxAir3A[2] + (2.0*fgkGap) + fgkThPCB/2.;
510 gMC->Gspos("EPCA", 1, "ECVA", 0., 0., zbpcb, 0, "ONLY");
511 //Positioning the Honey Comb 0.5 cm
512 Float_t zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.;
513 gMC->Gspos("EHC1", 1, "ECVA", 0., 0., zhc, 0, "ONLY");
514 //Positioning the Top PCB 0.16 cm
515 Float_t ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.;
516 gMC->Gspos("EPCA", 2, "ECVA", 0., 0., ztpcb, 0, "ONLY");
517
518
519 //For Preshower plane the ordering is reversed
520 //Positioning the Bottom 0.16 cm PCB
521 zbpcb = -dboxAir3A[2] + fgkThPCB + fgkThPCB/2.;
522 gMC->Gspos("EPCA", 1, "ECGA", 0., 0., zbpcb, 0, "ONLY");
523 //Positioning the Honey Comb 0.5 cm
524 zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.;
525 gMC->Gspos("EHC1", 1, "ECGA", 0., 0., zhc, 0, "ONLY");
526 //Positioning the Top PCB 0.16 cm
527 ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.;
528 gMC->Gspos("EPCA", 2, "ECGA", 0., 0., ztpcb, 0, "ONLY");
529
530
531
532
533 //--------------Now let us construct final UM ---------------//
534 // We will do it as follows :
535 // (i) First make a UM of air. which will have dimensions
536 // of the SS boundary Channel (in x,y) and of height 13.3mm
537 //(ii) Then we will place all the components
538
539 //----------------------------------------------------------//
540 // A unit module type A of Air
541 // Dimensions of Unit Module same as SS boundary channel
542 Float_t fDboxum1[3];
543 fDboxum1[0] = fDboxss1[0];
544 fDboxum1[1] = fDboxss1[1];
545 fDboxum1[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at
546 // the bottom and the backplane PCB at the top.
547
548 //FOR PRESHOWER
549 //Create a Unit module of above dimensions Material : AIR
550 gMC->Gsvolu("EUM1","BOX", idtmed[698], fDboxum1, 3);
551 gMC->Gsatt("EUM1", "SEEN", 0);
552 //FOR VETO
553 gMC->Gsvolu("EUV1","BOX", idtmed[698], fDboxum1, 3);
554 gMC->Gsatt("EUV1", "SEEN", 0);
555
556 //----------------------------------------------------------------//
557
558 //BASE PLATE : EBPA
559 //==================
560 // Make a 2mm thick G10 Base plate for Unit module A
561 // Base plate is as big as the final UM dimensions that is as
562 // SS boundary channel
563 Float_t dboxBaseA[3];
564 dboxBaseA[0] = fDboxss1[0];
565 dboxBaseA[1] = fDboxss1[1];
566 dboxBaseA[2] = fgkThBase/2.;
567
568 //Base Blate is a G10 BOX
569 gMC->Gsvolu("EBPA","BOX", idtmed[607], dboxBaseA, 3);
570 gMC->Gsatt("EBPA", "SEEN", 0);
571 //----------------------------------------------------//
572
573 //FOR VETO
574 //- Placing of all components of UM in AIR BOX EUM1--//
575 //(1) FIRST PUT THE BASE PLATE
576 Float_t zbaseplate = -fDboxum1[2] + fgkThBase/2.;
577 gMC->Gspos("EBPA", 1, "EUV1", 0., 0., zbaseplate, 0, "ONLY");
578
579 //(2) NEXT PLACING the SS BOX
580 Float_t zss = zbaseplate + fgkThBase/2. + fgkThSS/2.;
581 gMC->Gspos("ESVA", 1, "EUV1", 0., 0., zss, 0, "ONLY");
582
583 // (3) Positioning the Backplane PCB 0.1 cm
584 Float_t zbkp = zss + fgkThSS/2. + fgkThBKP/2.;
585 gMC->Gspos("EBKA", 1, "EUV1", 0., 0., zbkp, 0, "ONLY");
586
587 //FOR PRESHOWER
588 // (3) Positioning the Backplane PCB 0.1 cm
589 zbkp = -fDboxum1[2] + fgkThBKP/2.;
590 gMC->Gspos("EBKA", 1, "EUM1", 0., 0., zbkp, 0, "ONLY");
591
592 //(2) NEXT PLACING the SS BOX
593 zss = zbkp + fgkThBKP/2. + fgkThSS/2.;
594 gMC->Gspos("ESSA", 1, "EUM1", 0., 0., zss, 0, "ONLY");
595
596 //(1) FIRST PUT THE BASE PLATE
597 zbaseplate = zss + fgkThSS/2 + fgkThBase/2.;
598 gMC->Gspos("EBPA", 1, "EUM1", 0., 0., zbaseplate, 0, "ONLY");
599 //-------------------- UM Type A completed ------------------------//
600
601
602
603 //-------------------- Lets do the same thing for UM type B -------//
604 //--------------------------------------------------//
605 //Bottom and Top PCB : EPCB
606 //===========================
607 // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module B
608 // X-dimension same as EHC2 - dbox4[0]
609 // Y-dimension same as EHC2 - dbox4[1]
610 // Z-dimension 0.16/2 = 0.08 cm
611 //-------------------------------------------------//
612 Float_t dboxPcbB[3];
613 dboxPcbB[0] = dbox4[0];
614 dboxPcbB[1] = dbox4[1];
615 dboxPcbB[2] = fgkThPCB/2.;
616
617 //Top and Bottom PCB is a BOX of Material G10
618 gMC->Gsvolu("EPCB","BOX", idtmed[607], dboxPcbB, 3);
619 gMC->Gsatt("EPCB", "SEEN", 0);
620 //--------------------------------------------------------//
621 //Back Plane : EBKB
622 //==================
623 // Make a 1.0mm thick Back Plane PCB for Unit module B
624 // X-dimension same as EHC2 - dbox4[0]
625 // Y-dimension same as EHC2 - dbox4[1]
626 // Z-dimension 0.1/2 = 0.05 cm
627 //------------------------------------------------------//
628 Float_t dboxBPlaneB[3];
629 dboxBPlaneB[0] = dbox4[0];
630 dboxBPlaneB[1] = dbox4[1];
631 dboxBPlaneB[2] = fgkThBKP/2.;
632
633 //Back PLane PCB of MAterial G10
634 gMC->Gsvolu("EBKB","BOX", idtmed[607], dboxBPlaneB, 3);
635 gMC->Gsatt("EBKB", "SEEN", 0);
636 //-------------------------------------------------------------//
637
638 //---------- That was all in the Z -direction of Unit Module B----//
639
640 // Now lets us construct the boundary arround the Unit Module --//
641 // This boundary has
642 // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap
643 // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10
644 // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel
645
646 //-------------------------------------------------//
647 //AIR GAP between UM and Boundary : ECGB
648 //================================================
