Transition to NewIO
[u/mrichter/AliRoot.git] / PMD / AliPMDv3.cxx
CommitLineData
9e1a0ddb 1/***************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15/*
16$Log$
17Revision 1.2 2001/05/14 13:47:34 morsch
18Obsolete versions removed.
19
20Revision 1.1 2001/04/06 14:09:29 morsch
21Version 3 of the PMD. (Tapan K. Nayak)
22
23Revision March 2001 new geometry for relocated PMD : Viyogi
24
25Revision 1.8 2000/06/09 10:31:36 hristov
26sqrt changed to TMath::Sqrt
27
28Revision 1.7 1999/11/03 18:01:40 fca
29Remove non orthogonal unused matrix
30
31Revision 1.6 1999/09/29 09:24:28 fca
32Introduction of the Copyright and cvs Log
33
34*/
35//
36///////////////////////////////////////////////////////////////////////////////
37// //
38// Photon Multiplicity Detector Version 1 //
39// //
40//Begin_Html
41/*
42<img src="picts/AliPMDv3Class.gif">
43*/
44//End_Html
45// //
46///////////////////////////////////////////////////////////////////////////////
47////
48
49#include "AliPMDv3.h"
50#include "AliRun.h"
51#include "AliMagF.h"
52#include "AliMC.h"
53#include "AliConst.h"
54#include "iostream.h"
55
56static Int_t kdet, ncell_sm, ncell_hole;
57static Float_t zdist, zdist1;
58static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth;
59static Float_t boundary, th_base, th_air, th_pcb;
60static Float_t th_lead, th_steel;
61
62ClassImp(AliPMDv3)
63
64 //_____________________________________________________________________________
65 AliPMDv3::AliPMDv3()
66{
67 //
68 // Default constructor
69 //
70 fMedSens=0;
71}
72
73//_____________________________________________________________________________
74AliPMDv3::AliPMDv3(const char *name, const char *title)
75 : AliPMD(name,title)
76{
77 //
78 // Standard constructor
79 //
80 fMedSens=0;
81}
82
83//_____________________________________________________________________________
84void AliPMDv3::CreateGeometry()
85{
86 //
87 // Create geometry for Photon Multiplicity Detector Version 3 :
88 // April 2, 2001
89 //
90 //Begin_Html
91 /*
92 <img src="picts/AliPMDv3.gif">
93 */
94 //End_Html
95 //Begin_Html
96 /*
97 <img src="picts/AliPMDv3Tree.gif">
98 */
99 //End_Html
100 GetParameters();
101 CreateSupermodule();
102 CreatePMD();
103}
104
105//_____________________________________________________________________________
106void AliPMDv3::CreateSupermodule()
107{
108 //
109 // Creates the geometry of the cells, places them in supermodule which
110 // is a rhombus object.
111
112 // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
113 // *** HEXAGONAL CELLS WITH 10 MM SQUARE EQUIVALENT
114 // -- Author : S. Chattopadhyay, 02/04/1999.
115
116 // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
117 // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
118 // in radius gives the dimension of half width of each cell wall.
119 // These cells are placed as 72 x 72 array in a
120 // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
121 // to have closed packed structure.
122 //
123 // Each supermodule (ESM1 or ESM2), made of G10 is filled with following components
124 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
125 // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
126 // EAIR --> Air gap between gas hexagonal cells and G10 backing.
