0ab29cfa |
1 | /* $Id$ */ |
2 | |
3 | // |
4 | // script to run the AliMultiplicityESDSelector |
5 | // |
6 | |
7 | #include "../CreateESDChain.C" |
0bd1f8a0 |
8 | #include "../PWG0Helper.C" |
0ab29cfa |
9 | |
03244034 |
10 | void runMultiplicitySelector(Char_t* data, Int_t nRuns=20, Int_t offset=0, Bool_t aMC = kFALSE, Bool_t aDebug = kFALSE, Bool_t aProof = kFALSE, const char* option = "") |
0ab29cfa |
11 | { |
0bd1f8a0 |
12 | if (aProof) |
6d81c2de |
13 | { |
14 | TProof::Mgr("lxb6046")->SetROOTVersion("vHEAD-07Jun2007b_dbg"); |
0b4bfd98 |
15 | connectProof("lxb6046"); |
6d81c2de |
16 | } |
0bd1f8a0 |
17 | |
18 | TString libraries("libEG;libGeom;libESD;libPWG0base"); |
19 | TString packages("PWG0base"); |
10ebe68d |
20 | |
0ab29cfa |
21 | if (aMC != kFALSE) |
0bd1f8a0 |
22 | { |
23 | libraries += ";libVMC;libMinuit;libSTEER;libPWG0dep;libEVGEN;libFASTSIM;libmicrocern;libpdf;libpythia6;libEGPythia6;libAliPythia6"; |
24 | packages += ";PWG0dep"; |
25 | } |
26 | |
27 | if (!prepareQuery(libraries, packages, kTRUE)) |
28 | return; |
0ab29cfa |
29 | |
0ab29cfa |
30 | gROOT->ProcessLine(".L CreateCuts.C"); |
31 | gROOT->ProcessLine(".L drawPlots.C"); |
32 | |
0ab29cfa |
33 | // selection of esd tracks |
34 | AliESDtrackCuts* esdTrackCuts = CreateTrackCuts(); |
35 | if (!esdTrackCuts) |
36 | { |
37 | printf("ERROR: esdTrackCuts could not be created\n"); |
38 | return; |
39 | } |
40 | |
0bd1f8a0 |
41 | TList inputList; |
42 | inputList.Add(esdTrackCuts); |
43 | |
6d81c2de |
44 | // pt study |
45 | if (TString(option).Contains("pt-spectrum-func")) |
46 | { |
47 | //TF1* func = new TF1("func", "0.7 + x", 0, 0.3); |
48 | //TF1* func = new TF1("func", "1.3 - x", 0, 0.3); |
49 | TF1* func = new TF1("func", "1", 0, 0.3); |
50 | new TCanvas; func->Draw(); |
51 | inputList.Add(func->GetHistogram()->Clone("pt-spectrum")); |
52 | } |
53 | |
cfc19dd5 |
54 | TChain* chain = CreateESDChain(data, nRuns, offset, kFALSE, kFALSE); |
0ab29cfa |
55 | |
56 | TString selectorName = ((aMC == kFALSE) ? "AliMultiplicityESDSelector" : "AliMultiplicityMCSelector"); |
57 | AliLog::SetClassDebugLevel(selectorName, AliLog::kInfo); |
58 | |
0bd1f8a0 |
59 | selectorName += ".cxx+"; |
0ab29cfa |
60 | |
61 | if (aDebug != kFALSE) |
62 | selectorName += "g"; |
63 | |
447c325d |
64 | //Int_t result = chain->Process(selectorName, option); |
03244034 |
65 | Int_t result = executeQuery(chain, &inputList, selectorName, option); |
0ab29cfa |
66 | |
67 | if (result != 0) |
68 | { |
69 | printf("ERROR: Executing process failed with %d.\n", result); |
70 | return; |
71 | } |
0a173978 |
72 | } |
0ab29cfa |
73 | |
0b4bfd98 |
74 | void SetTPC() |
0a173978 |
75 | { |
76 | gSystem->Load("libPWG0base"); |
0b4bfd98 |
77 | AliMultiplicityCorrection::SetQualityRegions(kFALSE); |
78 | } |
0a173978 |
79 | |
0b4bfd98 |
80 | void draw(const char* fileName = "multiplicityMC.root", const char* folder = "Multiplicity") |
81 | { |
82 | gSystem->Load("libPWG0base"); |
0a173978 |
83 | |
0b4bfd98 |
84 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection(folder, folder); |
0a173978 |
85 | |
0b4bfd98 |
86 | TFile::Open(fileName); |
87 | mult->LoadHistograms(); |
0a173978 |
88 | mult->DrawHistograms(); |
447c325d |
89 | |
0b4bfd98 |
90 | return; |
91 | |
447c325d |
92 | TH2* hist = (TH2*) gROOT->FindObject("fCorrelation3_zy"); |
93 | canvas = new TCanvas("c1", "c1", 600, 500); |
94 | hist->SetStats(kFALSE); |
95 | hist->Draw("COLZ"); |
96 | hist->SetTitle(";true multiplicity in |#eta| < 2;measured multiplicity in |#eta| < 2"); |
97 | hist->GetYaxis()->SetTitleOffset(1.1); |
98 | gPad->SetRightMargin(0.15); |
99 | gPad->SetLogz(); |
100 | |
101 | canvas->SaveAs("Plot_Correlation.pdf"); |
0ab29cfa |
102 | } |
103 | |
0b4bfd98 |
104 | void fitOther(const char* fileNameMC = "multiplicityMC_3M.root", const char* folder = "Multiplicity", const char* fileNameESD = "multiplicityMC_3M.root", Bool_t chi2 = kTRUE, Int_t histID = 3, Bool_t fullPhaseSpace = kFALSE) |
9ca6be09 |
105 | { |
106 | gSystem->Load("libPWG0base"); |
107 | |
0b4bfd98 |
108 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection(folder, folder); |
9ca6be09 |
109 | |
110 | TFile::Open(fileNameMC); |
0b4bfd98 |
111 | mult->LoadHistograms(); |
9ca6be09 |
112 | |
113 | TFile::Open(fileNameESD); |
cfc19dd5 |
114 | TH2F* hist = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityESD%d", histID)); |
447c325d |
115 | TH2F* hist2 = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityVtx%d", ((fullPhaseSpace) ? 4 : histID))); |
116 | //hist2 = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityINEL%d", histID)); |
9ca6be09 |
117 | |
cfc19dd5 |
118 | mult->SetMultiplicityESD(histID, hist); |
9ca6be09 |
119 | |
447c325d |
120 | // small hack to get around charge conservation for full phase space ;-) |
121 | if (fullPhaseSpace) |
122 | { |
123 | TH1* corr = mult->GetCorrelation(histID + 4); |
dd701109 |
124 | |
447c325d |
125 | for (Int_t i=2; i<=corr->GetNbinsX(); i+=2) |
126 | for (Int_t j=1; j<=corr->GetNbinsY(); ++j) |
127 | { |
128 | corr->SetBinContent(i, j, corr->GetBinContent(i-1, j)); |
129 | corr->SetBinError(i, j, corr->GetBinError(i-1, j)); |
130 | } |
131 | } |
dd701109 |
132 | |
447c325d |
133 | /*mult->SetMultiplicityVtx(histID, hist2); |
134 | mult->ApplyLaszloMethod(histID, kFALSE, AliMultiplicityCorrection::kTrVtx); |
135 | return;*/ |
cfc19dd5 |
136 | |
447c325d |
137 | if (chi2) |
138 | { |
139 | mult->SetRegularizationParameters(AliMultiplicityCorrection::kPol1, 1e4); |
0b4bfd98 |
140 | //mult->SetRegularizationParameters(AliMultiplicityCorrection::kEntropy, 1e3); |
141 | //mult->SetRegularizationParameters(AliMultiplicityCorrection::kLog, 1e5); |
447c325d |
142 | mult->ApplyMinuitFit(histID, fullPhaseSpace, AliMultiplicityCorrection::kTrVtx, kFALSE); //, hist2->ProjectionY("mymchist")); |
143 | mult->DrawComparison("MinuitChi2", histID, fullPhaseSpace, kTRUE, hist2->ProjectionY("mymchist")); |
144 | } |
145 | else |
dd701109 |
146 | { |
6d81c2de |
147 | mult->ApplyBayesianMethod(histID, kFALSE, AliMultiplicityCorrection::kTrVtx, 0.2, 100); |
447c325d |
148 | mult->DrawComparison("Bayesian", histID, kFALSE, kTRUE, hist2->ProjectionY("mymchist2")); |
dd701109 |
149 | } |
150 | |
151 | //mult->SetRegularizationParameters(AliMultiplicityCorrection::kEntropy, 1e7); |
152 | //mult->ApplyMinuitFit(histID, kFALSE); |
153 | //mult->DrawComparison("MinuitChi2", histID, kFALSE, kTRUE, hist2->ProjectionY()); |
154 | |
447c325d |
155 | } |
156 | |
157 | void* fit2Step(const char* fileNameMC = "multiplicityMC_2M.root", const char* fileNameESD = "multiplicityMC_1M_3.root", Int_t histID = 3, Bool_t fullPhaseSpace = kFALSE) |
158 | { |
159 | gSystem->Load("libPWG0base"); |
160 | |
161 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
162 | |
163 | TFile::Open(fileNameMC); |
164 | mult->LoadHistograms("Multiplicity"); |
165 | |
166 | TFile::Open(fileNameESD); |
167 | TH2F* hist = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityESD%d", histID)); |
168 | TH2F* hist2 = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityVtx%d", ((fullPhaseSpace) ? 4 : histID))); |
169 | //hist2 = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityINEL%d", histID)); |
170 | |
171 | mult->SetMultiplicityESD(histID, hist); |
172 | |
173 | // small hack to get around charge conservation for full phase space ;-) |
174 | if (fullPhaseSpace) |
175 | { |
176 | TH1* corr = mult->GetCorrelation(histID + 4); |
177 | |
178 | for (Int_t i=2; i<=corr->GetNbinsX(); i+=2) |
179 | for (Int_t j=1; j<=corr->GetNbinsY(); ++j) |
180 | { |
181 | corr->SetBinContent(i, j, corr->GetBinContent(i-1, j)); |
182 | corr->SetBinError(i, j, corr->GetBinError(i-1, j)); |
183 | } |
184 | } |
185 | |
186 | mult->SetRegularizationParameters(AliMultiplicityCorrection::kPol1, 10000); |
187 | mult->ApplyMinuitFit(histID, fullPhaseSpace, AliMultiplicityCorrection::kTrVtx, kFALSE); |
188 | mult->DrawComparison("MinuitChi2", histID, fullPhaseSpace, kTRUE, hist2->ProjectionY("mymchist")); |
189 | |
190 | TH1* result = (TH1*) mult->GetMultiplicityESDCorrected((fullPhaseSpace) ? 4 : histID))->Clone("firstresult"); |
191 | |
192 | mult->SetRegularizationParameters(AliMultiplicityCorrection::kEntropy, 100000); |
193 | mult->ApplyMinuitFit(histID, fullPhaseSpace, AliMultiplicityCorrection::kTrVtx, kFALSE, result); |
194 | mult->DrawComparison("MinuitChi2_Step2", histID, fullPhaseSpace, kTRUE, hist2->ProjectionY("mymchist")); |
0a173978 |
195 | |
196 | return mult; |
197 | } |
cfc19dd5 |
198 | |
199 | const char* GetRegName(Int_t type) |
200 | { |
201 | switch (type) |
202 | { |
203 | case AliMultiplicityCorrection::kNone: return "None"; break; |
204 | case AliMultiplicityCorrection::kPol0: return "Pol0"; break; |
205 | case AliMultiplicityCorrection::kPol1: return "Pol1"; break; |
206 | case AliMultiplicityCorrection::kCurvature: return "TotalCurvature"; break; |
207 | case AliMultiplicityCorrection::kEntropy: return "Reduced cross-entropy"; break; |
0b4bfd98 |
208 | case AliMultiplicityCorrection::kLog : return "Log"; break; |
dd701109 |
209 | } |
210 | return 0; |
211 | } |
212 | |
213 | const char* GetEventTypeName(Int_t type) |
214 | { |
215 | switch (type) |
216 | { |
217 | case AliMultiplicityCorrection::kTrVtx: return "trigger, vertex"; break; |
218 | case AliMultiplicityCorrection::kMB: return "minimum bias"; break; |
219 | case AliMultiplicityCorrection::kINEL: return "inelastic"; break; |
cfc19dd5 |
220 | } |
221 | return 0; |
222 | } |
223 | |
0b4bfd98 |
224 | /*void EvaluateBayesianMethod(const char* fileNameMC = "multiplicityMC.root", const char* fileNameESD = "multiplicityMC.root", const char* targetDir, Int_t histID = 3) |
cfc19dd5 |
225 | { |
dd701109 |
226 | gSystem->mkdir(targetDir); |
227 | |
228 | gSystem->Load("libPWG0base"); |
229 | |
230 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
231 | TFile::Open(fileNameMC); |
232 | mult->LoadHistograms("Multiplicity"); |
233 | |