649 // Make a 10.3mm thick Air gap for Unit module B
650 // X-dimension same as EHC2+0.05
651 // Y-dimension same as EHC2+0.05
652 // Z-dimension 1.03/2 = 0.515 cm
653 Float_t dboxAir3B[3];
654 dboxAir3B[0] = dbox4[0]+(2.0*fgkGap);
655 dboxAir3B[1] = dbox4[1]+(2.0*fgkGap);
656 dboxAir3B[2] = fgkThAir/2.;
657
658 //PRESHOWER
659 //Air gap is a BOX of Material Air
660 gMC->Gsvolu("ECGB","BOX", idtmed[698], dboxAir3B, 3);
661 gMC->Gsatt("ECGB", "SEEN", 0);
662 //VETO
663 gMC->Gsvolu("ECVB","BOX", idtmed[698], dboxAir3B, 3);
664 gMC->Gsatt("ECVB", "SEEN", 0);
665
666 //-------------------------------------------------//
667
668 //-------------------------------------------------//
669 //G10 boundary between honeycomb and SS : EDGB
670 //================================================
671 // Make a 10.3mm thick G10 Boundary for Unit module B
672 // X-dimension same as EHC2+Airgap+0.05
673 // Y-dimension same as EHC2+Airgap+0.05
674 // Z-dimension 1.03/2 = 0.515 cm
675 Float_t dboxGGB[3];
676 dboxGGB[0] = dboxAir3B[0]+(2.0*fgkGap);
677 dboxGGB[1] = dboxAir3B[1]+(2.0*fgkGap);
678 dboxGGB[2] = fgkThG10/2.;
679
680 //PRESHOWER
681 //G10 BOX
682 gMC->Gsvolu("EDGB","BOX", idtmed[607], dboxGGB, 3);
683 gMC->Gsatt("EDGB", "SEEN", 0);
684 //VETO
685 gMC->Gsvolu("EDVB","BOX", idtmed[607], dboxGGB, 3);
686 gMC->Gsatt("EDVB", "SEEN", 0);
687 //-------------------------------------------------//
688 //----------------------------------------------------------//
689 //Stainless Steel Bounadry : ESSB
690 //==================================
691 // Make a 10.3mm thick Stainless Steel boundary for Unit module B
692 // X-dimension same as EHC2 + Airgap + G10 + 0.3
693 // Y-dimension same as EHC2 + Airgap + G10 + 0.3
694 // Z-dimension 1.03/2 = 0.515 cm
695 //------------------------------------------------------//
696 // A Stainless Steel Boundary Channel to house the unit module
697 Float_t fDboxss2[3];
698 fDboxss2[0] = dboxGGB[0]+fgkSSBoundary;
699 fDboxss2[1] = dboxGGB[1]+fgkSSBoundary;
700 fDboxss2[2] = fgkThSS/2.;
701
702 //PRESHOWER
703 //Stainless Steel boundary - Material Stainless Steel
704 gMC->Gsvolu("ESSB","BOX", idtmed[618], fDboxss2, 3);
705 gMC->Gsatt("ESSB", "SEEN", 0);
706 //VETO
707 gMC->Gsvolu("ESVB","BOX", idtmed[618], fDboxss2, 3);
708 gMC->Gsatt("ESVB", "SEEN", 0);
709 //----------------------------------------------------------------//
710
711 //----------------------------------------------------------------//
712 // Here we need to place the volume in order ESSB -> EDGB -> ECGB
713 // this makes the SS boiundary and the 0.5mm thick FR4 insulation in place,
714 // and the air volume ECGB acts as mother for the rest of components.
715 // The above placeemnt is done at (0.,0.,0.) relative coordiante
716 // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place
717 // unnecessary air volumes now. Just leave the gap as we are placing them
718 // in air only. This also reduces the number of volumes for geant to track.
719
720// Tree structure for different volumes
721//
722// EUM2
723// |
724// --------------------
725// | | |
726// EBPB ESSB EBKB
727// |
728// EDGB
729// |
730// ECGB
731// |
732// --------------------
733// | | |
734// EPCB(1) EHC2 EPCB(2)
735// (bottom) | (top PCB)
736// |
737// Sensitive volume
738// (gas)
739//
740
741//PRESHOWER
742//Creating the side channels
743// SS boundary channel, followed by G10 and Air Gap
744 gMC->Gspos("EDGB", 1, "ESSB", 0., 0., 0., 0, "ONLY");
745 gMC->Gspos("ECGB", 1, "EDGB", 0., 0., 0., 0, "ONLY");
746 //VETO
747 gMC->Gspos("EDVB", 1, "ESVB", 0., 0., 0., 0, "ONLY");
748 gMC->Gspos("ECVB", 1, "EDVB", 0., 0., 0., 0, "ONLY");
749
750 // now other components, using Bedang's code, but changing the values.
751 //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR
752
753 //VETO
754 //Positioning the Bottom 0.16 cm PCB
755 Float_t zbpcb2 = -dboxAir3B[2] + (2.0*fgkGap) + fgkThPCB/2.;
756 gMC->Gspos("EPCB", 1, "ECVB", 0., 0., zbpcb2, 0, "ONLY");
757 //Positioning the Honey Comb 0.5 cm
758 Float_t zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.;
759 gMC->Gspos("EHC2", 1, "ECVB", 0., 0., zhc2, 0, "ONLY");
760 //Positioning the Top PCB 0.16 cm
761 Float_t ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.;
762 gMC->Gspos("EPCB", 2, "ECVB", 0., 0., ztpcb2, 0, "ONLY");
763
764 //PRESHOWER
765 //For preshower plane the ordering is reversed
766 //Positioning the Bottom 0.16 cm PCB
767 zbpcb2 = -dboxAir3B[2] + fgkThPCB + fgkThPCB/2.;
768 gMC->Gspos("EPCB", 1, "ECGB", 0., 0., zbpcb2, 0, "ONLY");
769 //Positioning the Honey Comb 0.5 cm
770 zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.;
771 gMC->Gspos("EHC2", 1, "ECGB", 0., 0., zhc2, 0, "ONLY");
772 //Positioning the Top PCB 0.16 cm
773 ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.;
774 gMC->Gspos("EPCB", 2, "ECGB", 0., 0., ztpcb2, 0, "ONLY");
775
776
777
778 //--------------Now let us construct final UM ---------------//
779 // We will do it as follows :
780 // (i) First make a UM of air. which will have dimensions
781 // of the SS boundary Channel (in x,y) and of height 13.3mm
782 //(ii) Then we will place all the components
783
784 //----------------------------------------------------------//
785 // A unit module type B of Air
786 // Dimensions of Unit Module same as SS boundary channel
787 Float_t fDboxum2[3];
788 fDboxum2[0] = fDboxss2[0];
789 fDboxum2[1] = fDboxss2[1];
790 fDboxum2[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at
791 // the bottom and the backplane PCB at the top.