127 //
128 // ESM1 is placed in EMM1 along with EMPB (Pb converter) and EMFE (iron support)
129 // EMM1 made of
130 // ESM1 --> Normal supermodule
131 // EMPB --> Pb converter
132 // EMFE --> Fe backing
133 //
134 // ESM2 is placed in EMM2 along with EMPB (Pb converter) and EMFE (iron support)
135 // EMM2 made of
136 // ESM2 --> Special supermodule containing the cut for the hole
137 // EMPB --> Pb converter
138 // EMFE --> Fe backing
139
140 //
141 // EPMD
142 // |
143 // |
144 // -------------------------------------------------------------------
145 // | | | |
146 // EHOL EMM1 EMM2 EALM
147 // | |
148 // ---------------------- ------------------------
149 // | | | | | | | |
150 // ESM1 EMPB EMFE ESM1 ESM2 EMPB EMFE ESM2
151 // | |
152 // ------------ -------------
153 // | | | | | |
154 // EAIR EHC1 EAIR EAIR EHC2 EAIR
155 // | |
156 // ECCU ECCU
157 // | |
158 // ECAR ECAR
159
160
161 Int_t i, j;
162 Float_t xb, yb, zb;
163 Int_t number;
164 Int_t ihrotm,irotdm;
165 const Float_t root3_2 = TMath::Sqrt(3.) /2.;
166 Int_t *idtmed = fIdtmed->GetArray()-599;
167
168 AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
169 AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
170
171 zdist = TMath::Abs(zdist1);
172
173
174 //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
175 // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
176 //(1mm tolerance on both side and 5mm thick G10 wall)
177 //
178
179 // **** CELL SIZE 20mm^2 EQUIVALENT
180
181 // Inner hexagon filled with gas (Ar+CO2)
182
183 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
184
185 hexd2[4]= - cell_depth/2.;
186 hexd2[7]= cell_depth/2.;
187 hexd2[6]= cell_radius - cell_wall;
188 hexd2[9]= cell_radius - cell_wall;
189
190 gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10);
191 gMC->Gsatt("ECAR", "SEEN", 0);
192
193 // Outer hexagon made of Copper
194
195 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
196 //total wall thickness=0.2*2
197
198 hexd1[4]= - cell_depth/2.;
199 hexd1[7]= cell_depth/2.;
200 hexd1[6]= cell_radius;
201 hexd1[9]= cell_radius;
202
203 gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
204 gMC->Gsatt("ECCU", "SEEN", 1);
205
206
207// Rhombus shaped supermodules (defined by PARA)
208
209// volume for SUPERMODULE
210
211 Float_t dpara_sm[6] = {12.5,12.5,0.8,30.,0.,0.};
212 dpara_sm[0]=(ncell_sm+0.25)*hexd1[6] ;
213 dpara_sm[1] = dpara_sm[0] *root3_2;
214 dpara_sm[2] = sm_thick/2.;
215
216// G10 inner part of supermodule, these will be 9 in all, one being special
217
218 Float_t dpara_g10[6] = {12.5,12.5,8.,30.,0.,0.};
219 dpara_g10[0]= dpara_sm[0];
220 dpara_g10[1]= dpara_sm[1];
221 dpara_g10[2]= dpara_sm[2];
222
223//
224 gMC->Gsvolu("ESM1","PARA", idtmed[607], dpara_g10, 6);
225 gMC->Gsatt("ESM1", "SEEN", 0);
226 //
227 gMC->Gsvolu("ESM2","PARA", idtmed[607], dpara_g10, 6);
228 gMC->Gsatt("ESM2", "SEEN", 0);
229
230 // Air residing between the PCB and the base
231
232 Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.};
233 dpara_air[0]= dpara_sm[0];
234 dpara_air[1]= dpara_sm[1];
235 dpara_air[2]= th_air/2.;
236
237 gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6);
238 gMC->Gsatt("EAIR", "SEEN", 0);
239
240 // volume for honeycomb chamber (EHC1 and EHC2)
241
242 Float_t dpara[6] = {12.5,12.5,0.4,30.,0.,0.};
243 dpara[0] = dpara_sm[0];
244 dpara[1] = dpara_sm[1];
245 dpara[2] = cell_depth/2.;
246
247 gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara, 6);
248 gMC->Gsatt("EHC1", "SEEN", 1);
249
250 gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara, 6);
251 gMC->Gsatt("EHC2", "SEEN", 1);
252
253 // --- place inner hex inside outer hex
254
255 gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10);
256
257 // Place outer hex ECCU cells inside EHC1 (72 X 72)
258
259 Int_t xrow=1;
260
261 yb = -dpara[1] + (1./root3_2)*hexd1[6];
262 zb = 0.;
263
264 for (j = 1; j <= ncell_sm; ++j) {
265 xb =-(dpara[0] + dpara[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
266 if(xrow >= 2){
267 xb = xb+(xrow-1)*hexd1[6];
268 }
269 for (i = 1; i <= ncell_sm; ++i) {
270 number = i+(j-1)*ncell_sm;
271 gMC->Gsposp("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
272 xb += (hexd1[6]*2.);
273 }
274 xrow = xrow+1;
275 yb += (hexd1[6]*TMath::Sqrt(3.));
276 }
277
278
279 // Place outer hex ECCU inside EHC2
280 // skip cells which go into the hole in top left corner.
