coding conventions
[u/mrichter/AliRoot.git] / PWG0 / dNdEta / AliMultiplicityCorrection.h
CommitLineData
3602328d 1/* $Id$ */
2
0a173978 3#ifndef ALIMULTIPLICITYCORRECTION_H
4#define ALIMULTIPLICITYCORRECTION_H
5
3602328d 6#include "TNamed.h"
0a173978 7
8//
9// class that contains the correction matrix and the functions for
10// correction the multiplicity spectrum
6d81c2de 11// implements a several unfolding methods: e.g. chi2 minimization and bayesian unfolding
0a173978 12//
13
14class TH1;
15class TH2;
16class TH1F;
17class TH2F;
18class TH3F;
3602328d 19class TF1;
20class TCollection;
0a173978 21
6d81c2de 22// defined here, because it does not seem possible to predeclare these (or i do not know how)
23// -->
24// $ROOTSYS/include/TVectorDfwd.h:21: conflicting types for `typedef struct TVectorT<Double_t> TVectorD'
25// PWG0/dNdEta/AliMultiplicityCorrection.h:21: previous declaration as `struct TVectorD'
26
447c325d 27#include <TMatrixD.h>
28#include <TVectorD.h>
cfc19dd5 29
0a173978 30class AliMultiplicityCorrection : public TNamed {
31 public:
cfc19dd5 32 enum EventType { kTrVtx = 0, kMB, kINEL };
0b4bfd98 33 enum RegularizationType { kNone = 0, kPol0, kPol1, kLog, kEntropy, kCurvature };
6d81c2de 34 enum MethodType { kChi2Minimization = 0, kBayesian = 1 };
0b4bfd98 35 enum { kESDHists = 4, kMCHists = 5, kCorrHists = 8, kQualityRegions = 3 };
cfc19dd5 36
0a173978 37 AliMultiplicityCorrection();
38 AliMultiplicityCorrection(const Char_t* name, const Char_t* title);
39 virtual ~AliMultiplicityCorrection();
40
41 virtual Long64_t Merge(TCollection* list);
42
43 void FillMeasured(Float_t vtx, Int_t measured05, Int_t measured10, Int_t measured15, Int_t measured20);
cfc19dd5 44 void FillGenerated(Float_t vtx, Bool_t triggered, Bool_t vertex, Int_t generated05, Int_t generated10, Int_t generated15, Int_t generated20, Int_t generatedAll);
0a173978 45
46 void FillCorrection(Float_t vtx, Int_t generated05, Int_t generated10, Int_t generated15, Int_t generated20, Int_t generatedAll, Int_t measured05, Int_t measured10, Int_t measured15, Int_t measured20);
47
0b4bfd98 48 Bool_t LoadHistograms(const Char_t* dir = 0);
0a173978 49 void SaveHistograms();
50 void DrawHistograms();
447c325d 51 void DrawComparison(const char* name, Int_t inputRange, Bool_t fullPhaseSpace, Bool_t normalizeESD, TH1* mcHist, Bool_t simple = kFALSE);
0a173978 52
6d81c2de 53 Int_t ApplyMinuitFit(Int_t inputRange, Bool_t fullPhaseSpace, EventType eventType, Bool_t check = kFALSE, TH1* initialConditions = 0);
447c325d 54 void SetRegularizationParameters(RegularizationType type, Float_t weight);
6d81c2de 55 void SetBayesianParameters(Float_t smoothing, Int_t nIterations);
0a173978 56
dd701109 57 void ApplyNBDFit(Int_t inputRange, Bool_t fullPhaseSpace);
58
6d81c2de 59 void ApplyBayesianMethod(Int_t inputRange, Bool_t fullPhaseSpace, EventType eventType, Float_t regPar = 1, Int_t nIterations = 100, TH1* initialConditions = 0, Bool_t determineError = kTRUE);
60
61 TH1* StatisticalUncertainty(MethodType methodType, Int_t inputRange, Bool_t fullPhaseSpace, EventType eventType, Bool_t randomizeMeasured, Bool_t randomizeResponse, TH1* compareTo = 0);
0a173978 62
9ca6be09 63 void ApplyGaussianMethod(Int_t inputRange, Bool_t fullPhaseSpace);