792
793 //PRESHOWER
794 //Create a Unit module of above dimensions Material : AIR
795 gMC->Gsvolu("EUM2","BOX", idtmed[698], fDboxum2, 3);
796 gMC->Gsatt("EUM2", "SEEN", 0);
797
798 //VETO
799 gMC->Gsvolu("EUV2","BOX", idtmed[698], fDboxum2, 3);
800 gMC->Gsatt("EUV2", "SEEN", 0);
801 //----------------------------------------------------------------//
802
803 //BASE PLATE : EBPB
804 //==================
805 // Make a 2mm thick G10 Base plate for Unit module B
806 // Base plate is as big as the final UM dimensions that is as
807 // SS boundary channel
808 Float_t dboxBaseB[3];
809 dboxBaseB[0] = fDboxss2[0];
810 dboxBaseB[1] = fDboxss2[1];
811 dboxBaseB[2] = fgkThBase/2.;
812
813 //Base Blate is a G10 BOX
814 gMC->Gsvolu("EBPB","BOX", idtmed[607], dboxBaseB, 3);
815 gMC->Gsatt("EBPB", "SEEN", 0);
816 //----------------------------------------------------//
817
818 //VETO
819 //- Placing of all components of UM in AIR BOX EUM2--//
820 //(1) FIRST PUT THE BASE PLATE
821 Float_t zbaseplate2 = -fDboxum2[2] + fgkThBase/2.;
822 gMC->Gspos("EBPB", 1, "EUV2", 0., 0., zbaseplate2, 0, "ONLY");
823
824 //(2) NEXT PLACING the SS BOX
825 Float_t zss2 = zbaseplate2 + fgkThBase/2. + fgkThSS/2.;
826 gMC->Gspos("ESVB", 1, "EUV2", 0., 0., zss2, 0, "ONLY");
827
828 // (3) Positioning the Backplane PCB 0.1 cm
829 Float_t zbkp2 = zss2 + fgkThSS/2. + fgkThBKP/2.;
830 gMC->Gspos("EBKB", 1, "EUV2", 0., 0., zbkp2, 0, "ONLY");
831
832
833
834 //FOR PRESHOWER
835 // (3) Positioning the Backplane PCB 0.1 cm
836 zbkp2 = -fDboxum2[2] + fgkThBKP/2.;
837 gMC->Gspos("EBKB", 1, "EUM2", 0., 0., zbkp2, 0, "ONLY");
838
839 //(2) NEXT PLACING the SS BOX
840 zss2 = zbkp2 + fgkThBKP/2. + fgkThSS/2.;
841 gMC->Gspos("ESSB", 1, "EUM2", 0., 0., zss2, 0, "ONLY");
842
843 //(1) FIRST PUT THE BASE PLATE
844 zbaseplate2 = zss2 + fgkThSS/2 + fgkThBase/2.;
845 gMC->Gspos("EBPB", 1, "EUM2", 0., 0., zbaseplate2, 0, "ONLY");
846 //-------------------- UM Type B completed ------------------------//
847
848
849 //--- Now we need to make Lead plates of UM dimension -----//
850
851 /**************************/
852 //----------------------------------------------------------//
853 // The lead convertor is of unit module size
854 // Dimensions of Unit Module same as SS boundary channel
855
856 Float_t dboxPba[3];
857 dboxPba[0] = fDboxum1[0];
858 dboxPba[1] = fDboxum1[1];
859 dboxPba[2] = fgkThLead/2.;
860 // Lead of UM dimension
861 gMC->Gsvolu("EPB1","BOX", idtmed[600], dboxPba, 3);
862 gMC->Gsatt ("EPB1", "SEEN", 0);
863
864 Float_t dboxPbb[3];
865 dboxPbb[0] = fDboxum2[0];
866 dboxPbb[1] = fDboxum2[1];
867 dboxPbb[2] = fgkThLead/2.;
868 // Lead of UM dimension
869 gMC->Gsvolu("EPB2","BOX", idtmed[600], dboxPbb, 3);
870 gMC->Gsatt ("EPB2", "SEEN", 0);
871
872 //----------------------------------------------------------------//
c4561145 873
b1952773 874 // 2 types of Rectangular shaped supermodules (BOX)
875 //each with 6 unit modules
876
877 // volume for SUPERMODULE ESMA
878 //Space added to provide a gapping for HV between UM's
f117e3aa 879 //There is a gap of 0.15 cm between two Modules (UMs)
880 // in x-direction and 0.1cm along y-direction
b1952773 881
36031625 882 Float_t dboxSM1[3];
f117e3aa 883 dboxSM1[0] = 3.0*fDboxum1[0] + (2.0*0.075);
884 dboxSM1[1] = 2.0*fDboxum1[1] + 0.05;
885 dboxSM1[2] = fDboxum1[2];
886
887 //FOR PRESHOWER
36031625 888 gMC->Gsvolu("ESMA","BOX", idtmed[698], dboxSM1, 3);
f117e3aa 889 gMC->Gsatt("ESMA", "SEEN", 0);
a978c9e3 890
f117e3aa 891 //FOR VETO
892 gMC->Gsvolu("EMVA","BOX", idtmed[698], dboxSM1, 3);
893 gMC->Gsatt("EMVA", "SEEN", 0);
894
b1952773 895 //Position the 6 unit modules in EMSA
36031625 896 Float_t xa1,xa2,xa3,ya1,ya2;
f117e3aa 897 xa1 = dboxSM1[0] - fDboxum1[0];
898 xa2 = xa1 - fDboxum1[0] - 0.15 - fDboxum1[0];
899 xa3 = xa2 - fDboxum1[0] - 0.15 - fDboxum1[0];
900 ya1 = dboxSM1[1] - fDboxum1[1];
901 ya2 = ya1 - fDboxum1[1] - 0.1 - fDboxum1[1];
902
903 //PRESHOWER
a978c9e3 904 gMC->Gspos("EUM1", 1, "ESMA", xa1, ya1, 0., 0, "ONLY");
905 gMC->Gspos("EUM1", 2, "ESMA", xa2, ya1, 0., 0, "ONLY");
906 gMC->Gspos("EUM1", 3, "ESMA", xa3, ya1, 0., 0, "ONLY");
907 gMC->Gspos("EUM1", 4, "ESMA", xa1, ya2, 0., 0, "ONLY");
908 gMC->Gspos("EUM1", 5, "ESMA", xa2, ya2, 0., 0, "ONLY");
909 gMC->Gspos("EUM1", 6, "ESMA", xa3, ya2, 0., 0, "ONLY");
b1952773 910
f117e3aa 911 //VETO
912 gMC->Gspos("EUV1", 1, "EMVA", xa1, ya1, 0., 0, "ONLY");
913 gMC->Gspos("EUV1", 2, "EMVA", xa2, ya1, 0., 0, "ONLY");
914 gMC->Gspos("EUV1", 3, "EMVA", xa3, ya1, 0., 0, "ONLY");
915 gMC->Gspos("EUV1", 4, "EMVA", xa1, ya2, 0., 0, "ONLY");
916 gMC->Gspos("EUV1", 5, "EMVA", xa2, ya2, 0., 0, "ONLY");
917 gMC->Gspos("EUV1", 6, "EMVA", xa3, ya2, 0., 0, "ONLY");
918
b1952773 919
920 // volume for SUPERMODULE ESMB
921 //Space is added to provide a gapping for HV between UM's
36031625 922 Float_t dboxSM2[3];
f117e3aa 923 dboxSM2[0] = 2.0*fDboxum2[0] + 0.075;
924 dboxSM2[1] = 3.0*fDboxum2[1] + (2.0*0.05);
925 dboxSM2[2] = fDboxum2[2];
b1952773 926
f117e3aa 927 //PRESHOWER
36031625 928 gMC->Gsvolu("ESMB","BOX", idtmed[698], dboxSM2, 3);
f117e3aa 929 gMC->Gsatt("ESMB", "SEEN", 0);
930 //VETO
931 gMC->Gsvolu("EMVB","BOX", idtmed[698], dboxSM2, 3);
932 gMC->Gsatt("EMVB", "SEEN", 0);
933
b1952773 934 //Position the 6 unit modules in EMSB
36031625 935 Float_t xb1,xb2,yb1,yb2,yb3;
f117e3aa 936 xb1 = dboxSM2[0] - fDboxum2[0];
937 xb2 = xb1 - fDboxum2[0] - 0.15 - fDboxum2[0];