281
282 xrow=1;
283 yb = -dpara[1] + (1./root3_2)*hexd1[6];
284 zb = 0.;
285 for (j = 1; j <= ncell_sm; ++j) {
286 xb =-(dpara[0] + dpara[1]*0.577) + 2*hexd1[6];
287 if(xrow >= 2){
288 xb = xb+(xrow-1)*hexd1[6];
289 }
290 for (i = 1; i <= ncell_sm; ++i) {
291 number = i+(j-1)*ncell_sm;
292 if(i > ncell_hole || j <= (ncell_sm - ncell_hole))
293 {
294 gMC->Gsposp("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY", hexd1,10);
295 }
296 xb += (hexd1[6]*2.);
297 }
298 xrow = xrow+1;
299 yb += (hexd1[6]*TMath::Sqrt(3.));
300 }
301
302 // Place EHC1 and EAIR into ESM1; EHC2 and EAIR into ESM2
303
304 Float_t z_air1,z_air2,z_gas;
305
306 z_air1= -dpara_g10[2] + th_base + dpara_air[2];
307 gMC->Gspos("EAIR", 1, "ESM1", 0., 0., z_air1, 0, "ONLY");
308 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara[2];
309 gMC->Gspos("EHC1", 1, "ESM1", 0., 0., z_gas, 0, "ONLY");
310 z_air2=z_gas+dpara[2]+ th_pcb + dpara_air[2];
311 gMC->Gspos("EAIR", 2, "ESM1", 0., 0., z_air2, 0, "ONLY");
312
313 z_air1= -dpara_g10[2] + th_base + dpara_air[2];
314 gMC->Gspos("EAIR", 1, "ESM2", 0., 0., z_air1, 0, "ONLY");
315 z_gas=z_air1+dpara_air[2]+ th_pcb + dpara[2];
316 gMC->Gspos("EHC2", 1, "ESM2", 0., 0., z_gas, 0, "ONLY");
317 z_air2=z_gas+dpara[2]+ th_pcb + dpara_air[2];
318 gMC->Gspos("EAIR", 2, "ESM2", 0., 0., z_air2, 0, "ONLY");
319
320}
321
322//_____________________________________________________________________________
323
324void AliPMDv3::CreatePMD()
325{
326 //
327 // Create final detector from supermodules
328 //
329 // -- Author : Y.P. VIYOGI, 07/05/1996.
330 // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
331 // -- Modified: For New Geometry YPV, March 2001.
332
333
334 // Gaspmd, the dimension of TUBE mother volume of PMD,
335
336 Float_t gaspmd[3] = { 0.,150.,10.};
337
338 const Float_t root3_2 = TMath::Sqrt(3.)/2.;
339 const Float_t pi = 3.14159;
340 Int_t i,j;
341
342 Float_t xp, yp, zp;
343
344 Int_t num_mod;
345 Int_t jhrot12,jhrot13, irotdm;
346
347 Int_t *idtmed = fIdtmed->GetArray()-599;
348
349 // VOLUMES Names : begining with D for all PMD volumes,
350 // The names of SIZE variables begin with S and have more meaningful
351 // characters as shown below.