64
cfc19dd5 65 void ApplyLaszloMethod(Int_t inputRange, Bool_t fullPhaseSpace, EventType eventType);
66
0a173978 67 TH2F* GetMultiplicityESD(Int_t i) { return fMultiplicityESD[i]; }
cfc19dd5 68 TH2F* GetMultiplicityVtx(Int_t i) { return fMultiplicityVtx[i]; }
69 TH2F* GetMultiplicityMB(Int_t i) { return fMultiplicityMB[i]; }
70 TH2F* GetMultiplicityINEL(Int_t i) { return fMultiplicityINEL[i]; }
71 TH2F* GetMultiplicityMC(Int_t i, EventType eventType);
0a173978 72 TH3F* GetCorrelation(Int_t i) { return fCorrelation[i]; }
dd701109 73 TH1F* GetMultiplicityESDCorrected(Int_t i) { return fMultiplicityESDCorrected[i]; }
0a173978 74
0b4bfd98 75 void SetMultiplicityESD(Int_t i, TH2F* hist) { fMultiplicityESD[i] = hist; }
76 void SetMultiplicityVtx(Int_t i, TH2F* hist) { fMultiplicityVtx[i] = hist; }
77 void SetMultiplicityMB(Int_t i, TH2F* hist) { fMultiplicityMB[i] = hist; }
cfc19dd5 78 void SetMultiplicityINEL(Int_t i, TH2F* hist) { fMultiplicityINEL[i] = hist; }
9ca6be09 79 void SetCorrelation(Int_t i, TH3F* hist) { fCorrelation[i] = hist; }
dd701109 80 void SetMultiplicityESDCorrected(Int_t i, TH1F* hist) { fMultiplicityESDCorrected[i] = hist; }
9ca6be09 81
3602328d 82 void SetGenMeasFromFunc(TF1* inputMC, Int_t id);
447c325d 83 TH2F* CalculateMultiplicityESD(TH1* inputMC, Int_t correlationMap);
3602328d 84
0a173978 85 static void NormalizeToBinWidth(TH1* hist);
86 static void NormalizeToBinWidth(TH2* hist);
87
6d81c2de 88 void GetComparisonResults(Float_t* mc = 0, Int_t* mcLimit = 0, Float_t* residuals = 0, Float_t* ratioAverage = 0) const;
cfc19dd5 89
0b4bfd98 90 TH1* GetEfficiency(Int_t inputRange, EventType eventType);
91
92 static void SetQualityRegions(Bool_t SPDStudy);
6d81c2de 93 Float_t GetQuality(Int_t region) const { return fQuality[region]; }
0b4bfd98 94
95 void FFT(Int_t dir, Int_t m, Double_t *x, Double_t *y);
0a173978 96
0b4bfd98 97 protected:
6d81c2de 98 static const Int_t fgkMaxParams; //! bins in unfolded histogram = number of fit params
99 static const Int_t fgkMaxInput; //! bins in measured histogram
0a173978 100
447c325d 101 static Double_t RegularizationPol0(TVectorD& params);
102 static Double_t RegularizationPol1(TVectorD& params);
103 static Double_t RegularizationTotalCurvature(TVectorD& params);
104 static Double_t RegularizationEntropy(TVectorD& params);
0b4bfd98 105 static Double_t RegularizationLog(TVectorD& params);
9ca6be09 106
0a173978 107 static void MinuitFitFunction(Int_t&, Double_t*, Double_t& chi2, Double_t *params, Int_t);
dd701109 108 static void MinuitNBD(Int_t& unused1, Double_t* unused2, Double_t& chi2, Double_t *params, Int_t unused3);
0a173978 109
447c325d 110 void SetupCurrentHists(Int_t inputRange, Bool_t fullPhaseSpace, EventType eventType, Bool_t createBigBin);
cfc19dd5 111
0b4bfd98 112 Float_t BayesCovarianceDerivate(Float_t matrixM[251][251], TH2* hResponse, Int_t k, Int_t i, Int_t r, Int_t u);
6d81c2de 113 static Int_t UnfoldWithBayesian(TH1* correlation, TH1* aEfficiency, TH1* measured, TH1* initialConditions, TH1* aResult, Float_t regPar, Int_t nIterations);
114 static Int_t UnfoldWithMinuit(TH1* correlation, TH1* aEfficiency, TH1* measured, TH1* initialConditions, TH1* result, Bool_t check);
115