938 yb1 = dboxSM2[1]-fDboxum2[1];
939 yb2 = yb1 - fDboxum2[1] - 0.1 - fDboxum2[1];
940 yb3 = yb2 - fDboxum2[1] - 0.1 - fDboxum2[1];
941
942
943 //PRESHOWER
a978c9e3 944 gMC->Gspos("EUM2", 1, "ESMB", xb1, yb1, 0., 0, "ONLY");
945 gMC->Gspos("EUM2", 2, "ESMB", xb2, yb1, 0., 0, "ONLY");
946 gMC->Gspos("EUM2", 3, "ESMB", xb1, yb2, 0., 0, "ONLY");
947 gMC->Gspos("EUM2", 4, "ESMB", xb2, yb2, 0., 0, "ONLY");
948 gMC->Gspos("EUM2", 5, "ESMB", xb1, yb3, 0., 0, "ONLY");
949 gMC->Gspos("EUM2", 6, "ESMB", xb2, yb3, 0., 0, "ONLY");
950
f117e3aa 951 //VETO
952 gMC->Gspos("EUV2", 1, "EMVB", xb1, yb1, 0., 0, "ONLY");
953 gMC->Gspos("EUV2", 2, "EMVB", xb2, yb1, 0., 0, "ONLY");
954 gMC->Gspos("EUV2", 3, "EMVB", xb1, yb2, 0., 0, "ONLY");
955 gMC->Gspos("EUV2", 4, "EMVB", xb2, yb2, 0., 0, "ONLY");
956 gMC->Gspos("EUV2", 5, "EMVB", xb1, yb3, 0., 0, "ONLY");
957 gMC->Gspos("EUV2", 6, "EMVB", xb2, yb3, 0., 0, "ONLY");
b1952773 958
f117e3aa 959 // Make smiliar stucture for lead as for PMD plane
960 //================================================
b1952773 961
f117e3aa 962 // 2 types of Rectangular shaped supermodules (BOX)
963 //each with 6 unit modules
964
965 // volume for SUPERMODULE ESMPbA
966 //Space added to provide a gapping for HV between UM's
b1952773 967
f117e3aa 968 Float_t dboxSMPb1[3];
969 dboxSMPb1[0] = 3.0*fDboxum1[0] + (2.0*0.075);
970 dboxSMPb1[1] = 2.0*fDboxum1[1] + 0.05;
971 dboxSMPb1[2] = fgkThLead/2.;
972
973 gMC->Gsvolu("ESPA","BOX", idtmed[698], dboxSMPb1, 3);
974 gMC->Gsatt("ESPA", "SEEN", 0);
975
b1952773 976
f117e3aa 977 //Position the 6 unit modules in ESMPbA
978 Float_t xpa1,xpa2,xpa3,ypa1,ypa2;
979 xpa1 = -dboxSMPb1[0] + fDboxum1[0];
980 xpa2 = xpa1 + fDboxum1[0] + 0.15 + fDboxum1[0];
981 xpa3 = xpa2 + fDboxum1[0] + 0.15 + fDboxum1[0];
982 ypa1 = dboxSMPb1[1] - fDboxum1[1];
983 ypa2 = ypa1 - fDboxum1[1] - 0.1 - fDboxum1[1];
b1952773 984
c4561145 985
f117e3aa 986 gMC->Gspos("EPB1", 1, "ESPA", xpa1, ypa1, 0., 0, "ONLY");
987 gMC->Gspos("EPB1", 2, "ESPA", xpa2, ypa1, 0., 0, "ONLY");
988 gMC->Gspos("EPB1", 3, "ESPA", xpa3, ypa1, 0., 0, "ONLY");
989 gMC->Gspos("EPB1", 4, "ESPA", xpa1, ypa2, 0., 0, "ONLY");
990 gMC->Gspos("EPB1", 5, "ESPA", xpa2, ypa2, 0., 0, "ONLY");
991 gMC->Gspos("EPB1", 6, "ESPA", xpa3, ypa2, 0., 0, "ONLY");
c4561145 992
c4561145 993
f117e3aa 994 // volume for SUPERMODULE ESMPbB
995 //Space is added to provide a gapping for HV between UM's
996 Float_t dboxSMPb2[3];
997 dboxSMPb2[0] = 2.0*fDboxum2[0] + 0.075;
998 dboxSMPb2[1] = 3.0*fDboxum2[1] + (2.0*0.05);
999 dboxSMPb2[2] = fgkThLead/2.;
b1952773 1000
f117e3aa 1001 gMC->Gsvolu("ESPB","BOX", idtmed[698], dboxSMPb2, 3);
1002 gMC->Gsatt("ESPB", "SEEN", 0);
1003
1004 //Position the 6 unit modules in ESMPbB
1005 Float_t xpb1,xpb2,ypb1,ypb2,ypb3;
1006 xpb1 = -dboxSMPb2[0] + fDboxum2[0];
1007 xpb2 = xpb1 + fDboxum2[0] + 0.15 + fDboxum2[0];
1008 ypb1 = dboxSMPb2[1] - fDboxum2[1];
1009 ypb2 = ypb1 - fDboxum2[1] - 0.1 - fDboxum2[1];
1010 ypb3 = ypb2 - fDboxum2[1] - 0.1 - fDboxum2[1];
1011
1012
1013 gMC->Gspos("EPB2", 1, "ESPB", xpb1, ypb1, 0., 0, "ONLY");
1014 gMC->Gspos("EPB2", 2, "ESPB", xpb2, ypb1, 0., 0, "ONLY");
1015 gMC->Gspos("EPB2", 3, "ESPB", xpb1, ypb2, 0., 0, "ONLY");
1016 gMC->Gspos("EPB2", 4, "ESPB", xpb2, ypb2, 0., 0, "ONLY");
1017 gMC->Gspos("EPB2", 5, "ESPB", xpb1, ypb3, 0., 0, "ONLY");
1018 gMC->Gspos("EPB2", 6, "ESPB", xpb2, ypb3, 0., 0, "ONLY");
1019
1020
1021 //---------------------------------------------------
1022 /// ALICE PMD FEE BOARDS IMPLEMENTATION
1023 // Dt: 25th February 2006
1024 // - M.M. Mondal, S.K. Prasad and P.K. Netrakanti
1025 //---------------------------------------------------
1026
1027 //FEE boards
1028 // It is FR4 board of length 7cm
1029 // breadth of 2.4 cm and thickness 0.1cm
1030 Float_t dboxFEE[3];
1031 dboxFEE[0] = 0.05;
1032 dboxFEE[1] = 3.50;
1033 dboxFEE[2] = 1.20;
1034
1035 gMC->Gsvolu("EFEE","BOX", idtmed[607], dboxFEE, 3);
1036 gMC->Gsatt("EFEE", "SEEN", 0);
1037 gMC->Gsatt("EFEE", "COLO", 4);
1038
1039 //Mother volume to accomodate FEE boards
1040 // It should have the dimension
1041 // as the back plane or the
1042 //corresponding UM
1043 //TYPE A
1044 //------------------------------------------------------//
1045
1046 Float_t dboxFEEBPlaneA[3];
1047 dboxFEEBPlaneA[0] = dboxBPlaneA[0]; //dbox3[0];
1048 dboxFEEBPlaneA[1] = dboxBPlaneA[1];//dbox3[1];
1049 dboxFEEBPlaneA[2] = 1.2;
1050
1051 //Volume of same dimension as Back PLane of Material AIR
1052 gMC->Gsvolu("EFBA","BOX", idtmed[698], dboxFEEBPlaneA, 3);
1053 gMC->Gsatt("EFBA", "SEEN", 0);
1054
1055 //TYPE B
1056 Float_t dboxFEEBPlaneB[3];
1057 dboxFEEBPlaneB[0] = dboxBPlaneB[0]; //dbox4[0];
1058 dboxFEEBPlaneB[1] = dboxBPlaneB[1];//dbox4[1];
1059 dboxFEEBPlaneB[2] = 1.2;
1060
1061 //Back PLane PCB of MAterial G10
1062 gMC->Gsvolu("EFBB","BOX", idtmed[698], dboxFEEBPlaneB, 3);
1063 gMC->Gsatt("EFBB", "SEEN", 0);
b1952773 1064
f117e3aa 1065 //Placing the FEE boards in the Mother volume of AIR
c4561145 1066
f117e3aa 1067 //Type A
c4561145 1068
f117e3aa 1069 Float_t x_fee; // X-position of FEE board
1070 Float_t y_fee; // Y-position of FEE board
1071 Float_t z_fee = 0.0; // Z-position of FEE board
c4561145 1072
f117e3aa 1073 Float_t x_a = 0.25; //distance from the border to 1st FEE board
1074 Float_t y_a = 4.00; //distance from the border to 1st FEE board
1075 Float_t x_sepa = 1.70; //Distance between two FEE boards
1076 Float_t y_sepa = 8.00; //Distance between two FEE boards