234 | AliMultiplicityCorrection* multESD = new AliMultiplicityCorrection("MultiplicityESD", "MultiplicityESD"); |
235 | TFile::Open(fileNameESD); |
236 | multESD->LoadHistograms("Multiplicity"); |
237 | mult->SetMultiplicityESD(histID, multESD->GetMultiplicityESD(histID)); |
238 | |
239 | TCanvas* canvas = new TCanvas("EvaluateBayesianMethod", "EvaluateBayesianMethod", 800, 600); |
240 | TLegend* legend = new TLegend(0.2, 0.7, 0.58, 0.98); |
241 | legend->SetFillColor(0); |
242 | |
243 | Float_t min = 1e10; |
244 | Float_t max = 0; |
245 | |
246 | TGraph* first = 0; |
247 | Int_t count = 0; // just to order the saved images... |
248 | |
249 | for (AliMultiplicityCorrection::EventType type = AliMultiplicityCorrection::kTrVtx; type <= AliMultiplicityCorrection::kINEL; ++type) |
250 | { |
251 | TGraph* fitResultsMC = new TGraph; |
252 | fitResultsMC->SetTitle(";Weight Parameter"); |
253 | TGraph* fitResultsRes = new TGraph; |
254 | fitResultsRes->SetTitle(";Weight Parameter"); |
255 | |
256 | fitResultsMC->SetFillColor(0); |
257 | fitResultsRes->SetFillColor(0); |
258 | fitResultsMC->SetMarkerStyle(20+type); |
259 | fitResultsRes->SetMarkerStyle(24+type); |
260 | fitResultsRes->SetMarkerColor(kRed); |
261 | fitResultsRes->SetLineColor(kRed); |
262 | |
263 | legend->AddEntry(fitResultsMC, Form("%s MC chi2", GetEventTypeName(type))); |
264 | legend->AddEntry(fitResultsRes, Form("%s residual chi2", GetEventTypeName(type))); |
265 | |
447c325d |
266 | for (Float_t weight = 0; weight < 1.01; weight += 0.1) |
dd701109 |
267 | { |
268 | Float_t chi2MC = 0; |
269 | Float_t residuals = 0; |
270 | |
0b4bfd98 |
271 | mult->ApplyBayesianMethod(histID, kFALSE, type, weight, 100, 0, kFALSE); |
dd701109 |
272 | mult->DrawComparison(Form("%s/Bayesian_%02d_%d_%f", targetDir, count++, type, weight), histID, kFALSE, kTRUE, multESD->GetMultiplicityMC(histID, type)->ProjectionY()); |
273 | mult->GetComparisonResults(&chi2MC, 0, &residuals); |
274 | |
275 | fitResultsMC->SetPoint(fitResultsMC->GetN(), weight, chi2MC); |
276 | fitResultsRes->SetPoint(fitResultsRes->GetN(), weight, residuals); |
277 | |
278 | min = TMath::Min(min, TMath::Min(chi2MC, residuals)); |
279 | max = TMath::Max(max, TMath::Max(chi2MC, residuals)); |
280 | } |
281 | |
282 | fitResultsMC->Print(); |
283 | fitResultsRes->Print(); |
284 | |
285 | canvas->cd(); |
286 | fitResultsMC->Draw(Form("%s CP", (first == 0) ? "A" : "SAME")); |
287 | fitResultsRes->Draw("SAME CP"); |
288 | |
289 | if (first == 0) |
290 | first = fitResultsMC; |
291 | } |
292 | |
293 | gPad->SetLogy(); |
294 | printf("min = %f, max = %f\n", min, max); |
295 | if (min <= 0) |
296 | min = 1e-5; |
297 | first->GetYaxis()->SetRangeUser(min * 0.5, max * 1.5); |
298 | |
299 | legend->Draw(); |
300 | |
301 | canvas->SaveAs(Form("%s/%s.gif", targetDir, canvas->GetName())); |
302 | canvas->SaveAs(Form("%s/%s.C", targetDir, canvas->GetName())); |
303 | } |
304 | |
305 | void EvaluateBayesianMethodIterations(const char* fileNameMC = "multiplicityMC.root", const char* fileNameESD = "multiplicityMC.root", const char* targetDir, Int_t histID = 2) |
306 | { |
307 | gSystem->mkdir(targetDir); |
308 | |
309 | gSystem->Load("libPWG0base"); |
310 | |
311 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
312 | TFile::Open(fileNameMC); |
313 | mult->LoadHistograms("Multiplicity"); |
314 | |
315 | AliMultiplicityCorrection* multESD = new AliMultiplicityCorrection("MultiplicityESD", "MultiplicityESD"); |
316 | TFile::Open(fileNameESD); |
317 | multESD->LoadHistograms("Multiplicity"); |
318 | mult->SetMultiplicityESD(histID, multESD->GetMultiplicityESD(histID)); |
319 | |
320 | TCanvas* canvas = new TCanvas("EvaluateBayesianMethodIterations", "EvaluateBayesianMethodIterations", 800, 600); |
321 | TLegend* legend = new TLegend(0.2, 0.7, 0.58, 0.98); |
322 | legend->SetFillColor(0); |
323 | |
324 | Float_t min = 1e10; |
325 | Float_t max = 0; |
326 | |
327 | TGraph* first = 0; |
328 | Int_t count = 0; // just to order the saved images... |
329 | |
330 | for (AliMultiplicityCorrection::EventType type = AliMultiplicityCorrection::kTrVtx; type <= AliMultiplicityCorrection::kINEL; ++type) |
331 | { |
332 | TGraph* fitResultsMC = new TGraph; |
333 | fitResultsMC->SetTitle(";Iterations"); |
334 | TGraph* fitResultsRes = new TGraph; |
335 | fitResultsRes->SetTitle(";Iterations"); |
336 | |
337 | fitResultsMC->SetFillColor(0); |
338 | fitResultsRes->SetFillColor(0); |
339 | fitResultsMC->SetMarkerStyle(20+type); |
340 | fitResultsRes->SetMarkerStyle(24+type); |
341 | fitResultsRes->SetMarkerColor(kRed); |
342 | fitResultsRes->SetLineColor(kRed); |
343 | |
344 | legend->AddEntry(fitResultsMC, Form("%s MC chi2", GetEventTypeName(type))); |
345 | legend->AddEntry(fitResultsRes, Form("%s residual chi2", GetEventTypeName(type))); |
346 | |
347 | for (Int_t iter = 5; iter <= 50; iter += 5) |
348 | { |
349 | Float_t chi2MC = 0; |
350 | Float_t residuals = 0; |
351 | |
352 | mult->ApplyBayesianMethod(histID, kFALSE, type, 0.1, iter); |
353 | mult->DrawComparison(Form("%s/BayesianIter_%02d_%d_%d", targetDir, count++, type, iter), histID, kFALSE, kTRUE, multESD->GetMultiplicityMC(histID, type)->ProjectionY()); |
354 | mult->GetComparisonResults(&chi2MC, 0, &residuals); |
355 | |
356 | fitResultsMC->SetPoint(fitResultsMC->GetN(), iter, chi2MC); |
357 | fitResultsRes->SetPoint(fitResultsRes->GetN(), iter, residuals); |
358 | |
359 | min = TMath::Min(min, TMath::Min(chi2MC, residuals)); |
360 | max = TMath::Max(max, TMath::Max(chi2MC, residuals)); |
361 | } |
362 | |
363 | fitResultsMC->Print(); |
364 | fitResultsRes->Print(); |
365 | |
366 | canvas->cd(); |
367 | fitResultsMC->Draw(Form("%s CP", (first == 0) ? "A" : "SAME")); |
368 | fitResultsRes->Draw("SAME CP"); |
369 | |
370 | if (first == 0) |
371 | first = fitResultsMC; |
372 | } |
373 | |
374 | gPad->SetLogy(); |
375 | printf("min = %f, max = %f\n", min, max); |
376 | if (min <= 0) |
377 | min = 1e-5; |
378 | first->GetYaxis()->SetRangeUser(min * 0.5, max * 1.5); |
379 | |
380 | legend->Draw(); |
381 | |
382 | canvas->SaveAs(Form("%s/%s.gif", targetDir, canvas->GetName())); |
383 | canvas->SaveAs(Form("%s/%s.C", targetDir, canvas->GetName())); |
0b4bfd98 |
384 | }*/ |
dd701109 |
385 | |
447c325d |
386 | void EvaluateBayesianMethodIterationsSmoothing(const char* fileNameMC = "multiplicityMC.root", const char* fileNameESD = "multiplicityMC.root", const char* targetDir, Int_t histID = 3) |
387 | { |
388 | gSystem->mkdir(targetDir); |
389 | |
390 | gSystem->Load("libPWG0base"); |
391 | |
392 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
393 | TFile::Open(fileNameMC); |
394 | mult->LoadHistograms("Multiplicity"); |
395 | |
396 | AliMultiplicityCorrection* multESD = new AliMultiplicityCorrection("MultiplicityESD", "MultiplicityESD"); |
397 | TFile::Open(fileNameESD); |
398 | multESD->LoadHistograms("Multiplicity"); |
399 | mult->SetMultiplicityESD(histID, multESD->GetMultiplicityESD(histID)); |
400 | |
401 | Int_t count = 0; // just to order the saved images... |
402 | |
403 | TFile* graphFile = TFile::Open(Form("%s/EvaluateBayesianMethodIterationsSmoothing.root", targetDir), "RECREATE"); |
404 | |
0b4bfd98 |
405 | Int_t colors[3] = {1, 2, 4}; |
406 | Int_t markers[12] = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 3}; |
407 | |
408 | for (AliMultiplicityCorrection::EventType type = AliMultiplicityCorrection::kTrVtx; type <= AliMultiplicityCorrection::kTrVtx; ++type) |
409 | //for (AliMultiplicityCorrection::EventType type = AliMultiplicityCorrection::kTrVtx; type <= AliMultiplicityCorrection::kINEL; ++type) |
447c325d |
410 | { |
411 | TString tmp; |
412 | tmp.Form("EvaluateBayesianMethodIterationsSmoothing_%s", GetEventTypeName(type)); |
413 | |
414 | TCanvas* canvas = new TCanvas(tmp, tmp, 800, 600); |
415 | |
0b4bfd98 |
416 | for (Int_t i = 1; i <= 4; i++) |
447c325d |
417 | { |
0b4bfd98 |
418 | Int_t iterArray[4] = {5, 20, 50, 100}; |
419 | //Int_t iter = i * 40 - 20; |
420 | Int_t iter = iterArray[i-1]; |
421 | |
422 | TGraph* fitResultsMC[3]; |
423 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
424 | { |
425 | fitResultsMC[region] = new TGraph; |
426 | fitResultsMC[region]->SetTitle(Form("%d iter. - reg. %d", iter, region+1)); |
427 | fitResultsMC[region]->GetXaxis()->SetTitle("smoothing parameter #alpha"); |
428 | fitResultsMC[region]->GetYaxis()->SetTitle(Form("P_{1} in region %d", region)); |
429 | fitResultsMC[region]->SetName(Form("%s_MC_%d", tmp.Data(), i * AliMultiplicityCorrection::kQualityRegions + region - 2)); |
430 | fitResultsMC[region]->SetFillColor(0); |
431 | fitResultsMC[region]->SetMarkerStyle(markers[(i-1) * AliMultiplicityCorrection::kQualityRegions + region]); |
432 | fitResultsMC[region]->SetLineColor(colors[region]); |
433 | } |
434 | |
447c325d |
435 | TGraph* fitResultsRes = new TGraph; |
436 | fitResultsRes->SetTitle(Form("%d iterations", iter)); |
437 | fitResultsRes->SetName(Form("%s_Res_%d", tmp.Data(), i)); |
438 | fitResultsRes->GetXaxis()->SetTitle("smoothing parameter"); |
439 | fitResultsRes->GetYaxis()->SetTitle("P_{2}"); |
440 | |
447c325d |
441 | fitResultsRes->SetFillColor(0); |
447c325d |
442 | fitResultsRes->SetMarkerStyle(19+i); |
0b4bfd98 |
443 | fitResultsRes->SetMarkerColor(1); |
444 | fitResultsRes->SetLineColor(1); |
447c325d |
445 | |
446 | for (Float_t weight = 0.0; weight < 1.01; weight += 0.2) |
447 | { |
448 | Float_t chi2MC = 0; |
449 | Float_t residuals = 0; |
450 | |
0b4bfd98 |
451 | mult->ApplyBayesianMethod(histID, kFALSE, type, weight, iter, 0, kFALSE); |
447c325d |
452 | mult->DrawComparison(Form("%s/BayesianIterSmooth_%03d_%d_%d_%f", targetDir, count++, type, iter, weight), histID, kFALSE, kTRUE, multESD->GetMultiplicityMC(histID, type)->ProjectionY()); |
453 | mult->GetComparisonResults(&chi2MC, 0, &residuals); |
454 | |
0b4bfd98 |
455 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
456 | fitResultsMC[region]->SetPoint(fitResultsMC[region]->GetN(), weight, mult->GetQuality(region)); |
457 | |
447c325d |