116 TH1* fCurrentESD; //! static variable to be accessed by MINUIT
117 TH1* fCurrentCorrelation; //! static variable to be accessed by MINUIT
118 TH1* fCurrentEfficiency; //! static variable to be accessed by MINUIT
9ca6be09 119
6d81c2de 120 // static variable to be accessed by MINUIT
121 static TMatrixD* fgCorrelationMatrix; //! contains fCurrentCorrelation in matrix form
122 static TMatrixD* fgCorrelationCovarianceMatrix; //! contains the errors of fCurrentESD
123 static TVectorD* fgCurrentESDVector; //! contains fCurrentESD
124 static TVectorD* fgEntropyAPriori; //! a-priori distribution for entropy regularization
cfc19dd5 125
6d81c2de 126 static TF1* fgNBD; //! negative binomial distribution
cfc19dd5 127
6d81c2de 128 static RegularizationType fgRegularizationType; //! regularization that is used during Chi2 method
129 static Float_t fgRegularizationWeight; //! factor for regularization term
dd701109 130
6d81c2de 131 static Float_t fgBayesianSmoothing; //! smoothing parameter (0 = no smoothing)
132 static Int_t fgBayesianIterations; //! number of iterations in Bayesian method
0a173978 133
6d81c2de 134 TH2F* fMultiplicityESD[kESDHists]; // multiplicity histogram: vtx vs multiplicity; array: |eta| < 0.5, 0.9, 1.5, 2 (0..3)
135
136 TH2F* fMultiplicityVtx[kMCHists]; // multiplicity histogram of events that have a reconstructed vertex : vtx vs multiplicity; array: |eta| < 0.5, 0.9, 1.5, 2, inf (0..4)
137 TH2F* fMultiplicityMB[kMCHists]; // multiplicity histogram of triggered events : vtx vs multiplicity; array: |eta| < 0.5, 0.9, 1.5, 2, inf (0..4)
138 TH2F* fMultiplicityINEL[kMCHists]; // multiplicity histogram of all (inelastic) events : vtx vs multiplicity; array: |eta| < 0.5, 0.9, 1.5, 2, inf (0..4)
0a173978 139
cfc19dd5 140 TH3F* fCorrelation[kCorrHists]; // vtx vs. (gene multiplicity (trig+vtx)) vs. (meas multiplicity); array: |eta| < 0.5, 1, 1.5, 2 (0..3 and 4..7), the first corrects to the eta range itself, the second to full phase space
6d81c2de 141
0a173978 142 TH1F* fMultiplicityESDCorrected[kCorrHists]; // corrected histograms
143
6d81c2de 144 Float_t fLastChi2MC; //! last Chi2 between MC and unfolded ESD (calculated in DrawComparison)
145 Int_t fLastChi2MCLimit; //! bin where the last chi2 breached a certain threshold, used to evaluate the multiplicity reach (calc. in DrawComparison)
146 Float_t fLastChi2Residuals; //! last Chi2 of the ESD and the folded unfolded ESD (calculated in DrawComparison)
147 Float_t fRatioAverage; //! last average of |ratio-1| where ratio = unfolded / mc (bin 2..150)
0b4bfd98 148
6d81c2de 149 static Int_t fgQualityRegionsB[kQualityRegions]; //! begin, given in multiplicity units
150 static Int_t fgQualityRegionsE[kQualityRegions]; //! end
151 Float_t fQuality[kQualityRegions]; //! stores the quality of the last comparison (calculated in DrawComparison). Contains 3 values that are averages of (MC - unfolded) / e(MC) in 3 regions, these are defined in fQualityRegionB,E
cfc19dd5 152
0a173978 153 private:
154 AliMultiplicityCorrection(const AliMultiplicityCorrection&);
155 AliMultiplicityCorrection& operator=(const AliMultiplicityCorrection&);
156
6d81c2de 157 ClassDef(AliMultiplicityCorrection, 2);
0a173978 158};
159
160#endif
0f81f352 161