c4561145 1077
f117e3aa 1078
1079 // FEE Boards EFEE placed inside EFBA
1080 number = 1;
1081 y_fee = dboxFEEBPlaneA[1] - y_a;
1082 for (i = 1; i <= 6; ++i)
1083 {
1084 x_fee = -dboxFEEBPlaneA[0] + x_a;
1085 for (j = 1; j <= 12; ++j)
1086 {
1087 gMC->Gspos("EFEE", number, "EFBA", x_fee,y_fee,z_fee, 0, "ONLY");
1088 x_fee += x_sepa;
1089 number += 1;
1090 }
1091 y_fee -= y_sepa;
1092 }
1093 // FEE Boards EFEE placed inside EFBB
1094 number = 1;
1095 y_fee = dboxFEEBPlaneB[1] - y_a;
1096 for (i = 1; i <= 3; ++i)
1097 {
1098 x_fee = -dboxFEEBPlaneB[0] + x_a;
1099 for (j = 1; j <= 24; ++j)
1100 {
1101 gMC->Gspos("EFEE", number, "EFBB", x_fee,y_fee,z_fee, 0, "ONLY");
1102 x_fee += x_sepa;
1103 number += 1;
1104 }
1105 y_fee -= y_sepa;
1106 }
c4561145 1107
c4561145 1108
f117e3aa 1109 //Distance between the two backplanes of two UMs
1110 //in x-direction is 0.92 and ydirection is 0.95
1111 Float_t dboxEFSA[3];
1112 dboxEFSA[0] = 3.0*dboxFEEBPlaneA[0] + 0.92;
1113 dboxEFSA[1] = 2.0*dboxFEEBPlaneA[1] + (0.95/2.0);
1114 dboxEFSA[2] = dboxFEEBPlaneA[2];
c4561145 1115
f117e3aa 1116 //Type A
1117 gMC->Gsvolu("EFSA","BOX", idtmed[698],dboxEFSA, 3);
1118 gMC->Gsatt("EFSA", "SEEN", 0);
c4561145 1119
f117e3aa 1120 //Distance between the two backplanes of two UMs
1121 //in x-direction is 0.92 and ydirection is 0.95
1122 Float_t dboxEFSB[3];
1123 dboxEFSB[0] = 2.0*dboxFEEBPlaneB[0] + (0.938/2.0);
1124 dboxEFSB[1] = 3.0*dboxFEEBPlaneB[1] + 1.05;
1125 dboxEFSB[2] = dboxFEEBPlaneB[2];
c4561145 1126
f117e3aa 1127 //Type A
1128 gMC->Gsvolu("EFSB","BOX", idtmed[698],dboxEFSB, 3);
1129 gMC->Gsatt("EFSB", "SEEN", 0);
c4561145 1130
b1952773 1131
f117e3aa 1132 Float_t xfs1,xfs2,xfs3,yfs1,yfs2,yfs3;
1133 xfs1 = -dboxEFSA[0] + dboxFEEBPlaneA[0];
1134 xfs2 = xfs1 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0];
1135 xfs3 = xfs2 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0];
1136 yfs1 = dboxEFSA[1] - dboxFEEBPlaneA[1];
1137 yfs2 = yfs1 - dboxFEEBPlaneA[1] - 0.95 - dboxFEEBPlaneA[1];
c4561145 1138
c4561145 1139
c4561145 1140
f117e3aa 1141 gMC->Gspos("EFBA", 1, "EFSA", xfs1, yfs1, 0., 0, "ONLY");
1142 gMC->Gspos("EFBA", 2, "EFSA", xfs2, yfs1, 0., 0, "ONLY");
1143 gMC->Gspos("EFBA", 3, "EFSA", xfs3, yfs1, 0., 0, "ONLY");
1144 gMC->Gspos("EFBA", 4, "EFSA", xfs1, yfs2, 0., 0, "ONLY");
1145 gMC->Gspos("EFBA", 5, "EFSA", xfs2, yfs2, 0., 0, "ONLY");
1146 gMC->Gspos("EFBA", 6, "EFSA", xfs3, yfs2, 0., 0, "ONLY");
c4561145 1147
1148
f117e3aa 1149 //Type B positioning
c4561145 1150
f117e3aa 1151 xfs1 = -dboxEFSB[0] + dboxFEEBPlaneB[0];
1152 xfs2 = xfs1 + dboxFEEBPlaneB[0] + 0.938 + dboxFEEBPlaneB[0];
1153 yfs1 = dboxEFSB[1] - dboxFEEBPlaneB[1];
1154 yfs2 = yfs1 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1];
1155 yfs3 = yfs2 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1];
c4561145 1156
c4561145 1157
1158
f117e3aa 1159 gMC->Gspos("EFBB", 1, "EFSB", xfs1, yfs1, 0., 0, "ONLY");
1160 gMC->Gspos("EFBB", 2, "EFSB", xfs2, yfs1, 0., 0, "ONLY");
1161 gMC->Gspos("EFBB", 3, "EFSB", xfs1, yfs2, 0., 0, "ONLY");
1162 gMC->Gspos("EFBB", 4, "EFSB", xfs2, yfs2, 0., 0, "ONLY");
1163 gMC->Gspos("EFBB", 5, "EFSB", xfs1, yfs3, 0., 0, "ONLY");
1164 gMC->Gspos("EFBB", 6, "EFSB", xfs2, yfs3, 0., 0, "ONLY");
c4561145 1165
c4561145 1166
c4561145 1167}
1168
1169//_____________________________________________________________________________
1170
1171void AliPMDv1::CreatePMD()
1172{
1173 //
1174 // Create final detector from supermodules
b1952773 1175 // -- Author : Bedanga and Viyogi June 2003
c4561145 1176
f117e3aa 1177 Float_t zp;
c4561145 1178 Int_t jhrot12,jhrot13, irotdm;
c4561145 1179 Int_t *idtmed = fIdtmed->GetArray()-599;
1180
b1952773 1181 //VOLUMES Names : begining with "E" for all PMD volumes,
1182
f117e3aa 1183 // --- DEFINE Iron volumes for SM A
b1952773 1184 // Fe Support
36031625 1185 Float_t dboxFea[3];
3cdb4e97 1186 dboxFea[0] = fSMLengthax;
1187 dboxFea[1] = fSMLengthay;
1188 dboxFea[2] = fgkThSteel/2.;
c4561145 1189
36031625 1190 gMC->Gsvolu("EFEA","BOX", idtmed[618], dboxFea, 3);
b1952773 1191 gMC->Gsatt ("EFEA", "SEEN", 0);
c4561145 1192
f117e3aa 1193 // --- DEFINE Iron volumes for SM B
b1952773 1194
1195 // Fe Support
36031625 1196 Float_t dboxFeb[3];
3cdb4e97 1197 dboxFeb[0] = fSMLengthbx;
1198 dboxFeb[1] = fSMLengthby;
1199 dboxFeb[2] = fgkThSteel/2.;
b1952773 1200
36031625 1201 gMC->Gsvolu("EFEB","BOX", idtmed[618], dboxFeb, 3);
b1952773 1202 gMC->Gsatt ("EFEB", "SEEN", 0);
c4561145 1203
c4561145 1204 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
b1952773 1205 AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.);
c4561145 1206 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
1207
a978c9e3 1208 // Gaspmd, the dimension of RECTANGULAR mother volume of PMD,
1209 // Four mother volumes EPM1,EPM2 for A-type and
1210 // volumes EPM3 and EPM4 for B-type. Four to create a hole
1211 // and avoid overlap with beam pipe
1212
1213 Float_t gaspmd[3];
f117e3aa 1214 gaspmd[0] = fSMLengthax;
1215 gaspmd[1] = fSMLengthay;
1216 gaspmd[2] = fSMthick;
a978c9e3 1217
1218 gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd, 3);
1219 gMC->Gsatt("EPM1", "SEEN", 1);
1220 gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd, 3);
1221 gMC->Gsatt("EPM2", "SEEN", 1);
b1952773 1222
1223 //Complete detector for Type A
1224 //Position Super modules type A for both CPV and PMD in EPMD
f117e3aa 1225 Float_t zpsa,zpba,zfea,zcva,zfee;