458 | fitResultsRes->SetPoint(fitResultsRes->GetN(), weight, residuals); |
459 | } |
460 | |
0b4bfd98 |
461 | graphFile->cd(); |
462 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
463 | fitResultsMC[region]->Write(); |
464 | |
447c325d |
465 | fitResultsRes->Write(); |
466 | } |
467 | } |
0b4bfd98 |
468 | |
469 | graphFile->Close(); |
447c325d |
470 | } |
471 | |
472 | void EvaluateDrawResult(const char* targetDir, Int_t type = 0, Bool_t plotRes = kTRUE) |
473 | { |
474 | gSystem->Load("libPWG0base"); |
475 | |
476 | TString name; |
477 | TFile* graphFile = 0; |
478 | if (type == -1) |
479 | { |
480 | name = "EvaluateChi2Method"; |
481 | graphFile = TFile::Open(Form("%s/EvaluateChi2Method.root", targetDir)); |
482 | } |
483 | else |
484 | { |
485 | name.Form("EvaluateBayesianMethodIterationsSmoothing_%s", GetEventTypeName(type)); |
486 | graphFile = TFile::Open(Form("%s/EvaluateBayesianMethodIterationsSmoothing.root", targetDir)); |
487 | } |
488 | |
489 | TCanvas* canvas = new TCanvas(name, name, 800, 500); |
490 | if (type == -1) |
0b4bfd98 |
491 | { |
447c325d |
492 | canvas->SetLogx(); |
0b4bfd98 |
493 | canvas->SetLogy(); |
494 | } |
495 | canvas->SetTopMargin(0.05); |
496 | canvas->SetGridx(); |
497 | canvas->SetGridy(); |
447c325d |
498 | |
0b4bfd98 |
499 | TLegend* legend = new TLegend(0.8, 0.15, 0.98, 0.98); |
447c325d |
500 | legend->SetFillColor(0); |
501 | |
502 | Int_t count = 1; |
503 | |
504 | Float_t xMin = 1e20; |
505 | Float_t xMax = 0; |
506 | |
507 | Float_t yMin = 1e20; |
508 | Float_t yMax = 0; |
509 | |
0b4bfd98 |
510 | Float_t yMinRegion[3]; |
511 | for (Int_t i=0; i<AliMultiplicityCorrection::kQualityRegions; ++i) |
512 | yMinRegion[i] = 1e20; |
513 | |
447c325d |
514 | TString xaxis, yaxis; |
515 | |
516 | while (1) |
517 | { |
518 | TGraph* mc = (TGraph*) graphFile->Get(Form("%s_MC_%d", name.Data(), count)); |
519 | TGraph* res = (TGraph*) graphFile->Get(Form("%s_Res_%d", name.Data(), count)); |
520 | |
0b4bfd98 |
521 | if (!mc) |
447c325d |
522 | break; |
523 | |
524 | xaxis = mc->GetXaxis()->GetTitle(); |
525 | yaxis = mc->GetYaxis()->GetTitle(); |
526 | |
527 | mc->Print(); |
447c325d |
528 | |
0b4bfd98 |
529 | if (res) |
530 | res->Print(); |
447c325d |
531 | |
0b4bfd98 |
532 | xMin = TMath::Min(xMin, mc->GetXaxis()->GetXmin()); |
533 | yMin = TMath::Min(yMin, mc->GetYaxis()->GetXmin()); |
447c325d |
534 | |
0b4bfd98 |
535 | xMax = TMath::Max(xMax, mc->GetXaxis()->GetXmax()); |
536 | yMax = TMath::Max(yMax, mc->GetYaxis()->GetXmax()); |
537 | |
538 | if (plotRes && res) |
447c325d |
539 | { |
0b4bfd98 |
540 | xMin = TMath::Min(xMin, res->GetXaxis()->GetXmin()); |
541 | yMin = TMath::Min(yMin, res->GetYaxis()->GetXmin()); |
447c325d |
542 | |
0b4bfd98 |
543 | xMax = TMath::Max(xMax, res->GetXaxis()->GetXmax()); |
544 | yMax = TMath::Max(yMax, res->GetYaxis()->GetXmax()); |
447c325d |
545 | } |
0b4bfd98 |
546 | |
547 | for (Int_t i=0; i<mc->GetN(); ++i) |
548 | yMinRegion[(count-1) % 3] = TMath::Min(yMinRegion[(count-1) % 3], mc->GetY()[i]); |
549 | |
550 | count++; |
447c325d |
551 | } |
552 | |
0b4bfd98 |
553 | for (Int_t i=0; i<AliMultiplicityCorrection::kQualityRegions; ++i) |
554 | Printf("Minimum for region %d is %f", i, yMinRegion[i]); |
555 | |
447c325d |
556 | if (type >= 0) |
557 | { |
558 | xaxis = "smoothing parameter"; |
559 | } |
560 | else if (type == -1) |
561 | { |
562 | xaxis = "weight parameter"; |
0b4bfd98 |
563 | xMax *= 5; |
447c325d |
564 | } |
0b4bfd98 |
565 | //yaxis = "P_{1} (2 <= t <= 150)"; |
447c325d |
566 | |
567 | printf("%f %f %f %f\n", xMin, xMax, yMin, yMax); |
568 | |
569 | TGraph* dummy = new TGraph; |
570 | dummy->SetPoint(0, xMin, yMin); |
571 | dummy->SetPoint(1, xMax, yMax); |
572 | dummy->SetTitle(Form(";%s;%s", xaxis.Data(), yaxis.Data())); |
573 | |
574 | dummy->SetMarkerColor(0); |
575 | dummy->Draw("AP"); |
0b4bfd98 |
576 | dummy->GetYaxis()->SetMoreLogLabels(1); |
447c325d |
577 | |
578 | count = 1; |
579 | |
580 | while (1) |
581 | { |
582 | TGraph* mc = (TGraph*) graphFile->Get(Form("%s_MC_%d", name.Data(), count)); |
583 | TGraph* res = (TGraph*) graphFile->Get(Form("%s_Res_%d", name.Data(), count)); |
584 | |
0b4bfd98 |
585 | //printf("%s_MC_%d %p %p\n", name.Data(), count, mc, res); |
447c325d |
586 | |
0b4bfd98 |
587 | if (!mc) |
447c325d |
588 | break; |
589 | |
590 | printf("Loaded %d sucessful.\n", count); |
591 | |
0b4bfd98 |
592 | /*if (type == -1) |
447c325d |
593 | { |
0b4bfd98 |
594 | legend->AddEntry(mc, Form("Eq. (%d)", (count-1)/3+11)); |
447c325d |
595 | } |
0b4bfd98 |
596 | else*/ |
447c325d |
597 | legend->AddEntry(mc); |
598 | |
599 | mc->Draw("SAME PC"); |
600 | |
0b4bfd98 |
601 | if (plotRes && res) |
447c325d |
602 | { |
603 | legend->AddEntry(res); |
604 | res->Draw("SAME PC"); |
605 | } |
606 | |
607 | count++; |
608 | } |
609 | |
610 | legend->Draw(); |
611 | |
612 | canvas->SaveAs(Form("%s/%s.gif", targetDir, canvas->GetName())); |
613 | canvas->SaveAs(Form("%s/%s.eps", targetDir, canvas->GetName())); |
614 | } |
615 | |
0b4bfd98 |
616 | void EvaluateChi2Method(const char* fileNameMC = "multiplicityMC_2M.root", const char* fileNameESD = "multiplicityMC_1M_3.root", const char* targetDir, Int_t histID = 3) |
dd701109 |
617 | { |
618 | gSystem->mkdir(targetDir); |
619 | |
cfc19dd5 |
620 | gSystem->Load("libPWG0base"); |
621 | |
622 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
623 | |
624 | TFile::Open(fileNameMC); |
625 | mult->LoadHistograms("Multiplicity"); |
626 | |
627 | TFile::Open(fileNameESD); |
628 | TH2F* hist = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityESD%d", histID)); |
629 | TH2F* hist2 = (TH2F*) gFile->Get(Form("Multiplicity/fMultiplicityVtx%d", histID)); |
630 | |
631 | mult->SetMultiplicityESD(histID, hist); |
632 | |
dd701109 |
633 | Int_t count = 0; // just to order the saved images... |
0b4bfd98 |
634 | Int_t colors[3] = {1, 2, 4}; |
635 | Int_t markers[12] = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 3}; |
dd701109 |
636 | |
447c325d |
637 | TGraph* fitResultsRes = 0; |
638 | |
639 | TFile* graphFile = TFile::Open(Form("%s/EvaluateChi2Method.root", targetDir), "RECREATE"); |
cfc19dd5 |
640 | |
0b4bfd98 |
641 | for (AliMultiplicityCorrection::RegularizationType type = AliMultiplicityCorrection::kPol0; type <= AliMultiplicityCorrection::kLog; ++type) |
642 | // for (AliMultiplicityCorrection::RegularizationType type = AliMultiplicityCorrection::kEntropy; type <= AliMultiplicityCorrection::kEntropy; ++type) |
643 | // for (AliMultiplicityCorrection::RegularizationType type = AliMultiplicityCorrection::kPol0; type <= AliMultiplicityCorrection::kPol0; ++type) |
cfc19dd5 |
644 | { |
0b4bfd98 |
645 | TGraph* fitResultsMC[3]; |
646 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
647 | { |
648 | fitResultsMC[region] = new TGraph; |
649 | fitResultsMC[region]->SetTitle(Form("Eq. (%d) - reg. %d", type+10, region+1)); |
650 | fitResultsMC[region]->GetXaxis()->SetTitle("weight parameter #alpha"); |
651 | fitResultsMC[region]->GetYaxis()->SetTitle(Form("P_{1} in region %d", region)); |
652 | fitResultsMC[region]->SetName(Form("EvaluateChi2Method_MC_%d", type * AliMultiplicityCorrection::kQualityRegions + region - 2)); |
653 | fitResultsMC[region]->SetFillColor(0); |
654 | fitResultsMC[region]->SetMarkerStyle(markers[(type-1) * AliMultiplicityCorrection::kQualityRegions + region]); |
655 | fitResultsMC[region]->SetLineColor(colors[region]); |
656 | } |
657 | |
447c325d |
658 | fitResultsRes = new TGraph; |
659 | fitResultsRes->SetTitle(Form("%s residual chi2", GetRegName(type))); |
660 | fitResultsRes->SetName(Form("EvaluateChi2Method_Res_%d", type)); |
661 | fitResultsRes->GetXaxis()->SetTitle("Weight Parameter"); |
cfc19dd5 |
662 | |
cfc19dd5 |
663 | fitResultsRes->SetFillColor(0); |
dd701109 |
664 | fitResultsRes->SetMarkerStyle(23+type); |
cfc19dd5 |
665 | fitResultsRes->SetMarkerColor(kRed); |
666 | fitResultsRes->SetLineColor(kRed); |
667 | |
0b4bfd98 |
668 | for (Int_t i=0; i<7; ++i) |
447c325d |
669 | { |
670 | Float_t weight = TMath::Power(TMath::Sqrt(10), i+6); |
671 | //Float_t weight = TMath::Power(10, i+2); |
cfc19dd5 |
672 | |
447c325d |
673 | //if (type == AliMultiplicityCorrection::kEntropy) weight = 1e4 * (i+1) * 1.5; |
cfc19dd5 |
674 | |
cfc19dd5 |
675 | Float_t chi2MC = 0; |
676 | Float_t residuals = 0; |
447c325d |
677 | Float_t chi2Limit = 0; |
678 | |
679 | TString runName; |
680 | runName.Form("MinuitChi2_%02d_%d_%f", count++, type, weight); |
cfc19dd5 |
681 | |
682 | mult->SetRegularizationParameters(type, weight); |
447c325d |
683 | Int_t status = mult->ApplyMinuitFit(histID, kFALSE, AliMultiplicityCorrection::kTrVtx); |
684 | mult->DrawComparison(Form("%s/%s", targetDir, runName.Data()), histID, kFALSE, kTRUE, hist2->ProjectionY()); |
685 | if (status != 0) |
686 | { |
687 | printf("MINUIT did not succeed. Skipping...\n"); |
688 | continue; |
689 | } |
690 | |
dd701109 |
691 | mult->GetComparisonResults(&chi2MC, 0, &residuals); |
447c325d |
692 | TH1* result = mult->GetMultiplicityESDCorrected(histID); |
693 | result->SetName(runName); |
694 | result->Write(); |
cfc19dd5 |
695 | |
0b4bfd98 |
696 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
697 | fitResultsMC[region]->SetPoint(fitResultsMC[region]->GetN(), weight, mult->GetQuality(region)); |
698 | |
cfc19dd5 |
699 | fitResultsRes->SetPoint(fitResultsRes->GetN(), weight, residuals); |
cfc19dd5 |
700 | } |
701 | |
447c325d |
702 | graphFile->cd(); |
0b4bfd98 |
703 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
704 | fitResultsMC[region]->Write(); |
447c325d |
705 | fitResultsRes->Write(); |
cfc19dd5 |
706 | } |
707 | |
447c325d |
708 | graphFile->Close(); |
dd701109 |
709 | } |
710 | |
711 | void EvaluateChi2MethodAll() |
712 | { |
713 | EvaluateChi2Method("multiplicityMC_3M.root", "multiplicityMC_3M.root", "eval-3M-3M"); |
714 | EvaluateChi2Method("multiplicityMC_2M.root", "multiplicityMC_1M_3.root", "eval-2M-1M"); |