352
353 // VOLUME SIZE MEDIUM : REMARKS
354 // ------ ----- ------ : ---------------------------
355
356 // EPMD GASPMD AIR : INSIDE PMD and its SIZE
357
358 // *** Define the EPMD Volume and fill with air ***
359
360 gMC->Gsvolu("EPMD", "TUBE", idtmed[698], gaspmd, 3);
361 gMC->Gsatt("EPMD", "SEEN", 0);
362
363 AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
364
365 AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
366 AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
367
368 // dpara_emm1 array contains parameters of the imaginary volume EMM1,
369 // this is just a little more than the side of a supermodule.
370
371 Float_t dm_thick = 2. * sm_thick + th_lead + th_steel;
372
373 Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.};
374 dpara_emm1[0] = sm_length/2.;
375 dpara_emm1[1] = dpara_emm1[0] *root3_2;
376 dpara_emm1[2] = dm_thick/2.;
377
378 // EMM1 : normal volume as in old cases
379 gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6);
380 gMC->Gsatt("EMM1", "SEEN", 1);
381
382 // EMM2 : special volume containing special supermodule
383 gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm1, 6);
384 gMC->Gsatt("EMM2", "SEEN", 1);
385
386 //
387 // --- DEFINE MODules, iron, and lead voLUMES
388
389 //place ESM1 into EMM1 and ESM2 into EMM2 along with EMPB and EMFE
390
391 Float_t dx = sm_length;
392 Float_t dy = dx * root3_2;
393
394 Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2.,
395 -dx, 0., dx,
396 -3.*dx/2., -dx/2., dx/2.};
397
398 Float_t ysup[9] = {dy, dy, dy,
399 0., 0., 0.,
400 -dy, -dy, -dy};
401
402 //
403
404 // volume for SUPERMODULE
405
406 // Pb Convertor
407 Float_t dpara_pb[6] = {12.5,12.5,8.,30.,0.,0.};
408 dpara_pb[0] = sm_length/2.;
409 dpara_pb[1] = dpara_pb[0] * root3_2;
410 dpara_pb[2] = th_lead/2.;
411
412 gMC->Gsvolu("EMPB","PARA", idtmed[600], dpara_pb, 6);
413 gMC->Gsatt ("EMPB", "SEEN", 0);
414
415 // Fe Support
416 Float_t dpara_fe[6] = {12.5,12.5,8.,30.,0.,0.};
417 dpara_fe[0] = dpara_pb[0];
418 dpara_fe[1] = dpara_pb[1];
419 dpara_fe[2] = th_steel/2.;
420
421 gMC->Gsvolu("EMFE","PARA", idtmed[618], dpara_fe, 6);
422 gMC->Gsatt ("EMFE", "SEEN", 0);
423
424 // position supermodule ESM1 inside EMM1
425
426 Float_t z_ps,z_pb,z_fe,z_cv;
427
428 z_ps = - dpara_emm1[2] + sm_thick/2.;
429 gMC->Gspos("ESM1", 2, "EMM1", 0., 0., z_ps, irotdm, "ONLY");
430 z_pb=z_ps+sm_thick/2.+dpara_pb[2];
431 gMC->Gspos("EMPB", 1, "EMM1", 0., 0., z_pb, 0, "ONLY");
432 z_fe=z_pb+dpara_pb[2]+dpara_fe[2];
433 gMC->Gspos("EMFE", 1, "EMM1", 0., 0., z_fe, 0, "ONLY");
434 z_cv=z_fe+dpara_fe[2]+sm_thick/2.;
435 gMC->Gspos("ESM1", 1, "EMM1", 0., 0., z_cv, 0, "ONLY");
436
437 // position supermodule ESM2 inside EMM2
438
439 z_ps = - dpara_emm1[2] + sm_thick/2.;
440 gMC->Gspos("ESM2", 2, "EMM2", 0., 0., z_ps, irotdm, "ONLY");
441 z_pb = z_ps + sm_thick/2.+dpara_pb[2];
442 gMC->Gspos("EMPB", 1, "EMM2", 0., 0., z_pb, 0, "ONLY");
443 z_fe = z_pb + dpara_pb[2]+dpara_fe[2];
444 gMC->Gspos("EMFE", 1, "EMM2", 0., 0., z_fe, 0, "ONLY");
445 z_cv = z_fe + dpara_fe[2]+sm_thick/2.;
446 gMC->Gspos("ESM2", 1, "EMM2", 0., 0., z_cv, 0, "ONLY");
447 //
448
449 // EHOL is a tube structure made of air
450
451 Float_t d_hole[3];
452 d_hole[0] = 0.;
453 d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary;
454 d_hole[2] = dm_thick/2.;
455
456 gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
457 gMC->Gsatt("EHOL", "SEEN", 1);
458
459 //Al-rod as boundary of the supermodules
460
461 Float_t Al_rod[3] ;
462 Al_rod[0] = sm_length * 3/2.;
463 Al_rod[1] = boundary;
464 Al_rod[2] = dm_thick/2.;
465
466 gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3);
467 gMC->Gsatt ("EALM", "SEEN", 1);
468 Float_t xalm[3];