36031625 1226
a978c9e3 1227 // zpsa = - gaspmd[2] + fSMthick/2.;
1228 // -2.5 is given to place PMD at -361.5
1229 // BM : In future after putting proper electronics
1230 // -2.5 will be replaced by -gaspmd[2]
f117e3aa 1231
1232 //TYPE A
1233 //Fee board
1234 zfee=-gaspmd[2] + 1.2;
1235 gMC->Gspos("EFSA", 1, "EPM1", 0., 0., zfee, 0, "ONLY");
1236 gMC->Gspos("EFSA", 2, "EPM2", 0., 0., zfee, jhrot12, "ONLY");
1237 //VETO
1238 zcva = zfee + 1.2 + fDthick;
1239 gMC->Gspos("EMVA", 1, "EPM1", 0., 0., zcva, 0, "ONLY");
1240 gMC->Gspos("EMVA", 2, "EPM2", 0., 0., zcva, jhrot12, "ONLY");
1241 //Iron support
1242 zfea = zcva + fDthick + fgkThSteel/2.;
a978c9e3 1243 gMC->Gspos("EFEA", 1, "EPM1", 0., 0., zfea, 0, "ONLY");
1244 gMC->Gspos("EFEA", 2, "EPM2", 0., 0., zfea, 0, "ONLY");
f117e3aa 1245 //Lead
1246 zpba=zfea+fgkThSteel/2.+ fgkThLead/2.;
1247 gMC->Gspos("ESPA", 1, "EPM1", 0., 0., zpba, 0, "ONLY");
1248 gMC->Gspos("ESPA", 2, "EPM2", 0., 0., zpba, 0, "ONLY");
1249 //Preshower
1250 zpsa = zpba + fgkThLead/2. + fDthick;
1251 gMC->Gspos("ESMA", 1, "EPM1", 0., 0., zpsa, 0, "ONLY");
1252 gMC->Gspos("ESMA", 2, "EPM2", 0., 0., zpsa, jhrot12, "ONLY");
1253 //FEE boards
1254 zfee=zpsa + fDthick + 1.2;
1255 gMC->Gspos("EFSA", 3, "EPM1", 0., 0., zfee, 0, "ONLY");
1256 gMC->Gspos("EFSA", 4, "EPM2", 0., 0., zfee, jhrot12, "ONLY");
1257
b1952773 1258
f117e3aa 1259 //TYPE - B
1260 gaspmd[0] = fSMLengthbx;
1261 gaspmd[1] = fSMLengthby;
1262 gaspmd[2] = fSMthick;
a978c9e3 1263
1264 gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd, 3);
1265 gMC->Gsatt("EPM3", "SEEN", 1);
1266 gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd, 3);
1267 gMC->Gsatt("EPM4", "SEEN", 1);
1268
b1952773 1269 //Complete detector for Type B
1270 //Position Super modules type B for both CPV and PMD in EPMD
36031625 1271 Float_t zpsb,zpbb,zfeb,zcvb;
a978c9e3 1272 // zpsb = - gaspmd[2] + fSMthick/2.;
1273 // -2.5 is given to place PMD at -361.5
1274 // BM: In future after putting proper electronics
1275 // -2.5 will be replaced by -gaspmd[2]
1276
f117e3aa 1277 //Fee board
1278 zfee=-gaspmd[2] + 1.2;
1279 gMC->Gspos("EFSB", 5, "EPM3", 0., 0., zfee, 0, "ONLY");
1280 gMC->Gspos("EFSB", 6, "EPM4", 0., 0., zfee, jhrot12, "ONLY");
1281 //VETO
1282 zcvb= zfee + 1.2 + fDthick;
1283 gMC->Gspos("EMVB", 3, "EPM3", 0., 0., zcvb, 0, "ONLY");
1284 gMC->Gspos("EMVB", 4, "EPM4", 0., 0., zcvb, jhrot12, "ONLY");
1285
1286 //IRON SUPPORT
1287 zfeb= zcvb + fDthick + fgkThSteel/2.;
a978c9e3 1288 gMC->Gspos("EFEB", 3, "EPM3", 0., 0., zfeb, 0, "ONLY");
1289 gMC->Gspos("EFEB", 4, "EPM4", 0., 0., zfeb, 0, "ONLY");
f117e3aa 1290 //LEAD
1291 zpbb= zfeb + fgkThSteel/2.+ fgkThLead/2.;
1292 gMC->Gspos("ESPB", 3, "EPM3", 0., 0., zpbb, 0, "ONLY");
1293 gMC->Gspos("ESPB", 4, "EPM4", 0., 0., zpbb, 0, "ONLY");
1294 //PRESHOWER
1295 zpsb = zpbb + fgkThLead/2.+ fDthick;
1296 gMC->Gspos("ESMB", 3, "EPM3", 0., 0., zpsb, 0, "ONLY");
1297 gMC->Gspos("ESMB", 4, "EPM4", 0., 0., zpsb, jhrot12, "ONLY");
1298 //FEE boards
1299 zfee=zpsb + fDthick + 1.2;
1300 gMC->Gspos("EFSB", 7, "EPM3", 0., 0., zfee, 0, "ONLY");
1301 gMC->Gspos("EFSB", 8, "EPM4", 0., 0., zfee, jhrot12, "ONLY");
1302
1303
c4561145 1304 // --- Place the EPMD in ALICE
f117e3aa 1305 //Z-distance of PMD from Interaction Point
3cdb4e97 1306 zp = fgkZdist;
b1952773 1307
f117e3aa 1308 //X and Y-positions of the PMD planes
1309 Float_t xfinal,yfinal;
a978c9e3 1310 Float_t xsmb,ysmb;
f117e3aa 1311 Float_t xsma,ysma;
a978c9e3 1312
f117e3aa 1313 xfinal = fSMLengthax + 0.48/2 + fSMLengthbx;
1314 yfinal = fSMLengthay + 0.20/2 + fSMLengthby;
1315
1316
1317 xsma = xfinal - fSMLengthax;
1318 ysma = yfinal - fSMLengthay;
1319 xsmb = -xfinal + fSMLengthbx;
1320 ysmb = yfinal - fSMLengthby;
1321
1322
1323//Position Full PMD in ALICE
1324//
1325// EPM1 EPM3
1326//
1327// EPM4 EPM2
1328// (rotated (rotated EPM1)
1329// EPM3)
1330//
1331 gMC->Gspos("EPM1", 1, "ALIC", xsma,ysma,zp, 0, "ONLY");
a978c9e3 1332 gMC->Gspos("EPM2", 1, "ALIC", -xsma,-ysma,zp, 0, "ONLY");
f117e3aa 1333 gMC->Gspos("EPM3", 1, "ALIC", xsmb,ysmb,zp, 0, "ONLY");
a978c9e3 1334 gMC->Gspos("EPM4", 1, "ALIC", -xsmb,-ysmb,zp, 0, "ONLY");
c4561145 1335}
1336
1337
1338//_____________________________________________________________________________
36031625 1339void AliPMDv1::DrawModule() const
c4561145 1340{
c4561145 1341 // Draw a shaded view of the Photon Multiplicity Detector
1342 //
36031625 1343 // cout << " Inside Draw Modules " << endl;
c4561145 1344
1345 gMC->Gsatt("*", "seen", -1);
1346 gMC->Gsatt("alic", "seen", 0);
1347 //
1348 // Set the visibility of the components
1349 //
1350 gMC->Gsatt("ECAR","seen",0);
1351 gMC->Gsatt("ECCU","seen",1);
b1952773 1352 gMC->Gsatt("EST1","seen",1);
1353 gMC->Gsatt("EST2","seen",1);
1354 gMC->Gsatt("EUM1","seen",1);
1355 gMC->Gsatt("EUM2","seen",1);
1356 gMC->Gsatt("ESMA","seen",1);
1357 gMC->Gsatt("EPMD","seen",1);
c4561145 1358 //
1359 gMC->Gdopt("hide", "on");
1360 gMC->Gdopt("shad", "on");
1361 gMC->Gsatt("*", "fill", 7);
1362 gMC->SetClipBox(".");
1363 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
1364 gMC->DefaultRange();
1365 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
1366 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
1367
1368 //gMC->Gdman(17, 5, "MAN");
1369 gMC->Gdopt("hide", "off");
b1952773 1370
bff3a244 1371 AliDebug(1,"Outside Draw Modules");
c4561145 1372}
1373
1374//_____________________________________________________________________________