715 | EvaluateChi2Method("multiplicityMC_3M.root", "multiplicityMC_3M_NBD.root", "eval-3M-NBD"); |
716 | EvaluateChi2Method("multiplicityMC_2M_smoothed.root", "multiplicityMC_1M_3.root", "eval-2MS-1M"); |
717 | EvaluateChi2Method("multiplicityMC_2M_smoothed.root", "multiplicityMC_3M_NBD.root", "eval-2MS-NBD"); |
718 | } |
719 | |
720 | void EvaluateBayesianMethodAll() |
721 | { |
722 | EvaluateBayesianMethod("multiplicityMC_3M.root", "multiplicityMC_3M.root", "eval-3M-3M"); |
723 | EvaluateBayesianMethod("multiplicityMC_2M.root", "multiplicityMC_1M_3.root", "eval-2M-1M"); |
724 | EvaluateBayesianMethod("multiplicityMC_3M.root", "multiplicityMC_3M_NBD.root", "eval-3M-NBD"); |
725 | EvaluateBayesianMethod("multiplicityMC_2M_smoothed.root", "multiplicityMC_1M_3.root", "eval-2MS-1M"); |
726 | EvaluateBayesianMethod("multiplicityMC_2M_smoothed.root", "multiplicityMC_3M_NBD.root", "eval-2MS-NBD"); |
727 | } |
728 | |
447c325d |
729 | void CompareMethods(const char* fileNameMC = "multiplicityMC.root", const char* fileNameESD = "multiplicityMC.root", const char* targetDir, Int_t histID = 3) |
dd701109 |
730 | { |
731 | gSystem->mkdir(targetDir); |
732 | |
733 | gSystem->Load("libPWG0base"); |
734 | |
735 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
736 | |
737 | TFile::Open(fileNameMC); |
738 | mult->LoadHistograms("Multiplicity"); |
739 | |
740 | TFile::Open(fileNameESD); |
741 | AliMultiplicityCorrection* multESD = new AliMultiplicityCorrection("MultiplicityESD", "MultiplicityESD"); |
742 | multESD->LoadHistograms("Multiplicity"); |
743 | |
744 | mult->SetMultiplicityESD(histID, multESD->GetMultiplicityESD(histID)); |
745 | |
447c325d |
746 | TCanvas* canvas = new TCanvas("CompareMethods", "CompareMethods", 1200, 1200); |
747 | canvas->Divide(3, 3); |
dd701109 |
748 | |
749 | Int_t count = 0; |
750 | |
447c325d |
751 | for (AliMultiplicityCorrection::EventType type = AliMultiplicityCorrection::kTrVtx; type <= AliMultiplicityCorrection::kTrVtx; ++type) |
dd701109 |
752 | { |
447c325d |
753 | TH1* mc = multESD->GetMultiplicityMC(histID, type)->ProjectionY("mymc"); |
754 | mc->Sumw2(); |
dd701109 |
755 | |
447c325d |
756 | mult->SetRegularizationParameters(AliMultiplicityCorrection::kPol1, 10000); |
dd701109 |
757 | mult->ApplyMinuitFit(histID, kFALSE, type); |
758 | mult->DrawComparison(Form("%s/CompareMethods_%d_MinuitChi2", targetDir, type), histID, kFALSE, kTRUE, mc); |
759 | TH1* chi2Result = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone("chi2Result"); |
760 | |
761 | mult->ApplyBayesianMethod(histID, kFALSE, type, 0.1); |
762 | mult->DrawComparison(Form("%s/CompareMethods_%d_Bayesian", targetDir, type), histID, kFALSE, kTRUE, mc); |
763 | TH1* bayesResult = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone("bayesResult"); |
764 | |
765 | mc->GetXaxis()->SetRangeUser(0, 150); |
766 | chi2Result->GetXaxis()->SetRangeUser(0, 150); |
767 | |
447c325d |
768 | /* // skip errors for now |
dd701109 |
769 | for (Int_t i=1; i<=chi2Result->GetNbinsX(); ++i) |
770 | { |
771 | chi2Result->SetBinError(i, 0); |
772 | bayesResult->SetBinError(i, 0); |
447c325d |
773 | }*/ |
dd701109 |
774 | |
775 | canvas->cd(++count); |
776 | mc->SetFillColor(kYellow); |
777 | mc->DrawCopy(); |
778 | chi2Result->SetLineColor(kRed); |
779 | chi2Result->DrawCopy("SAME"); |
780 | bayesResult->SetLineColor(kBlue); |
781 | bayesResult->DrawCopy("SAME"); |
782 | gPad->SetLogy(); |
783 | |
784 | canvas->cd(count + 3); |
447c325d |
785 | chi2ResultRatio = (TH1*) chi2Result->Clone("chi2ResultRatio"); |
786 | bayesResultRatio = (TH1*) bayesResult->Clone("bayesResultRatio"); |
787 | chi2ResultRatio->Divide(chi2Result, mc, 1, 1, ""); |
788 | bayesResultRatio->Divide(bayesResult, mc, 1, 1, ""); |
dd701109 |
789 | |
447c325d |
790 | chi2ResultRatio->GetYaxis()->SetRangeUser(0.5, 1.5); |
dd701109 |
791 | |
447c325d |
792 | chi2ResultRatio->DrawCopy("HIST"); |
793 | bayesResultRatio->DrawCopy("SAME HIST"); |
dd701109 |
794 | |
447c325d |
795 | canvas->cd(count + 6); |
796 | chi2Result->Divide(chi2Result, bayesResult, 1, 1, ""); |
797 | chi2Result->GetYaxis()->SetRangeUser(0.5, 1.5); |
798 | chi2Result->DrawCopy("HIST"); |
dd701109 |
799 | } |
800 | |
801 | canvas->SaveAs(Form("%s/%s.gif", targetDir, canvas->GetName())); |
802 | canvas->SaveAs(Form("%s/%s.C", targetDir, canvas->GetName())); |
803 | } |
804 | |
447c325d |
805 | void StatisticsPlot(const char* fileNameMC = "multiplicityMC_2M.root", Int_t histID = 3) |
dd701109 |
806 | { |
807 | gSystem->Load("libPWG0base"); |
808 | |
809 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
810 | |
811 | TFile::Open(fileNameMC); |
812 | mult->LoadHistograms("Multiplicity"); |
813 | |
447c325d |
814 | const char* files[] = { "multiplicityMC_100k_1.root", "multiplicityMC_200k.root", "multiplicityMC_400k.root", "multiplicityMC_600k.root", "multiplicityMC_800k.root" }; |
dd701109 |
815 | |
0b4bfd98 |
816 | TGraph* fitResultsChi2[3]; |
817 | TGraph* fitResultsBayes[3]; |
818 | |
819 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
820 | { |
821 | fitResultsChi2[region] = new TGraph; |
822 | fitResultsChi2[region]->SetTitle(";Nevents;Chi2"); |
823 | fitResultsChi2[region]->SetName(Form("fitResultsChi2_%d", region)); |
824 | fitResultsChi2[region]->SetMarkerStyle(20+region); |
825 | |
826 | fitResultsBayes[region] = new TGraph; |
827 | fitResultsBayes[region]->SetTitle(";Nevents;Chi2"); |
828 | fitResultsBayes[region]->SetName(Form("fitResultsBayes_%d", region)); |
829 | fitResultsBayes[region]->SetMarkerStyle(20+region); |
830 | fitResultsBayes[region]->SetMarkerColor(2); |
831 | } |
832 | |
447c325d |
833 | TGraph* fitResultsChi2Limit = new TGraph; fitResultsChi2Limit->SetTitle(";Nevents;Multiplicity reach"); |
834 | TGraph* fitResultsBayesLimit = new TGraph; fitResultsBayesLimit->SetTitle(";Nevents;Multiplicity reach"); |
0b4bfd98 |
835 | TGraph* fitResultsChi2Res = new TGraph; fitResultsChi2Res->SetTitle(";Nevents;Chi2"); |
836 | TGraph* fitResultsBayesRes = new TGraph; fitResultsBayesRes->SetTitle(";Nevents;Chi2"); |
447c325d |
837 | |
447c325d |
838 | fitResultsChi2Limit->SetName("fitResultsChi2Limit"); |
839 | fitResultsBayesLimit->SetName("fitResultsBayesLimit"); |
0b4bfd98 |
840 | fitResultsChi2Res->SetName("fitResultsChi2Res"); |
841 | fitResultsBayesRes->SetName("fitResultsBayesRes"); |
dd701109 |
842 | |
843 | TCanvas* canvas = new TCanvas("StatisticsPlot", "StatisticsPlot", 1200, 600); |
844 | canvas->Divide(5, 2); |
845 | |
846 | Float_t min = 1e10; |
847 | Float_t max = 0; |
848 | |
447c325d |
849 | TFile* file = TFile::Open("StatisticsPlot.root", "RECREATE"); |
850 | file->Close(); |
851 | |
dd701109 |
852 | for (Int_t i=0; i<5; ++i) |
853 | { |
854 | TFile::Open(files[i]); |
855 | AliMultiplicityCorrection* multESD = new AliMultiplicityCorrection("MultiplicityESD", "MultiplicityESD"); |
856 | multESD->LoadHistograms("Multiplicity"); |
857 | |
858 | mult->SetMultiplicityESD(histID, multESD->GetMultiplicityESD(histID)); |
859 | Int_t nEntries = multESD->GetMultiplicityESD(histID)->GetEntries(); |
447c325d |
860 | TH1* mc = multESD->GetMultiplicityMC(histID, AliMultiplicityCorrection::kTrVtx)->ProjectionY(Form("mc_%d", i)); |
dd701109 |
861 | |
447c325d |
862 | mult->SetRegularizationParameters(AliMultiplicityCorrection::kPol1, 10000); |
dd701109 |
863 | mult->ApplyMinuitFit(histID, kFALSE, AliMultiplicityCorrection::kTrVtx); |
864 | mult->DrawComparison(Form("StatisticsPlot_%d_MinuitChi2", i), histID, kFALSE, kTRUE, mc); |
865 | |
dd701109 |
866 | Int_t chi2MCLimit = 0; |
0b4bfd98 |
867 | Float_t chi2Residuals = 0; |
868 | mult->GetComparisonResults(0, &chi2MCLimit, &chi2Residuals); |
869 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
870 | { |
871 | fitResultsChi2[region]->SetPoint(fitResultsChi2[region]->GetN(), nEntries, mult->GetQuality(region)); |
872 | min = TMath::Min(min, mult->GetQuality(region)); |
873 | max = TMath::Max(max, mult->GetQuality(region)); |
874 | } |
dd701109 |
875 | fitResultsChi2Limit->SetPoint(fitResultsChi2Limit->GetN(), nEntries, chi2MCLimit); |
0b4bfd98 |
876 | fitResultsChi2Res->SetPoint(fitResultsChi2Res->GetN(), nEntries, chi2Residuals); |
dd701109 |
877 | |
447c325d |
878 | TH1* chi2Result = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone(Form("chi2Result_%d", i)); |
dd701109 |
879 | |
0b4bfd98 |
880 | mult->ApplyBayesianMethod(histID, kFALSE, AliMultiplicityCorrection::kTrVtx, 1, 100, 0, kFALSE); |
dd701109 |
881 | mult->DrawComparison(Form("StatisticsPlot_%d_Bayesian", i), histID, kFALSE, kTRUE, mc); |
447c325d |
882 | TH1* bayesResult = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone(Form("bayesResult_%d", i)); |
0b4bfd98 |
883 | mult->GetComparisonResults(0, &chi2MCLimit, &chi2Residuals); |
884 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
885 | { |
886 | fitResultsBayes[region]->SetPoint(fitResultsBayes[region]->GetN(), nEntries, mult->GetQuality(region)); |
887 | min = TMath::Min(min, mult->GetQuality(region)); |
888 | max = TMath::Max(max, mult->GetQuality(region)); |
889 | } |
dd701109 |
890 | fitResultsBayesLimit->SetPoint(fitResultsBayesLimit->GetN(), nEntries, chi2MCLimit); |
0b4bfd98 |
891 | fitResultsBayesRes->SetPoint(fitResultsBayesRes->GetN(), nEntries, chi2Residuals); |
dd701109 |
892 | |
dd701109 |
893 | mc->GetXaxis()->SetRangeUser(0, 150); |
894 | chi2Result->GetXaxis()->SetRangeUser(0, 150); |
895 | |
896 | // skip errors for now |
897 | for (Int_t j=0; j<=chi2Result->GetNbinsX(); ++j) |
898 | { |
899 | chi2Result->SetBinError(j, 0); |
900 | bayesResult->SetBinError(j, 0); |
901 | } |
902 | |
903 | canvas->cd(i+1); |
904 | mc->SetFillColor(kYellow); |
905 | mc->DrawCopy(); |
906 | chi2Result->SetLineColor(kRed); |
907 | chi2Result->DrawCopy("SAME"); |
908 | bayesResult->SetLineColor(kBlue); |
909 | bayesResult->DrawCopy("SAME"); |
910 | gPad->SetLogy(); |
911 | |
912 | canvas->cd(i+6); |
913 | chi2Result->Divide(chi2Result, mc, 1, 1, "B"); |
914 | bayesResult->Divide(bayesResult, mc, 1, 1, "B"); |