469 xalm[0]=Al_rod[0];
470 xalm[1]=-xalm[0]/2.;
471 xalm[2]=xalm[1];
472
473 Float_t yalm[3];
474 yalm[0]=0.;
475 yalm[1]=xalm[0]*root3_2;
476 yalm[2]=-yalm[1];
477
478 // delx = full side of the supermodule
479 Float_t delx=sm_length * 3.;
480 Float_t x1= delx*root3_2 /2.;
481 Float_t x4=delx/4.;
482
483 // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
484
485 Float_t xoff = boundary * TMath::Tan(pi/6.);
486 Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2};
487 Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.};
488 Float_t xpos[9], ypos[9];
489 Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.};
490 Int_t irotate[3] = {0, jhrot12, jhrot13};
491
492 for (j=0; j<3; ++j)
493 {
494 gMC->Gsposp("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY", Al_rod, 3);
495 for (i=0; i<9; ++i)
496 {
497 xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]);
498 ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]);
499
500 if(fDebug) printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]);
501
502 num_mod = i + 1 + j*9;
503
504 printf("\n%s: Num_mod %d\n",ClassName(),num_mod);
505
506 if(i==0){
507 gMC->Gsposp("EMM2", num_mod, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
508 }
509 else {
510 gMC->Gsposp("EMM1", num_mod, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY", dpara_emm1, 6);
511 }
512 }
513 }
514
515
516 // place EHOL in the centre of EPMD
517 gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
518
519 // --- Place the EPMD in ALICE
520 xp = 0.;
521 yp = 0.;
522 zp = zdist1;
523
524 gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
525
526}
527
528
529//_____________________________________________________________________________
530void AliPMDv3::DrawModule()
531{
532 //
533 // Draw a shaded view of the Photon Multiplicity Detector
534 //
535
536 gMC->Gsatt("*", "seen", -1);
537 gMC->Gsatt("alic", "seen", 0);
538 //
539 // Set the visibility of the components
540 //
541 gMC->Gsatt("ECAR","seen",0);
542 gMC->Gsatt("ECCU","seen",1);
543 gMC->Gsatt("EHC1","seen",1);
544 gMC->Gsatt("EHC1","seen",1);
545 gMC->Gsatt("EHC2","seen",1);
546 gMC->Gsatt("EMM1","seen",1);
547 gMC->Gsatt("EHOL","seen",1);
548 gMC->Gsatt("EPMD","seen",0);
549 //
550 gMC->Gdopt("hide", "on");
551 gMC->Gdopt("shad", "on");
552 gMC->Gsatt("*", "fill", 7);
553 gMC->SetClipBox(".");
554 gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000);
555 gMC->DefaultRange();
556 gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02);
557 gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1");
558
559 //gMC->Gdman(17, 5, "MAN");
560 gMC->Gdopt("hide", "off");
561}
562
563//_____________________________________________________________________________
564void AliPMDv3::CreateMaterials()
565{
566 //
567 // Create materials for the PMD
568 //
569 // ORIGIN : Y. P. VIYOGI
570 //
571
572 // --- The Argon- CO2 mixture ---
573 Float_t ag[2] = { 39.95 };
574 Float_t zg[2] = { 18. };
575 Float_t wg[2] = { .8,.2 };
576 Float_t dar = .001782; // --- Ar density in g/cm3 ---
577 // --- CO2 ---
578 Float_t ac[2] = { 12.,16. };
579 Float_t zc[2] = { 6.,8. };
580 Float_t wc[2] = { 1.,2. };
581 Float_t dc = .001977;
582 Float_t dco = .002; // --- CO2 density in g/cm3 ---
583
584 Float_t absl, radl, a, d, z;
585 Float_t dg;
586 Float_t x0ar;
587 //Float_t x0xe=2.4;
588 //Float_t dxe=0.005858;
589 Float_t buf[1];
590 Int_t nbuf;
591 Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 };
592 Float_t zsteel[4] = { 26.,24.,28.,14. };
593 Float_t wsteel[4] = { .715,.18,.1,.005 };
594
595 Int_t *idtmed = fIdtmed->GetArray()-599;
596 Int_t isxfld = gAlice->Field()->Integ();
597 Float_t sxmgmx = gAlice->Field()->Max();
598