1375void AliPMDv1::CreateMaterials()
1376{
c4561145 1377 // Create materials for the PMD
1378 //
1379 // ORIGIN : Y. P. VIYOGI
1380 //
36031625 1381 // cout << " Inside create materials " << endl;
f017d70a 1382
c4561145 1383 Int_t *idtmed = fIdtmed->GetArray()-599;
1384 Int_t isxfld = gAlice->Field()->Integ();
1385 Float_t sxmgmx = gAlice->Field()->Max();
1386
1387 // --- Define the various materials for GEANT ---
f017d70a 1388
c4561145 1389 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
f017d70a 1390
1391 // Argon
1392
1393 Float_t dAr = 0.001782; // --- Ar density in g/cm3 ---
1394 Float_t x0Ar = 19.55 / dAr;
1395 AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4);
1396
1397 // --- CO2 ---
1398
1399 Float_t aCO2[2] = { 12.,16. };
1400 Float_t zCO2[2] = { 6.,8. };
1401 Float_t wCO2[2] = { 1.,2. };
1402 Float_t dCO2 = 0.001977;
1403 AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2);
1404
c4561145 1405 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
f017d70a 1406
1407 // ArCO2
1408
1409 Float_t aArCO2[3] = {39.948,12.0107,15.9994};
1410 Float_t zArCO2[3] = {18.,6.,8.};
1411 Float_t wArCO2[3] = {0.7,0.08,0.22};
1412 Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3;
1413 AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2);
1414
c4561145 1415 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
f017d70a 1416
1417 // G10
c4561145 1418
f017d70a 1419 Float_t aG10[4]={1.,12.011,15.9994,28.086};
1420 Float_t zG10[4]={1.,6.,8.,14.};
d49fe99a 1421 Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714};
f017d70a 1422 AliMixture(8,"G10",aG10,zG10,1.7,4,wG10);
c4561145 1423
f017d70a 1424 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
1425
1426 // Steel
1427 Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 };
1428 Float_t zSteel[4] = { 26.,24.,28.,14. };
1429 Float_t wSteel[4] = { .715,.18,.1,.005 };
1430 Float_t dSteel = 7.88;
1431 AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel);
1432
1433 //Air
1434
1435 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
1436 Float_t zAir[4]={6.,7.,8.,18.};
1437 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
1438 Float_t dAir1 = 1.20479E-10;
1439 Float_t dAir = 1.20479E-3;
1440 AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir);
1441 AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir);
1442
c4561145 1443 // Define tracking media
f017d70a 1444 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
1445 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
1446 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1);
1447 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
1448 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
1449 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
1450 AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
1451 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10);
1452 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1);
c4561145 1453
1454 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
1455 gMC->Gstpar(idtmed[600], "LOSS", 3.);
1456 gMC->Gstpar(idtmed[600], "DRAY", 1.);
1457
1458 gMC->Gstpar(idtmed[603], "LOSS", 3.);
1459 gMC->Gstpar(idtmed[603], "DRAY", 1.);
1460
1461 gMC->Gstpar(idtmed[604], "LOSS", 3.);
1462 gMC->Gstpar(idtmed[604], "DRAY", 1.);
1463
1464 gMC->Gstpar(idtmed[605], "LOSS", 3.);
1465 gMC->Gstpar(idtmed[605], "DRAY", 1.);
1466
c4561145 1467 gMC->Gstpar(idtmed[607], "LOSS", 3.);
1468 gMC->Gstpar(idtmed[607], "DRAY", 1.);
1469
1470 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
1471 // --- without affecting the hit patterns ---
1472 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
1473 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
1474 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
1475 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
f017d70a 1476
c4561145 1477 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
1478 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
1479 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
1480 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
f017d70a 1481
c4561145 1482 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
1483 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
1484 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
1485 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
d49fe99a 1486// gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
1487// gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
1488// gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
1489// gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
c4561145 1490 // --- Prevent particles stopping in the gas due to energy cut-off ---
1491 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
1492 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
1493 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
1494 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
1495 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
b1952773 1496
bff3a244 1497 AliDebug(1,"Outside create materials");
b1952773 1498
c4561145 1499}
1500
1501//_____________________________________________________________________________
1502void AliPMDv1::Init()
1503{
1504 //
1505 // Initialises PMD detector after it has been built
1506 //
b1952773 1507
c4561145 1508 //
bff3a244 1509 AliDebug(2,"Inside Init");
1510 AliDebug(2,"PMD simulation package (v1) initialised");