915 | |
916 | // skip errors for now |
917 | for (Int_t j=0; j<=chi2Result->GetNbinsX(); ++j) |
918 | { |
919 | chi2Result->SetBinError(j, 0); |
920 | bayesResult->SetBinError(j, 0); |
921 | } |
922 | |
923 | chi2Result->SetTitle("Ratios;Npart;unfolded measured/MC"); |
924 | chi2Result->GetYaxis()->SetRangeUser(0.5, 1.5); |
925 | |
926 | chi2Result->DrawCopy(""); |
927 | bayesResult->DrawCopy("SAME"); |
447c325d |
928 | |
929 | TFile* file = TFile::Open("StatisticsPlot.root", "UPDATE"); |
930 | mc->Write(); |
931 | chi2Result->Write(); |
932 | bayesResult->Write(); |
933 | file->Close(); |
dd701109 |
934 | } |
935 | |
936 | canvas->SaveAs(Form("%s.gif", canvas->GetName())); |
937 | canvas->SaveAs(Form("%s.C", canvas->GetName())); |
938 | |
939 | TCanvas* canvas2 = new TCanvas("StatisticsPlot2", "StatisticsPlot2", 800, 400); |
940 | canvas2->Divide(2, 1); |
941 | |
942 | canvas2->cd(1); |
dd701109 |
943 | |
0b4bfd98 |
944 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
945 | { |
946 | fitResultsChi2[region]->GetYaxis()->SetRangeUser(0.5 * min, 1.5 * max); |
947 | fitResultsChi2[region]->Draw(((region == 0) ? "AP" : "P SAME")); |
948 | |
949 | fitResultsBayes[region]->Draw("P SAME"); |
950 | } |
dd701109 |
951 | |
952 | gPad->SetLogy(); |
953 | |
954 | canvas2->cd(2); |
955 | fitResultsChi2Limit->SetMarkerStyle(20); |
956 | fitResultsChi2Limit->GetYaxis()->SetRangeUser(0.9 * TMath::Min(fitResultsChi2Limit->GetYaxis()->GetXmin(), fitResultsBayesLimit->GetYaxis()->GetXmin()), 1.1 * TMath::Max(fitResultsChi2Limit->GetYaxis()->GetXmax(), fitResultsBayesLimit->GetYaxis()->GetXmax())); |
957 | fitResultsChi2Limit->Draw("AP"); |
958 | |
959 | fitResultsBayesLimit->SetMarkerStyle(3); |
960 | fitResultsBayesLimit->SetMarkerColor(2); |
961 | fitResultsBayesLimit->Draw("P SAME"); |
962 | |
963 | canvas2->SaveAs(Form("%s.gif", canvas2->GetName())); |
964 | canvas2->SaveAs(Form("%s.C", canvas2->GetName())); |
447c325d |
965 | |
966 | TFile* file = TFile::Open("StatisticsPlot.root", "UPDATE"); |
0b4bfd98 |
967 | |
968 | for (Int_t region=0; region<AliMultiplicityCorrection::kQualityRegions; ++region) |
969 | { |
970 | fitResultsChi2[region]->Write(); |
971 | fitResultsBayes[region]->Write(); |
972 | } |
447c325d |
973 | fitResultsChi2Limit->Write(); |
974 | fitResultsBayesLimit->Write(); |
0b4bfd98 |
975 | fitResultsChi2Res->Write(); |
976 | fitResultsBayesRes->Write(); |
447c325d |
977 | file->Close(); |
dd701109 |
978 | } |
979 | |
447c325d |
980 | void StartingConditions(const char* fileNameMC = "multiplicityMC_2M.root", Int_t histID = 3) |
dd701109 |
981 | { |
982 | gSystem->Load("libPWG0base"); |
983 | |
984 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
985 | |
986 | TFile::Open(fileNameMC); |
987 | mult->LoadHistograms("Multiplicity"); |
988 | |
447c325d |
989 | const char* files[] = { "multiplicityMC_1M_3.root", "multiplicityMC_100k_1.root", "multiplicityMC_100k_2.root", "multiplicityMC_100k_3.root", "multiplicityMC_100k_4.root" } |
dd701109 |
990 | |
991 | // this one we try to unfold |
992 | TFile::Open(files[0]); |
993 | AliMultiplicityCorrection* multESD = new AliMultiplicityCorrection("MultiplicityESD", "MultiplicityESD"); |
994 | multESD->LoadHistograms("Multiplicity"); |
995 | mult->SetMultiplicityESD(histID, multESD->GetMultiplicityESD(histID)); |
447c325d |
996 | TH1* mc = multESD->GetMultiplicityMC(histID, AliMultiplicityCorrection::kTrVtx)->ProjectionY("mc"); |
dd701109 |
997 | |
998 | TGraph* fitResultsChi2 = new TGraph; |
999 | fitResultsChi2->SetTitle(";Input Dist ID;Chi2"); |
1000 | TGraph* fitResultsBayes = new TGraph; |
1001 | fitResultsBayes->SetTitle(";Input Dist ID;Chi2"); |
1002 | TGraph* fitResultsChi2Limit = new TGraph; |
1003 | fitResultsChi2Limit->SetTitle(";Input Dist ID;Multiplicity reach"); |
1004 | TGraph* fitResultsBayesLimit = new TGraph; |
1005 | fitResultsBayesLimit->SetTitle(";Input Dist ID;Multiplicity reach"); |
1006 | |
1007 | TCanvas* canvas = new TCanvas("StartingConditions", "StartingConditions", 1200, 600); |
1008 | canvas->Divide(8, 2); |
1009 | |
1010 | TCanvas* canvas3 = new TCanvas("StartingConditions3", "StartingConditions3", 1000, 400); |
1011 | canvas3->Divide(2, 1); |
1012 | |
1013 | Float_t min = 1e10; |
1014 | Float_t max = 0; |
1015 | |
1016 | TH1* firstChi = 0; |
1017 | TH1* firstBayesian = 0; |
1018 | TH1* startCond = multESD->GetMultiplicityESD(histID)->ProjectionY("startCond"); |
1019 | |
1020 | TLegend* legend = new TLegend(0.7, 0.7, 1, 1); |
1021 | |
447c325d |
1022 | TFile* file = TFile::Open("StartingConditions.root", "RECREATE"); |
1023 | mc->Write(); |
1024 | file->Close(); |
1025 | |
dd701109 |
1026 | for (Int_t i=0; i<8; ++i) |
1027 | { |
1028 | if (i == 0) |
1029 | { |
1030 | startCond = (TH1*) mc->Clone("startCond2"); |
1031 | } |
1032 | else if (i < 6) |
1033 | { |
1034 | TFile::Open(files[i-1]); |
1035 | AliMultiplicityCorrection* multESD2 = new AliMultiplicityCorrection("MultiplicityESD2", "MultiplicityESD2"); |
1036 | multESD2->LoadHistograms("Multiplicity"); |
1037 | startCond = multESD2->GetMultiplicityESD(histID)->ProjectionY("startCond"); |
1038 | } |
1039 | else if (i == 6) |
1040 | { |
1041 | func = new TF1("nbd", "[0] * TMath::Binomial([2]+TMath::Nint(x)-1, [2]-1) * pow([1] / ([1]+[2]), TMath::Nint(x)) * pow(1 + [1]/[2], -[2])", 0, 50); |
1042 | func->SetParNames("scaling", "averagen", "k"); |
1043 | func->SetParLimits(0, 1e-3, 1e10); |
1044 | func->SetParLimits(1, 0.001, 1000); |
1045 | func->SetParLimits(2, 0.001, 1000); |
1046 | |
1047 | func->SetParameters(1, 10, 2); |
1048 | for (Int_t j=2; j<=startCond->GetNbinsX(); j++) |
1049 | startCond->SetBinContent(j, func->Eval(j-1)); |
1050 | } |
1051 | else if (i == 7) |
1052 | { |
1053 | for (Int_t j=1; j<=startCond->GetNbinsX(); j++) |
1054 | startCond->SetBinContent(j, 1); |
1055 | } |
1056 | |
447c325d |
1057 | mult->SetRegularizationParameters(AliMultiplicityCorrection::kPol1, 10000); |
dd701109 |
1058 | mult->ApplyMinuitFit(histID, kFALSE, AliMultiplicityCorrection::kTrVtx, kFALSE, startCond); |
1059 | mult->DrawComparison(Form("StartingConditions_%d_MinuitChi2", i), histID, kFALSE, kTRUE, mc); |
1060 | |
1061 | Float_t chi2MC = 0; |
1062 | Int_t chi2MCLimit = 0; |
1063 | mult->GetComparisonResults(&chi2MC, &chi2MCLimit, 0); |
1064 | fitResultsChi2->SetPoint(fitResultsChi2->GetN(), i, chi2MC); |
1065 | fitResultsChi2Limit->SetPoint(fitResultsChi2Limit->GetN(), i, chi2MCLimit); |
1066 | min = TMath::Min(min, chi2MC); |
1067 | max = TMath::Max(max, chi2MC); |
1068 | |
447c325d |
1069 | TH1* chi2Result = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone(Form("chi2Result_%d", i)); |
dd701109 |
1070 | if (!firstChi) |
1071 | firstChi = (TH1*) chi2Result->Clone("firstChi"); |
1072 | |
447c325d |
1073 | mult->ApplyBayesianMethod(histID, kFALSE, AliMultiplicityCorrection::kTrVtx, 1, 100, startCond); |
dd701109 |
1074 | mult->DrawComparison(Form("StartingConditions_%d_Bayesian", i), histID, kFALSE, kTRUE, mc); |
447c325d |
1075 | TH1* bayesResult = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone(Form("bayesResult_%d", i)); |
dd701109 |
1076 | if (!firstBayesian) |
1077 | firstBayesian = (TH1*) bayesResult->Clone("firstBayesian"); |
1078 | |
1079 | mult->GetComparisonResults(&chi2MC, &chi2MCLimit, 0); |
1080 | fitResultsBayes->SetPoint(fitResultsBayes->GetN(), i, chi2MC); |
1081 | fitResultsBayesLimit->SetPoint(fitResultsBayesLimit->GetN(), i, chi2MCLimit); |
1082 | |
447c325d |
1083 | TFile* file = TFile::Open("StartingConditions.root", "UPDATE"); |
1084 | chi2Result->Write(); |
1085 | bayesResult->Write(); |
1086 | file->Close(); |
1087 | |
dd701109 |
1088 | min = TMath::Min(min, chi2MC); |
1089 | max = TMath::Max(max, chi2MC); |
1090 | mc->GetXaxis()->SetRangeUser(0, 150); |
1091 | chi2Result->GetXaxis()->SetRangeUser(0, 150); |
1092 | |
1093 | // skip errors for now |
1094 | for (Int_t j=0; j<=chi2Result->GetNbinsX(); ++j) |
1095 | { |
1096 | chi2Result->SetBinError(j, 0); |
1097 | bayesResult->SetBinError(j, 0); |
1098 | } |
1099 | |
1100 | canvas3->cd(1); |
1101 | TH1* tmp = (TH1*) chi2Result->Clone("tmp"); |
1102 | tmp->SetTitle("Difference to best initial conditions;Npart;Ratio"); |
1103 | tmp->Divide(firstChi); |
1104 | tmp->GetYaxis()->SetRangeUser(0.5, 1.5); |
1105 | tmp->GetXaxis()->SetRangeUser(0, 200); |
1106 | tmp->SetLineColor(i+1); |
1107 | legend->AddEntry(tmp, Form("%d", i)); |
1108 | tmp->DrawCopy((i > 0) ? "SAME HIST" : "HIST"); |
1109 | |
1110 | canvas3->cd(2); |
1111 | tmp = (TH1*) bayesResult->Clone("tmp"); |
1112 | tmp->SetTitle("Difference to best initial conditions;Npart;Ratio"); |
1113 | tmp->Divide(firstBayesian); |
1114 | tmp->SetLineColor(i+1); |
1115 | tmp->GetYaxis()->SetRangeUser(0.5, 1.5); |
1116 | tmp->GetXaxis()->SetRangeUser(0, 200); |
1117 | tmp->DrawCopy((i > 0) ? "SAME HIST" : "HIST"); |
1118 | |
1119 | canvas->cd(i+1); |
1120 | mc->SetFillColor(kYellow); |
1121 | mc->DrawCopy(); |
1122 | chi2Result->SetLineColor(kRed); |
1123 | chi2Result->DrawCopy("SAME"); |
1124 | bayesResult->SetLineColor(kBlue); |
1125 | bayesResult->DrawCopy("SAME"); |
1126 | gPad->SetLogy(); |
1127 | |
1128 | canvas->cd(i+9); |
1129 | chi2Result->Divide(chi2Result, mc, 1, 1, "B"); |
1130 | bayesResult->Divide(bayesResult, mc, 1, 1, "B"); |
1131 | |
1132 | // skip errors for now |
1133 | for (Int_t j=0; j<=chi2Result->GetNbinsX(); ++j) |
1134 | { |
1135 | chi2Result->SetBinError(j, 0); |
1136 | bayesResult->SetBinError(j, 0); |
1137 | } |
1138 | |
1139 | chi2Result->SetTitle("Ratios;Npart;unfolded measured/MC"); |
1140 | chi2Result->GetYaxis()->SetRangeUser(0.5, 1.5); |
1141 | |
1142 | chi2Result->DrawCopy(""); |
1143 | bayesResult->DrawCopy("SAME"); |
1144 | } |
1145 | |
1146 | canvas3->cd(1); |
1147 | legend->Draw(); |
1148 | |
cfc19dd5 |
1149 | canvas->SaveAs(Form("%s.gif", canvas->GetName())); |
dd701109 |
1150 | |
1151 | TCanvas* canvas2 = new TCanvas("StartingConditions2", "StartingConditions2", 800, 400); |
1152 | canvas2->Divide(2, 1); |