599 // --- Define the various materials for GEANT ---
600 AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
601 x0ar = 19.55 / dar;
602 AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4);
603 AliMixture(3, "CO2 $", ac, zc, dc, -2, wc);
604 AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
605 AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
606 AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3);
607 AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.);
608 AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.);
609 AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7);
610 AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
611 AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9);
612 AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.);
613 AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
614 // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4);
615
616 AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.);
617 AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.);
618 AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16);
619 AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.);
620
621 // define gas-mixtures
622
623 char namate[21];
624 gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf);
625 ag[1] = a;
626 zg[1] = z;
627 dg = (dar * 4 + dco) / 5;
628 AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg);
629
630 // Define tracking media
631 AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
632 AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
633 AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
634 AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
635 AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
636 AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
637 AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
638 AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
639 AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10);
640 AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1);
641 AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
642 AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
643 AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
644 AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
645 // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1);
646
647 // --- Generate explicitly delta rays in the iron, aluminium and lead ---
648 gMC->Gstpar(idtmed[600], "LOSS", 3.);
649 gMC->Gstpar(idtmed[600], "DRAY", 1.);
650
651 gMC->Gstpar(idtmed[603], "LOSS", 3.);
652 gMC->Gstpar(idtmed[603], "DRAY", 1.);
653
654 gMC->Gstpar(idtmed[604], "LOSS", 3.);
655 gMC->Gstpar(idtmed[604], "DRAY", 1.);
656
657 gMC->Gstpar(idtmed[605], "LOSS", 3.);
658 gMC->Gstpar(idtmed[605], "DRAY", 1.);
659
660 gMC->Gstpar(idtmed[606], "LOSS", 3.);
661 gMC->Gstpar(idtmed[606], "DRAY", 1.);
662
663 gMC->Gstpar(idtmed[607], "LOSS", 3.);
664 gMC->Gstpar(idtmed[607], "DRAY", 1.);
665
666 // --- Energy cut-offs in the Pb and Al to gain time in tracking ---
667 // --- without affecting the hit patterns ---
668 gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4);
669 gMC->Gstpar(idtmed[600], "CUTELE", 1e-4);
670 gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4);
671 gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4);
672 gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4);
673 gMC->Gstpar(idtmed[605], "CUTELE", 1e-4);
674 gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4);
675 gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4);
676 gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4);
677 gMC->Gstpar(idtmed[606], "CUTELE", 1e-4);
678 gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4);