1511 AliDebug(2,"parameters of pmd");
1512 AliDebug(2,Form("%10.2f %10.2f %10.2f %10.2f\n",
1513 fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist));
c4561145 1514 Int_t *idtmed = fIdtmed->GetArray()-599;
1515 fMedSens=idtmed[605-1];
b1952773 1516
c4561145 1517}
1518
1519//_____________________________________________________________________________
1520void AliPMDv1::StepManager()
1521{
1522 //
1523 // Called at each step in the PMD
1524 //
b1952773 1525
c4561145 1526 Int_t copy;
1527 Float_t hits[4], destep;
1528 Float_t center[3] = {0,0,0};
f117e3aa 1529 Int_t vol[10];
1530 // const char *namep;
c4561145 1531
f335f3e7 1532 if(gMC->CurrentMedium() == fMedSens && (destep = gMC->Edep())) {
c4561145 1533
1534 gMC->CurrentVolID(copy);
f117e3aa 1535 // namep=gMC->CurrentVolName();
1536 // printf("Current vol is %s \n",namep);
c4561145 1537 vol[0]=copy;
c4561145 1538
b1952773 1539 gMC->CurrentVolOffID(1,copy);
c4561145 1540 //namep=gMC->CurrentVolOffName(1);
f117e3aa 1541 // printf("Current vol 11 is %s \n",namep);
c4561145 1542 vol[1]=copy;
c4561145 1543
b1952773 1544 gMC->CurrentVolOffID(2,copy);
c4561145 1545 //namep=gMC->CurrentVolOffName(2);
1546 //printf("Current vol 22 is %s \n",namep);
c4561145 1547 vol[2]=copy;
1548
1549 // if(strncmp(namep,"EHC1",4))vol[2]=1;
1550
1551 gMC->CurrentVolOffID(3,copy);
f117e3aa 1552 // namep=gMC->CurrentVolOffName(3);
c4561145 1553 //printf("Current vol 33 is %s \n",namep);
c4561145 1554 vol[3]=copy;
c4561145 1555
b1952773 1556 gMC->CurrentVolOffID(4,copy);
f117e3aa 1557 // namep=gMC->CurrentVolOffName(4);
1558 // printf("Current vol 44 is %s \n",namep);
c4561145 1559 vol[4]=copy;
c4561145 1560
b1952773 1561 gMC->CurrentVolOffID(5,copy);
f117e3aa 1562 // namep=gMC->CurrentVolOffName(5);
1563 // printf("Current vol 55 is %s \n",namep);
b1952773 1564 vol[5]=copy;
1565
1566 gMC->CurrentVolOffID(6,copy);
f117e3aa 1567 // namep=gMC->CurrentVolOffName(6);
1568 // printf("Current vol 66 is %s \n",namep);
b1952773 1569 vol[6]=copy;
1570
1571 gMC->CurrentVolOffID(7,copy);
f117e3aa 1572 // namep=gMC->CurrentVolOffName(7);
1573 // printf("Current vol 77 is %s \n",namep);
b1952773 1574 vol[7]=copy;
1575
f117e3aa 1576 gMC->CurrentVolOffID(8,copy);
1577 // namep=gMC->CurrentVolOffName(8);
1578 // printf("Current vol 88 is %s \n",namep);
1579 vol[8]=copy;
b1952773 1580
f117e3aa 1581
1582 gMC->CurrentVolOffID(9,copy);
1583 // namep=gMC->CurrentVolOffName(9);
1584 // printf("Current vol 99 is %s \n",namep);
1585 vol[9]=copy;
1586
1587
1588 // printf("volume number %4d %4d %4d %4d %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],vol[6],vol[7],vol[8],vol[9],destep*1000000);
b1952773 1589
c4561145 1590 gMC->Gdtom(center,hits,1);
1591 hits[3] = destep*1e9; //Number in eV
5d12ce38 1592 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
b1952773 1593
c4561145 1594 }
1595}
1596
1597
1598//------------------------------------------------------------------------
1599// Get parameters
1600
1601void AliPMDv1::GetParameters()
1602{
36031625 1603 // This gives all the parameters of the detector
3cdb4e97 1604 // such as Length of Supermodules, type A, type B,
1605 // thickness of the Supermodule
b1952773 1606 //
36031625 1607
f117e3aa 1608 fSMLengthax = 32.7434;
1609 //The total length in X is due to the following components
1610 // Factor 3 is because of 3 module length in X for this type
1611 // fgkNcolUM1*fgkCellRadius (48 x 0.25): Total span of each module in X
1612 // fgkCellRadius/2. : There is offset of 1/2 cell
1613 // 0.05+0.05 : Insulation gaps etc
1614 // fgkSSBoundary (0.3) : Boundary frame
1615 // double XA = 3.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.075);
1616
1617 fSMLengthbx = 42.5886;
1618 //The total length in X is due to the following components
1619 // Factor 2 is because of 2 module length in X for this type
1620 // fgkNcolUM2*fgkCellRadius (96 x 0.25): Total span of each module in X
1621 // fgkCellRadius/2. : There is offset of 1/2 cell
1622 // 0.05+0.05 : Insulation gaps etc
1623 // fgkSSBoundary (0.3) : Boundary frame
1624 //double XB = 2.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.075;
1625
1626
1627
1628 fSMLengthay = 49.1;
1629 //The total length in Y is due to the following components
1630 // Factor 2 is because of 2 module length in Y for this type
1631 // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1 (0.25/sqrt3/2 * 96): Total span of each module in Y
1632 // of strips
1633 // 0.05+0.05 : Insulation gaps etc
1634 // fgkSSBoundary (0.3) : Boundary frame
1635 // double YA = 2.0*(fgkNrowUM1*fgkCellRadius+fgkCellRadius/2.+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.05;
1636
1637 fSMLengthby = 37.675;
1638 //The total length in Y is due to the following components
1639 // Factor 3 is because of 3 module length in Y for this type
1640 // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2 (0.25/sqrt3/2 * 48): Total span of each module in Y
1641 // of strips
1642 // 0.05+0.05 : Insulation gaps etc
1643 // fgkSSBoundary (0.3) : Boundary frame
1644 //double YB = 3.0*((fgkNrowUM2*fgkCellRadius + fgkCellRadius/2.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.05);
1645
1646
1647 //Thickness of a pre/veto plane
1648 fDthick = fgkThSS/2. +0.15;
1649
1650 //Thickness of the PMD ; 2.4 added for FEE boards
1651 fSMthick = 2.0*(fgkThSS/2. +0.15)
1652 +fgkThSteel/2.+fgkThLead/2.0 + 2.4;
1653
1654
36031625 1655
b1952773 1656}
f117e3aa 1657