1153 | |
1154 | canvas2->cd(1); |
1155 | fitResultsChi2->SetMarkerStyle(20); |
1156 | fitResultsChi2->GetYaxis()->SetRangeUser(0.5 * min, 1.5 * max); |
1157 | fitResultsChi2->Draw("AP"); |
1158 | |
1159 | fitResultsBayes->SetMarkerStyle(3); |
1160 | fitResultsBayes->SetMarkerColor(2); |
1161 | fitResultsBayes->Draw("P SAME"); |
1162 | |
1163 | gPad->SetLogy(); |
1164 | |
1165 | canvas2->cd(2); |
1166 | fitResultsChi2Limit->SetMarkerStyle(20); |
1167 | fitResultsChi2Limit->GetYaxis()->SetRangeUser(0.9 * TMath::Min(fitResultsChi2Limit->GetYaxis()->GetXmin(), fitResultsBayesLimit->GetYaxis()->GetXmin()), 1.1 * TMath::Max(fitResultsChi2Limit->GetYaxis()->GetXmax(), fitResultsBayesLimit->GetYaxis()->GetXmax())); |
1168 | fitResultsChi2Limit->Draw("AP"); |
1169 | |
1170 | fitResultsBayesLimit->SetMarkerStyle(3); |
1171 | fitResultsBayesLimit->SetMarkerColor(2); |
1172 | fitResultsBayesLimit->Draw("P SAME"); |
1173 | |
1174 | canvas2->SaveAs(Form("%s.gif", canvas2->GetName())); |
1175 | canvas3->SaveAs(Form("%s.gif", canvas3->GetName())); |
cfc19dd5 |
1176 | } |
1177 | |
447c325d |
1178 | void DifferentSamples(const char* fileNameMC = "multiplicityMC_2M.root", Int_t histID = 3) |
1179 | { |
1180 | gSystem->Load("libPWG0base"); |
1181 | |
1182 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
1183 | |
1184 | TFile::Open(fileNameMC); |
1185 | mult->LoadHistograms("Multiplicity"); |
1186 | |
1187 | const char* files[] = { "multiplicityMC_100k_1.root", "multiplicityMC_100k_2.root", "multiplicityMC_100k_3.root", "multiplicityMC_100k_4.root", "multiplicityMC_100k_5.root", "multiplicityMC_100k_6.root", "multiplicityMC_100k_7.root", "multiplicityMC_100k_8.root" }; |
1188 | |
1189 | TGraph* fitResultsChi2 = new TGraph; |
1190 | fitResultsChi2->SetTitle(";Input Dist ID;Chi2"); |
1191 | TGraph* fitResultsBayes = new TGraph; |
1192 | fitResultsBayes->SetTitle(";Input Dist ID;Chi2"); |
1193 | TGraph* fitResultsChi2Limit = new TGraph; |
1194 | fitResultsChi2Limit->SetTitle(";Input Dist ID;Multiplicity reach"); |
1195 | TGraph* fitResultsBayesLimit = new TGraph; |
1196 | fitResultsBayesLimit->SetTitle(";Input Dist ID;Multiplicity reach"); |
1197 | |
1198 | TCanvas* canvasA = new TCanvas("DifferentSamplesA", "DifferentSamplesA", 1200, 600); |
1199 | canvasA->Divide(4, 2); |
1200 | |
1201 | TCanvas* canvasB = new TCanvas("DifferentSamplesB", "DifferentSamplesB", 1200, 600); |
1202 | canvasB->Divide(4, 2); |
1203 | |
1204 | TCanvas* canvas4 = new TCanvas("DifferentSamples4", "DifferentSamples4", 1000, 400); |
1205 | canvas4->Divide(2, 1); |
1206 | |
1207 | TCanvas* canvas3 = new TCanvas("DifferentSamples3", "DifferentSamples3", 1000, 400); |
1208 | canvas3->Divide(2, 1); |
1209 | |
1210 | Float_t min = 1e10; |
1211 | Float_t max = 0; |
1212 | |
1213 | TH1* firstChi = 0; |
1214 | TH1* firstBayesian = 0; |
1215 | |
1216 | TLegend* legend = new TLegend(0.7, 0.7, 1, 1); |
1217 | |
1218 | TFile* file = TFile::Open("DifferentSamples.root", "RECREATE"); |
1219 | file->Close(); |
1220 | |
1221 | for (Int_t i=0; i<8; ++i) |
1222 | { |
1223 | TFile::Open(files[i]); |
1224 | AliMultiplicityCorrection* multESD = new AliMultiplicityCorrection("MultiplicityESD2", "MultiplicityESD2"); |
1225 | multESD->LoadHistograms("Multiplicity"); |
1226 | mult->SetMultiplicityESD(histID, multESD->GetMultiplicityESD(histID)); |
1227 | TH1* mc = multESD->GetMultiplicityMC(histID, AliMultiplicityCorrection::kTrVtx)->ProjectionY(Form("mc_%d", i)); |
1228 | mc->Sumw2(); |
1229 | |
1230 | mult->SetRegularizationParameters(AliMultiplicityCorrection::kPol1, 10000); |
1231 | mult->ApplyMinuitFit(histID, kFALSE, AliMultiplicityCorrection::kTrVtx, kFALSE); |
1232 | mult->DrawComparison(Form("DifferentSamples_%d_MinuitChi2", i), histID, kFALSE, kTRUE, mc); |
1233 | |
1234 | Float_t chi2MC = 0; |
1235 | Int_t chi2MCLimit = 0; |
1236 | mult->GetComparisonResults(&chi2MC, &chi2MCLimit, 0); |
1237 | fitResultsChi2->SetPoint(fitResultsChi2->GetN(), i, chi2MC); |
1238 | fitResultsChi2Limit->SetPoint(fitResultsChi2Limit->GetN(), i, chi2MCLimit); |
1239 | min = TMath::Min(min, chi2MC); |
1240 | max = TMath::Max(max, chi2MC); |
1241 | |
1242 | TH1* chi2Result = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone(Form("chi2Result_%d", i)); |
1243 | if (!firstChi) |
1244 | firstChi = (TH1*) chi2Result->Clone("firstChi"); |
1245 | |
1246 | mult->ApplyBayesianMethod(histID, kFALSE, AliMultiplicityCorrection::kTrVtx, 1, 100); |
1247 | mult->DrawComparison(Form("DifferentSamples_%d_Bayesian", i), histID, kFALSE, kTRUE, mc); |
1248 | TH1* bayesResult = (TH1*) mult->GetMultiplicityESDCorrected(histID)->Clone(Form("bayesResult_%d", i)); |
1249 | if (!firstBayesian) |
1250 | firstBayesian = (TH1*) bayesResult->Clone("firstBayesian"); |
1251 | |
1252 | TFile* file = TFile::Open("DifferentSamples.root", "UPDATE"); |
1253 | mc->Write(); |
1254 | chi2Result->Write(); |
1255 | bayesResult->Write(); |
1256 | file->Close(); |
1257 | |
1258 | mult->GetComparisonResults(&chi2MC, &chi2MCLimit, 0); |
1259 | fitResultsBayes->SetPoint(fitResultsBayes->GetN(), i, chi2MC); |
1260 | fitResultsBayesLimit->SetPoint(fitResultsBayesLimit->GetN(), i, chi2MCLimit); |
1261 | |
1262 | min = TMath::Min(min, chi2MC); |
1263 | max = TMath::Max(max, chi2MC); |
1264 | mc->GetXaxis()->SetRangeUser(0, 150); |
1265 | chi2Result->GetXaxis()->SetRangeUser(0, 150); |
1266 | |
1267 | // skip errors for now |
1268 | for (Int_t j=0; j<=chi2Result->GetNbinsX(); ++j) |
1269 | { |
1270 | chi2Result->SetBinError(j, 0); |
1271 | bayesResult->SetBinError(j, 0); |
1272 | } |
1273 | |
1274 | canvas4->cd(1); |
1275 | TH1* tmp = (TH1*) chi2Result->Clone("tmp"); |
1276 | tmp->SetTitle("Unfolded/MC;Npart;Ratio"); |
1277 | tmp->Divide(mc); |
1278 | tmp->GetYaxis()->SetRangeUser(0.5, 1.5); |
1279 | tmp->GetXaxis()->SetRangeUser(0, 200); |
1280 | tmp->SetLineColor(i+1); |
1281 | tmp->DrawCopy((i > 0) ? "SAME HIST" : "HIST"); |
1282 | |
1283 | canvas4->cd(2); |
1284 | tmp = (TH1*) bayesResult->Clone("tmp"); |
1285 | tmp->SetTitle("Unfolded/MC;Npart;Ratio"); |
1286 | tmp->Divide(mc); |
1287 | tmp->SetLineColor(i+1); |
1288 | tmp->GetYaxis()->SetRangeUser(0.5, 1.5); |
1289 | tmp->GetXaxis()->SetRangeUser(0, 200); |
1290 | tmp->DrawCopy((i > 0) ? "SAME HIST" : "HIST"); |
1291 | |
1292 | canvas3->cd(1); |
1293 | TH1* tmp = (TH1*) chi2Result->Clone("tmp"); |
1294 | tmp->SetTitle("Ratio to first result;Npart;Ratio"); |
1295 | tmp->Divide(firstChi); |
1296 | tmp->GetYaxis()->SetRangeUser(0.5, 1.5); |
1297 | tmp->GetXaxis()->SetRangeUser(0, 200); |
1298 | tmp->SetLineColor(i+1); |
1299 | legend->AddEntry(tmp, Form("%d", i)); |
1300 | tmp->DrawCopy((i > 0) ? "SAME HIST" : "HIST"); |
1301 | |
1302 | canvas3->cd(2); |
1303 | tmp = (TH1*) bayesResult->Clone("tmp"); |
1304 | tmp->SetTitle("Ratio to first result;Npart;Ratio"); |
1305 | tmp->Divide(firstBayesian); |
1306 | tmp->SetLineColor(i+1); |
1307 | tmp->GetYaxis()->SetRangeUser(0.5, 1.5); |
1308 | tmp->GetXaxis()->SetRangeUser(0, 200); |
1309 | tmp->DrawCopy((i > 0) ? "SAME HIST" : "HIST"); |
1310 | |
1311 | if (i < 4) |
1312 | { |
1313 | canvasA->cd(i+1); |
1314 | } |
1315 | else |
1316 | canvasB->cd(i+1-4); |
1317 | |
1318 | mc->SetFillColor(kYellow); |
1319 | mc->DrawCopy(); |
1320 | chi2Result->SetLineColor(kRed); |
1321 | chi2Result->DrawCopy("SAME"); |
1322 | bayesResult->SetLineColor(kBlue); |
1323 | bayesResult->DrawCopy("SAME"); |
1324 | gPad->SetLogy(); |
1325 | |
1326 | if (i < 4) |
1327 | { |
1328 | canvasA->cd(i+5); |
1329 | } |
1330 | else |
1331 | canvasB->cd(i+5-4); |
1332 | |
1333 | chi2Result->Divide(chi2Result, mc, 1, 1, "B"); |
1334 | bayesResult->Divide(bayesResult, mc, 1, 1, "B"); |
1335 | |
1336 | // skip errors for now |
1337 | for (Int_t j=0; j<=chi2Result->GetNbinsX(); ++j) |
1338 | { |
1339 | chi2Result->SetBinError(j, 0); |
1340 | bayesResult->SetBinError(j, 0); |
1341 | } |
1342 | |
1343 | chi2Result->SetTitle("Ratios;Npart;unfolded measured/MC"); |
1344 | chi2Result->GetYaxis()->SetRangeUser(0.5, 1.5); |
1345 | |
1346 | chi2Result->DrawCopy(""); |
1347 | bayesResult->DrawCopy("SAME"); |
1348 | } |
1349 | |
1350 | canvas3->cd(1); |
1351 | legend->Draw(); |
1352 | |
1353 | canvasA->SaveAs(Form("%s.gif", canvasA->GetName())); |
1354 | canvasB->SaveAs(Form("%s.gif", canvasB->GetName())); |
1355 | |
1356 | TCanvas* canvas2 = new TCanvas("DifferentSamples2", "DifferentSamples2", 800, 400); |
1357 | canvas2->Divide(2, 1); |
1358 | |
1359 | canvas2->cd(1); |
1360 | fitResultsChi2->SetMarkerStyle(20); |
1361 | fitResultsChi2->GetYaxis()->SetRangeUser(0.5 * min, 1.5 * max); |
1362 | fitResultsChi2->Draw("AP"); |
1363 | |
1364 | fitResultsBayes->SetMarkerStyle(3); |
1365 | fitResultsBayes->SetMarkerColor(2); |
1366 | fitResultsBayes->Draw("P SAME"); |
1367 | |
1368 | gPad->SetLogy(); |
1369 | |
1370 | canvas2->cd(2); |
1371 | fitResultsChi2Limit->SetMarkerStyle(20); |
1372 | fitResultsChi2Limit->GetYaxis()->SetRangeUser(0.9 * TMath::Min(fitResultsChi2Limit->GetYaxis()->GetXmin(), fitResultsBayesLimit->GetYaxis()->GetXmin()), 1.1 * TMath::Max(fitResultsChi2Limit->GetYaxis()->GetXmax(), fitResultsBayesLimit->GetYaxis()->GetXmax())); |
1373 | fitResultsChi2Limit->Draw("AP"); |
1374 | |
1375 | fitResultsBayesLimit->SetMarkerStyle(3); |
1376 | fitResultsBayesLimit->SetMarkerColor(2); |
1377 | fitResultsBayesLimit->Draw("P SAME"); |
1378 | |
1379 | canvas2->SaveAs(Form("%s.gif", canvas2->GetName())); |
1380 | canvas3->SaveAs(Form("%s.gif", canvas3->GetName())); |
1381 | canvas4->SaveAs(Form("%s.gif", canvas4->GetName())); |
1382 | } |
1383 | |
cfc19dd5 |
1384 | void Merge(Int_t n, const char** files, const char* output) |
1385 | { |
447c325d |
1386 | // const char* files[] = { "multiplicityMC_100k_1.root", "multiplicityMC_100k_2.root", "multiplicityMC_100k_3.root", "multiplicityMC_100k_4.root", "multiplicityMC_100k_5.root", "multiplicityMC_100k_6.root", "multiplicityMC_100k_7.root", "multiplicityMC_100k_8.root" }; |
1387 | |
1388 | |
cfc19dd5 |