679 gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4);
680 gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4);
681 gMC->Gstpar(idtmed[603], "CUTELE", 1e-4);
682 gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4);
683 gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4);
684 gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4);
685 gMC->Gstpar(idtmed[609], "CUTELE", 1e-4);
686 gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4);
687 gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4);
688
689 // --- Prevent particles stopping in the gas due to energy cut-off ---
690 gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5);
691 gMC->Gstpar(idtmed[604], "CUTELE", 1e-5);
692 gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5);
693 gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5);
694 gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5);
695}
696
697//_____________________________________________________________________________
698void AliPMDv3::Init()
699{
700 //
701 // Initialises PMD detector after it has been built
702 //
703 Int_t i;
704 kdet=1;
705 //
706 if(fDebug) {
707 printf("\n%s: ",ClassName());
708 for(i=0;i<35;i++) printf("*");
709 printf(" PMD_INIT ");
710 for(i=0;i<35;i++) printf("*");
711 printf("\n");
712 printf("%s: PMD simulation package (v3) initialised\n",
713 ClassName());
714 printf("%s: parameters of pmd\n",ClassName());
715 printf("%s: %10.2f %10.2f %10.2f %10.2f\n",ClassName(),
716 cell_radius,cell_wall,cell_depth,zdist1 );
717 printf("%s: ",ClassName());
718 for(i=0;i<80;i++) printf("*");
719 printf("\n");
720 }
721
722 Int_t *idtmed = fIdtmed->GetArray()-599;
723 fMedSens=idtmed[605-1];
724}
725
726//_____________________________________________________________________________
727void AliPMDv3::StepManager()
728{
729 //
730 // Called at each step in the PMD
731 //
732 Int_t copy;
733 Float_t hits[4], destep;
734 Float_t center[3] = {0,0,0};
735 Int_t vol[5];
736 //char *namep;
737
738 if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) {
739
740 gMC->CurrentVolID(copy);
741
742 //namep=gMC->CurrentVolName();
743 //printf("Current vol is %s \n",namep);
744
745 vol[0]=copy;
746 gMC->CurrentVolOffID(1,copy);
747
748 //namep=gMC->CurrentVolOffName(1);
749 //printf("Current vol 11 is %s \n",namep);
750
751 vol[1]=copy;
752 gMC->CurrentVolOffID(2,copy);
753
754 //namep=gMC->CurrentVolOffName(2);
755 //printf("Current vol 22 is %s \n",namep);
756
757 vol[2]=copy;
758
759 // if(strncmp(namep,"EHC1",4))vol[2]=1;
760
761 gMC->CurrentVolOffID(3,copy);
762
763 //namep=gMC->CurrentVolOffName(3);
764 //printf("Current vol 33 is %s \n",namep);
765
766 vol[3]=copy;
767 gMC->CurrentVolOffID(4,copy);
768
769 //namep=gMC->CurrentVolOffName(4);
770 //printf("Current vol 44 is %s \n",namep);
771
772 vol[4]=copy;
773 //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000);
774
775 gMC->Gdtom(center,hits,1);
776 hits[3] = destep*1e9; //Number in eV
777 AddHit(gAlice->CurrentTrack(), vol, hits);
778 }
779}
780
781
782//------------------------------------------------------------------------
783// Get parameters
784
785void AliPMDv3::GetParameters()
786{
787 Int_t ncell_um, num_um;
788 ncell_um=24;
789 num_um=3;
790 ncell_hole=12;
791 cell_radius=0.25;
792 cell_wall=0.02;
793 cell_depth=0.25 * 2.;
794 //
795 boundary=0.7;
796 ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule
797 sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.;
798 //
799 th_base=0.3;
800 th_air=0.1;
801 th_pcb=0.16;
802 //
803 sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb;
804 //
805 th_lead=1.5;
806 th_steel=0.5;
807 //
808 zdist1 = -370.;
809}
810
811
812
813
814
815
816
817
818
819
820
821
822