1389 | gSystem->Load("libPWG0base"); |
1390 | |
1391 | AliMultiplicityCorrection** data = new AliMultiplicityCorrection*[n]; |
1392 | TList list; |
1393 | for (Int_t i=0; i<n; ++i) |
1394 | { |
1395 | TString name("Multiplicity"); |
1396 | if (i > 0) |
1397 | name.Form("Multiplicity%d", i); |
1398 | |
1399 | TFile::Open(files[i]); |
1400 | data[i] = new AliMultiplicityCorrection(name, name); |
1401 | data[i]->LoadHistograms("Multiplicity"); |
1402 | if (i > 0) |
1403 | list.Add(data[i]); |
1404 | } |
1405 | |
1406 | data[0]->Merge(&list); |
1407 | |
447c325d |
1408 | //data[0]->DrawHistograms(); |
cfc19dd5 |
1409 | |
1410 | TFile::Open(output, "RECREATE"); |
1411 | data[0]->SaveHistograms(); |
1412 | gFile->Close(); |
1413 | } |
1414 | |
1415 | void testMethod(Int_t caseNo, const char* fileName = "multiplicityMC.root") |
1416 | { |
1417 | gSystem->Load("libPWG0base"); |
1418 | |
1419 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
1420 | |
1421 | TFile::Open(fileName); |
1422 | mult->LoadHistograms("Multiplicity"); |
1423 | |
1424 | TF1* func = 0; |
1425 | |
1426 | if (caseNo >= 4) |
1427 | { |
0b4bfd98 |
1428 | func = new TF1("nbd", "[0] * TMath::Binomial([2]+TMath::Nint(x)-1, [2]-1) * pow([1] / ([1]+[2]), TMath::Nint(x)) * pow(1 + [1]/[2], -[2])", 0, 500); |
cfc19dd5 |
1429 | func->SetParNames("scaling", "averagen", "k"); |
1430 | } |
1431 | |
1432 | switch (caseNo) |
1433 | { |
0b4bfd98 |
1434 | case 0: func = new TF1("flat", "1000"); break; |
cfc19dd5 |
1435 | case 1: func = new TF1("flat", "501-x"); break; |
1436 | case 2: func = new TF1("flat", "1000 * 1/(x+1)"); break; |
1437 | case 3: func = new TF1("flat", "1000 * TMath::Landau(x, 10, 5)"); break; |
dd701109 |
1438 | case 4: func->SetParameters(1e7, 10, 2); break; |
447c325d |
1439 | case 5: func->SetParameters(1, 13, 7); break; |
dd701109 |
1440 | case 6: func->SetParameters(1e7, 30, 4); break; |
0b4bfd98 |
1441 | case 7: func->SetParameters(1e7, 30, 2); break; // *** |
dd701109 |
1442 | case 8: func = new TF1("testlaszlo", "10*1000*x*exp(-0.1*x)"); break; |
cfc19dd5 |
1443 | |
1444 | default: return; |
1445 | } |
1446 | |
447c325d |
1447 | new TCanvas; |
1448 | func->Draw(); |
1449 | |
1450 | mult->SetGenMeasFromFunc(func, 3); |
cfc19dd5 |
1451 | |
dd701109 |
1452 | TFile::Open("out.root", "RECREATE"); |
1453 | mult->SaveHistograms(); |
1454 | |
0b4bfd98 |
1455 | new TCanvas; mult->GetMultiplicityESD(3)->ProjectionY()->DrawCopy(); |
1456 | new TCanvas; mult->GetMultiplicityVtx(3)->ProjectionY()->DrawCopy(); |
1457 | |
dd701109 |
1458 | //mult->ApplyBayesianMethod(2, kFALSE); |
1459 | //mult->ApplyMinuitFit(2, kFALSE); |
cfc19dd5 |
1460 | //mult->ApplyGaussianMethod(2, kFALSE); |
447c325d |
1461 | //mult->ApplyLaszloMethod(2, kFALSE, AliMultiplicityCorrection::kTrVtx); |
dd701109 |
1462 | } |
1463 | |
1464 | void smoothCorrelationMap(const char* fileName = "multiplicityMC.root", Int_t corrMatrix = 2) |
1465 | { |
1466 | gSystem->Load("libPWG0base"); |
1467 | |
1468 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
1469 | |
1470 | TFile::Open(fileName); |
1471 | mult->LoadHistograms("Multiplicity"); |
1472 | |
1473 | // empty under/overflow bins in x, otherwise Project3D takes them into account |
1474 | TH3* corr = mult->GetCorrelation(corrMatrix); |
1475 | for (Int_t j=1; j<=corr->GetYaxis()->GetNbins(); ++j) |
1476 | { |
1477 | for (Int_t k=1; k<=corr->GetZaxis()->GetNbins(); ++k) |
1478 | { |
1479 | corr->SetBinContent(0, j, k, 0); |
1480 | corr->SetBinContent(corr->GetXaxis()->GetNbins()+1, j, k, 0); |
1481 | } |
1482 | } |
1483 | |
1484 | TH2* proj = (TH2*) corr->Project3D("zy"); |
1485 | |
1486 | // normalize correction for given nPart |
1487 | for (Int_t i=1; i<=proj->GetNbinsX(); ++i) |
1488 | { |
1489 | Double_t sum = proj->Integral(i, i, 1, proj->GetNbinsY()); |
1490 | if (sum <= 0) |
1491 | continue; |
1492 | |
1493 | for (Int_t j=1; j<=proj->GetNbinsY(); ++j) |
1494 | { |
1495 | // npart sum to 1 |
1496 | proj->SetBinContent(i, j, proj->GetBinContent(i, j) / sum); |
1497 | proj->SetBinError(i, j, proj->GetBinError(i, j) / sum); |
1498 | } |
1499 | } |
1500 | |
1501 | new TCanvas; |
447c325d |
1502 | proj->DrawCopy("COLZ"); |
dd701109 |
1503 | |
1504 | TH1* scaling = proj->ProjectionY("scaling", 1, 1); |
1505 | scaling->Reset(); |
1506 | scaling->SetMarkerStyle(3); |
1507 | //scaling->GetXaxis()->SetRangeUser(0, 50); |
1508 | TH1* mean = (TH1F*) scaling->Clone("mean"); |
1509 | TH1* width = (TH1F*) scaling->Clone("width"); |
1510 | |
1511 | TF1* lognormal = new TF1("lognormal", "[0]*exp(-(log(x)-[1])^2/(2*[2]^2))/(x*[2]*TMath::Sqrt(2*TMath::Pi()))", 0.01, 500); |
1512 | lognormal->SetParNames("scaling", "mean", "sigma"); |
1513 | lognormal->SetParameters(1, 1, 1); |
1514 | lognormal->SetParLimits(0, 1, 1); |
1515 | lognormal->SetParLimits(1, 0, 100); |
1516 | lognormal->SetParLimits(2, 1e-3, 1); |
1517 | |
1518 | TF1* nbd = new TF1("nbd", "[0] * TMath::Binomial([2]+TMath::Nint(x)-1, [2]-1) * pow([1] / ([1]+[2]), TMath::Nint(x)) * pow(1 + [1]/[2], -[2])", 0, 50); |
1519 | nbd->SetParNames("scaling", "averagen", "k"); |
1520 | nbd->SetParameters(1, 13, 5); |
1521 | nbd->SetParLimits(0, 1, 1); |
1522 | nbd->SetParLimits(1, 1, 100); |
1523 | nbd->SetParLimits(2, 1, 1e8); |
1524 | |
1525 | TF1* poisson = new TF1("poisson", "[0] * exp(-(x+[2])) * (x+[2])**[1] / TMath::Factorial([1])", 0.01, 50); |
1526 | poisson->SetParNames("scaling", "k", "deltax"); |
1527 | poisson->SetParameters(1, 1, 0); |
1528 | poisson->SetParLimits(0, 0, 10); |
1529 | poisson->SetParLimits(1, 0.01, 100); |
1530 | poisson->SetParLimits(2, 0, 10); |
1531 | |
1532 | TF1* mygaus = new TF1("mygaus", "[0] * exp(-(x-[1])**2 / 2 / [2] - [3] * log(x + [4]) / [5])", 0.01, 50); |
1533 | mygaus->SetParNames("scaling", "mean", "width", "scale2log", "logmean", "logwidth"); |
1534 | mygaus->SetParameters(1, 0, 1, 1, 0, 1); |
1535 | mygaus->SetParLimits(2, 1e-5, 10); |
1536 | mygaus->SetParLimits(4, 1, 1); |
1537 | mygaus->SetParLimits(5, 1e-5, 10); |
1538 | |
1539 | //TF1* sqrt = new TF1("sqrt", "[0] + [1] * sqrt((x + [3]) * [2])", 0, 50); |
1540 | TF1* sqrt = new TF1("sqrt", "[0] + (x + [1])**[2]", 0, 50); |
1541 | sqrt->SetParNames("ydelta", "exp", "xdelta"); |
1542 | sqrt->SetParameters(0, 0, 1); |
1543 | sqrt->SetParLimits(1, 0, 10); |
1544 | |
1545 | const char* fitWith = "gaus"; |
1546 | |
1547 | for (Int_t i=1; i<=150; ++i) |
1548 | { |
1549 | printf("Fitting %d...\n", i); |
1550 | |
1551 | TH1* hist = proj->ProjectionY(Form("proj%d", i), i, i, "e"); |
447c325d |
1552 | |
dd701109 |
1553 | //hist->GetXaxis()->SetRangeUser(0, 50); |
1554 | //lognormal->SetParameter(0, hist->GetMaximum()); |
1555 | hist->Fit(fitWith, "0 M", ""); |
1556 | |
1557 | TF1* func = hist->GetListOfFunctions()->FindObject(fitWith); |
1558 | |
447c325d |
1559 | if (0 && (i % 5 == 0)) |
dd701109 |
1560 | { |
447c325d |
1561 | pad = new TCanvas; |
dd701109 |
1562 | hist->Draw(); |
1563 | func->Clone()->Draw("SAME"); |
447c325d |
1564 | pad->SetLogy(); |
dd701109 |
1565 | } |
1566 | |
1567 | scaling->Fill(i, func->GetParameter(0)); |
1568 | mean->Fill(i, func->GetParameter(1)); |
1569 | width->Fill(i, func->GetParameter(2)); |
1570 | } |
1571 | |
1572 | TF1* log = new TF1("log", "[0] + [1] * log([2] * x)", 0.01, 500); |
1573 | log->SetParameters(0, 1, 1); |
1574 | log->SetParLimits(1, 0, 100); |
1575 | log->SetParLimits(2, 1e-3, 10); |
1576 | |
1577 | TF1* over = new TF1("over", "[0] + [1] / (x+[2])", 0.01, 500); |
1578 | over->SetParameters(0, 1, 0); |
1579 | //over->SetParLimits(0, 0, 100); |
1580 | over->SetParLimits(1, 1e-3, 10); |
1581 | over->SetParLimits(2, 0, 100); |
1582 | |
1583 | c1 = new TCanvas("fitparams", "fitparams", 1200, 400); |
1584 | c1->Divide(3, 1); |
1585 | |
1586 | c1->cd(1); |
1587 | scaling->Draw("P"); |
1588 | |
1589 | //TF1* scalingFit = new TF1("mypol0", "[0]"); |
1590 | TF1* scalingFit = over; |
447c325d |
1591 | scaling->Fit(scalingFit, "", "", 3, 140); |
1592 | scalingFit->SetRange(0, 200); |
1593 | scalingFit->Draw("SAME"); |
dd701109 |
1594 | |
1595 | c1->cd(2); |
1596 | mean->Draw("P"); |
1597 | |
1598 | //TF1* meanFit = log; |
1599 | TF1* meanFit = new TF1("mypol1", "[0]+[1]*x"); |
447c325d |
1600 | mean->Fit(meanFit, "", "", 3, 140); |
1601 | meanFit->SetRange(0, 200); |
1602 | meanFit->Draw("SAME"); |
dd701109 |
1603 | |
1604 | c1->cd(3); |
1605 | width->Draw("P"); |
1606 | |
1607 | //TF1* widthFit = over; |
447c325d |
1608 | TF1* widthFit = new TF1("mypol", "[0]+[1]*TMath::Sqrt([2]*x)"); |
1609 | widthFit->SetParLimits(2, 1e-5, 1e5); |
1610 | width->Fit(widthFit, "", "", 5, 140); |
1611 | widthFit->SetRange(0, 200); |
1612 | widthFit->Draw("SAME"); |
dd701109 |
1613 | |
1614 | // build new correction matrix |
1615 | TH2* new = (TH2*) proj->Clone("new"); |
1616 | new->Reset(); |
1617 | Float_t x, y; |
1618 | for (Int_t i=1; i<=new->GetXaxis()->GetNbins(); i+=1) |
1619 | { |
1620 | TF1* func = (TF1*) gROOT->FindObject(fitWith); |
1621 | x = new->GetXaxis()->GetBinCenter(i); |
1622 | //if (i == 1) |
1623 | // x = 0.1; |
1624 | x++; |
1625 | func->SetParameters(scalingFit->Eval(x), meanFit->Eval(x), widthFit->Eval(x)); |
1626 | printf("%f %f %f %f\n", x, scalingFit->Eval(x), meanFit->Eval(x), widthFit->Eval(x)); |
1627 | |
1628 | for (Int_t j=1; j<=new->GetYaxis()->GetNbins(); j+=1) |
1629 | { |
447c325d |
1630 | if (i < 11) |
dd701109 |
1631 | { |
1632 | // leave bins 1..20 untouched |
1633 | new->SetBinContent(i, j, corr->Integral(1, corr->GetNbinsX(), i, i, j, j)); |
1634 | } |
1635 | else |
1636 | { |
1637 | y = new->GetYaxis()->GetBinCenter(j); |
1638 | if (j == 1) |
1639 | y = 0.1; |
1640 | if (func->Eval(y) > 1e-4) |
1641 | new->SetBinContent(i, j, func->Eval(y)); |
1642 | } |
1643 | } |
1644 | } |
1645 | |
1646 | // fill 0 multiplicity bins, this cannot be done with the function because it does not accept 0 |
1647 | // we take the values from the old response matrix |
1648 | //for (Int_t i=1; i<=new->GetXaxis()->GetNbins(); i+=1) |
1649 | // new->SetBinContent(i, 1, proj->GetBinContent(i, 1)); |
1650 | |
1651 | //for (Int_t j=1; j<=new->GetYaxis()->GetNbins(); j+=1) |
1652 | // new->SetBinContent(1, j, proj->GetBinContent(1, j)); |
1653 | |
1654 | // normalize correction for given nPart |
1655 | for (Int_t i=1; i<=new->GetNbinsX(); ++i) |
1656 | { |
1657 | Double_t sum = new->Integral(i, i, 1, proj->GetNbinsY()); |
1658 | if (sum <= 0) |
1659 | continue; |
1660 | |
1661 | for (Int_t j=1; j<=new->GetNbinsY(); ++j) |
1662 | { |
1663 | // npart sum to 1 |
1664 | new->SetBinContent(i, j, new->GetBinContent(i, j) / sum); |
1665 | new->SetBinError(i, j, new->GetBinError(i, j) / sum); |
1666 | } |
1667 | } |
1668 | |
1669 | new TCanvas; |
1670 | new->Draw("COLZ"); |
1671 | |
1672 | TH2* diff = (TH2*) new->Clone("diff"); |
1673 | diff->Add(proj, -1); |
1674 | |
1675 | new TCanvas; |
1676 | diff->Draw("COLZ"); |
1677 | diff->SetMinimum(-0.05); |
1678 | diff->SetMaximum(0.05); |
1679 | |
1680 | corr->Reset(); |
1681 | |
1682 | for (Int_t i=1; i<=new->GetNbinsX(); ++i) |
1683 | for (Int_t j=1; j<=new->GetNbinsY(); ++j) |
1684 | corr->SetBinContent(corr->GetXaxis()->GetNbins() / 2, i, j, new->GetBinContent(i, j)); |
1685 | |
1686 | new TCanvas; |
1687 | corr->Project3D("zy")->Draw("COLZ"); |
1688 | |
1689 | TFile::Open("out.root", "RECREATE"); |
1690 | mult->SaveHistograms(); |
1691 | |
1692 | TH1* proj1 = proj->ProjectionY("proj1", 36, 36); |
1693 | TH1* proj2 = new->ProjectionY("proj2", 36, 36); |
1694 | proj2->SetLineColor(2); |
1695 | |
1696 | new TCanvas; |
1697 | proj1->Draw(); |
1698 | proj2->Draw("SAME"); |
cfc19dd5 |
1699 | } |
447c325d |
1700 | |
0b4bfd98 |
1701 | void buildCorrelationMap(const char* fileName = "multiplicityMC_2M.root", Int_t corrMatrix = 3) |
1702 | { |
1703 | gSystem->Load("libPWG0base"); |
1704 | |
1705 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
1706 | |
1707 | TFile::Open(fileName); |
1708 | mult->LoadHistograms("Multiplicity"); |
1709 | |
1710 | TH3F* new = mult->GetCorrelation(corrMatrix); |
1711 | new->Reset(); |
1712 | |
1713 | TF1* func = new TF1("func", "gaus(0)"); |
1714 | |
1715 | Int_t vtxBin = new->GetNbinsX() / 2; |
1716 | if (vtxBin == 0) |
1717 | vtxBin = 1; |
1718 | |
1719 | Float_t sigma = 2; |
1720 | for (Int_t i=1; i<=new->GetYaxis()->GetNbins(); i+=1) |
1721 | { |
1722 | Float_t x = new->GetYaxis()->GetBinCenter(i); |
1723 | func->SetParameters(1, x * 0.8, sigma); |
1724 | //func->SetParameters(1, x, sigma); |
1725 | |
1726 | for (Int_t j=1; j<=new->GetZaxis()->GetNbins(); j+=1) |
1727 | { |
1728 | Float_t y = new->GetYaxis()->GetBinCenter(j); |
1729 | |
1730 | // cut at 1 sigma |
1731 | if (TMath::Abs(y-x*0.8) < sigma) |
1732 | new->SetBinContent(vtxBin, i, j, func->Eval(y)); |
1733 | |
1734 | // test only bin 40 has smearing |
1735 | //if (x != 40) |
1736 | // new->SetBinContent(vtxBin, i, j, (i == j)); |
1737 | } |
1738 | } |
1739 | |
1740 | new TCanvas; |
1741 | new->Project3D("zy")->DrawCopy("COLZ"); |
1742 | |
1743 | TFile* file = TFile::Open("out.root", "RECREATE"); |
1744 | mult->SetCorrelation(corrMatrix, new); |
1745 | mult->SaveHistograms(); |
1746 | file->Close(); |
1747 | } |
1748 | |
447c325d |
1749 | void GetCrossSections(const char* fileName) |
1750 | { |
1751 | gSystem->Load("libPWG0base"); |
1752 | |
1753 | AliMultiplicityCorrection* mult = new AliMultiplicityCorrection("Multiplicity", "Multiplicity"); |
1754 | |
1755 | TFile::Open(fileName); |
1756 | mult->LoadHistograms("Multiplicity"); |
1757 | |
1758 | TH1* xSection2 = mult->GetCorrelation(3)->Project3D("y")->Clone("xSection2"); |
1759 | xSection2->Sumw2(); |
1760 | xSection2->Scale(1.0 / xSection2->Integral()); |
1761 | |
1762 | TH1* xSection15 = mult->GetCorrelation(2)->Project3D("y")->Clone("xSection15"); |
1763 | xSection15->Sumw2(); |
1764 | xSection15->Scale(1.0 / xSection15->Integral()); |
1765 | |
1766 | TFile::Open("crosssection.root", "RECREATE"); |
1767 | xSection2->Write(); |
1768 | xSection15->Write(); |
1769 | gFile->Close(); |
1770 | } |
0b4bfd98 |
1771 | |
1772 | void BuildResponseFromTree(const char* fileName, const char* target) |
1773 | { |
1774 | // |
1775 | // builds several response matrices with different particle ratios (systematic study) |
1776 | // |
1777 | |
1778 | gSystem->Load("libPWG0base"); |
1779 | |
1780 | TFile::Open(fileName); |
1781 | TNtuple* fParticleSpecies = (TNtuple*) gFile->Get("fParticleSpecies"); |
1782 | |
1783 | TFile* file = TFile::Open(target, "RECREATE"); |
1784 | file->Close(); |
1785 | |
1786 | Int_t tracks = 0; // control variables |
1787 | Int_t noLabel = 0; |
6d81c2de |
1788 | Int_t secondaries = 0; |
0b4bfd98 |
1789 | Int_t doubleCount = 0; |
1790 | |
6d81c2de |
1791 | for (Int_t num = 0; num < 1; num++) |
0b4bfd98 |
1792 | { |
1793 | AliMultiplicityCorrection* fMultiplicity = new AliMultiplicityCorrection(Form("Multiplicity_%d", num), Form("Multiplicity_%d", num)); |
1794 | |
1795 | Float_t ratio[4]; // pi, K, p, other |
1796 | for (Int_t i = 0; i < 4; i++) |
1797 | ratio[i] = 1; |
1798 | |
1799 | switch (num) |
1800 | { |
1801 | case 1 : ratio[1] = 0.5; break; |
1802 | case 2 : ratio[2] = 0.5; break; |
1803 | case 3 : ratio[1] = 1.5; break; |
1804 | case 4 : ratio[2] = 1.5; break; |
1805 | case 5 : ratio[1] = 0.5; ratio[2] = 0.5; break; |
1806 | case 6 : ratio[1] = 1.5; ratio[2] = 1.5; break; |
1807 | } |
1808 | |
1809 | for (Int_t i=0; i<fParticleSpecies->GetEntries(); i++) |
1810 | { |
1811 | fParticleSpecies->GetEvent(i); |
1812 | |
1813 | Float_t* f = fParticleSpecies->GetArgs(); |
1814 | |
1815 | Float_t gene = 0; |
1816 | Float_t meas = 0; |
1817 | |
1818 | for (Int_t j = 0; j < 4; j++) |
1819 | { |
1820 | gene += ratio[j] * f[j+1]; |
1821 | meas += ratio[j] * f[j+1+4]; |
1822 | tracks += f[j+1+4]; |
1823 | } |
1824 | |
1825 | // add the ones w/o label |
1826 | tracks += f[9]; |
1827 | noLabel += f[9]; |
1828 | |
6d81c2de |
1829 | // secondaries are already part of meas! |
1830 | secondaries += f[10]; |
1831 | |
1832 | // double counted are already part of meas! |
1833 | doubleCount += f[11]; |
0b4bfd98 |
1834 | |
6d81c2de |
1835 | // ones w/o label are added without weighting to allow comparison to default analysis. however this is only valid when their fraction is low enough! |
0b4bfd98 |
1836 | meas += f[9]; |
0b4bfd98 |
1837 | |
1838 | //Printf("%.f %.f %.f %.f %.f", f[5], f[6], f[7], f[8], f[9]); |
1839 | |
6d81c2de |
1840 | fMultiplicity->FillCorrection(f[0], gene, gene, gene, gene, 0, meas, meas, meas, meas); |
1841 | fMultiplicity->FillGenerated(f[0], kTRUE, kTRUE, gene, gene, gene, gene, 0); |
1842 | fMultiplicity->FillMeasured(f[0], meas, meas, meas, meas); |
0b4bfd98 |
1843 | } |
1844 | |
1845 | //fMultiplicity->DrawHistograms(); |
1846 | |
1847 | TFile* file = TFile::Open(target, "UPDATE"); |
1848 | fMultiplicity->SaveHistograms(); |
1849 | file->Close(); |
1850 | |
1851 | if (num == 0) |
6d81c2de |
1852 | { |
1853 | Printf("%d total tracks, %d w/o label = %.2f %%, %d double counted = %.2f %%, secondaries = %.2f %%", tracks, noLabel, 100.0 * noLabel / tracks, doubleCount, 100.0 * doubleCount / tracks, 100.0 * secondaries / tracks); |
1854 | if ((Float_t) noLabel / tracks > 0.02) |
1855 | Printf("WARNING: More than 2%% of tracks without label, this might bias the study!"); |
1856 | } |
0b4bfd98 |
1857 | } |
1858 | } |
1859 | |
1860 | void MergeModifyCrossSection(const char* output) |
1861 | { |
1862 | const char* files[] = { "multiplicityMC_400k_syst_nd.root", "multiplicityMC_400k_syst_sd.root", "multiplicityMC_400k_syst_dd.root" }; |
1863 | |
1864 | gSystem->Load("libPWG0base"); |
1865 | |
1866 | TFile::Open(output, "RECREATE"); |
1867 | gFile->Close(); |
1868 | |
1869 | for (Int_t num=0; num<7; ++num) |
1870 | { |
1871 | AliMultiplicityCorrection* data[3]; |
1872 | TList list; |
1873 | |
1874 | Float_t ratio[3]; |
1875 | switch (num) |
1876 | { |
1877 | case 0: ratio[0] = 1.0; ratio[1] = 1.0; ratio[2] = 1.0; break; |
1878 | case 1: ratio[0] = 1.0; ratio[1] = 1.5; ratio[2] = 1.0; break; |
1879 | case 2: ratio[0] = 1.0; ratio[1] = 0.5; ratio[2] = 1.0; break; |
1880 | case 3: ratio[0] = 1.0; ratio[1] = 1.0; ratio[2] = 1.5; break; |
1881 | case 4: ratio[0] = 1.0; ratio[1] = 1.0; ratio[2] = 0.5; break; |
1882 | case 5: ratio[0] = 1.0; ratio[1] = 1.5; ratio[2] = 1.5; break; |
1883 | case 6: ratio[0] = 1.0; ratio[1] = 0.5; ratio[2] = 0.5; break; |
1884 | default: return; |
1885 | } |
1886 | |
1887 | for (Int_t i=0; i<3; ++i) |
1888 | { |
1889 | TString name; |
1890 | name.Form("Multiplicity_%d", num); |
1891 | if (i > 0) |
1892 | name.Form("Multiplicity_%d_%d", num, i); |
1893 | |
1894 | TFile::Open(files[i]); |
1895 | data[i] = new AliMultiplicityCorrection(name, name); |
1896 | data[i]->LoadHistograms("Multiplicity"); |
1897 | |
1898 | // modify x-section |
1899 | for (Int_t j=0; j<AliMultiplicityCorrection::kMCHists; j++) |
1900 | { |
1901 | data[i]->GetMultiplicityVtx(j)->Scale(ratio[i]); |
1902 | data[i]->GetMultiplicityMB(j)->Scale(ratio[i]); |
1903 | data[i]->GetMultiplicityINEL(j)->Scale(ratio[i]); |
1904 | } |
1905 | |
1906 | for (Int_t j=0; j<AliMultiplicityCorrection::kESDHists; j++) |
1907 | data[i]->GetMultiplicityESD(j)->Scale(ratio[i]); |
1908 | |
1909 | for (Int_t j=0; j<AliMultiplicityCorrection::kCorrHists; j++) |
1910 | data[i]->GetCorrelation(j)->Scale(ratio[i]); |
1911 | |
1912 | if (i > 0) |
1913 | list.Add(data[i]); |
1914 | } |
1915 | |
1916 | printf("Case %d, %s: Entries in response matrix 3: ND: %.2f SD: %.2f DD: %.2f", num, data[0]->GetName(), data[0]->GetCorrelation(3)->Integral(), data[1]->GetCorrelation(3)->Integral(), data[2]->GetCorrelation(3)->Integral()); |
1917 | |
1918 | data[0]->Merge(&list); |
1919 | |
1920 | Printf(" Total: %.2f", data[0]->GetCorrelation(3)->Integral()); |
1921 | |
1922 | TFile::Open(output, "UPDATE"); |
1923 | data[0]->SaveHistograms(); |
1924 | gFile->Close(); |
1925 | |
1926 | list.Clear(); |
1927 | |
1928 | for (Int_t i=0; i<3; ++i) |
1929 | delete data[i]; |
1930 | } |
1931 | } |