implementing suggestions from V. Koch (differential 2p correlators)
[u/mrichter/AliRoot.git] / PWG2 / FLOW / AliFlowCommon / AliFlowAnalysisWithMixedHarmonics.h
CommitLineData
d66d46f7 1/*
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved.
3 * See cxx source for full Copyright notice
4 * $Id$
5 */
6
7/**********************************************************
8 * In this class azimuthal correlators in mixed harmonics *
9 * are implemented in terms of Q-vectors. This approach *
10 * doesn't require evaluation of nested loops. This class *
11 * can be used to: *
12 * *
13 * a) Extract subdominant harmonics (like v1 and v4); *
5c078806 14 * b) Study flow of two-particle resonances; *
15 * c) Study strong parity violation. *
d66d46f7 16 * *
e999459d 17 * Author: Ante Bilandzic (abilandzic@gmail.com) *
d66d46f7 18 *********************************************************/
19
20#ifndef ALIFLOWANALYSISWITHMIXEDHARMONICS_H
21#define ALIFLOWANALYSISWITHMIXEDHARMONICS_H
22
23#include "AliFlowCommonConstants.h" // needed as include
24#include "TMatrixD.h"
25
929098e4 26class TDirectoryFile;
d66d46f7 27class TList;
28class TFile;
929098e4 29class TH1F;
30class TH1D;
67a6b178 31class TH2D;
d66d46f7 32class TProfile;
33class TProfile2D;
34
35class AliFlowEventSimple;
36class AliFlowCommonHist;
37class AliFlowCommonHistResults;
38
39//================================================================================================================
40
41class AliFlowAnalysisWithMixedHarmonics
42{
43 public:
44 AliFlowAnalysisWithMixedHarmonics();
45 virtual ~AliFlowAnalysisWithMixedHarmonics();
46 // 0.) Methods called in the constructor:
41e6d9e4 47 virtual void InitializeArrays();
48
d66d46f7 49 // 1.) Method Init() and methods called within Init():
50 virtual void Init();
41e6d9e4 51 virtual void CrossCheckSettings();
52 virtual void AccessConstants();
53 virtual void BookAndNestAllLists();
54 virtual void BookProfileHoldingSettings();
55 virtual void BookCommonHistograms();
56 virtual void BookAllEventByEventQuantities();
57 virtual void BookAllAllEventQuantities();
58 virtual void BookDefault(); // book histos and profiles without any binning in multiplicity, pt or eta
59 virtual void BookVsM();
60 virtual void BookDifferential();
61 virtual void BookAndFillWeightsHistograms();
62 virtual void StoreHarmonic();
63
64 // 2.) Method Make() and methods called within Make():
d66d46f7 65 virtual void Make(AliFlowEventSimple *anEvent);
41e6d9e4 66 virtual void CheckPointersUsedInMake();
67 virtual void Calculate3pCorrelator();
68 virtual void CalculateNonIsotropicTerms();
69 virtual void CalculateDifferential3pCorrelator(Double_t &gIntegratedValue);
70
71 virtual void ResetEventByEventQuantities();
72
d66d46f7 73 // 3.) Method Finish() and methods called within Finish():
74 virtual void Finish();
41e6d9e4 75 virtual void AccessSettings();
76 virtual void CheckPointersUsedInFinish();
77 virtual void CorrectForDetectorEffects();
78 virtual void CorrectForDetectorEffectsVsM();
79 virtual void PrintOnTheScreen();
e409ac85 80 virtual void GetCorrelatorAndError(TProfile *g3pCorrelatorVsPt,
81 Double_t &g3pCorrelatorValue,
82 Double_t &g3pCorrelatorError);
83
d66d46f7 84 // 4.) Method GetOutputHistograms and method called within it:
85 virtual void GetOutputHistograms(TList *outputListHistos);
41e6d9e4 86 virtual void GetPointersForBaseHistograms();
87 virtual void GetPointersForCommonHistograms();
88 virtual void GetPointersForAllEventProfiles();
89 virtual void GetPointersForResultsHistograms();
90
d66d46f7 91 // 5.) Other methods:
92 virtual void WriteHistograms(TString outputFileName);
93 virtual void WriteHistograms(TDirectoryFile *outputFileName);
41e6d9e4 94
d66d46f7 95 // 6.) Setters and getters:
96 void SetHistList(TList* const hl) {this->fHistList = hl;}
97 TList* GetHistList() const {return this->fHistList;}
98 void SetHistListName(const char *hln) {this->fHistListName->Append(*hln);};
99 TString *GetHistListName() const {return this->fHistListName;};
e999459d 100 void SetHarmonic(Int_t const harmonic) {this->fHarmonic = harmonic;};
101 Int_t GetHarmonic() const {return this->fHarmonic;};
d66d46f7 102 void SetAnalysisLabel(const char *al) {this->fAnalysisLabel->Append(*al);};
103 TString *GetAnalysisLabel() const {return this->fAnalysisLabel;};
104 void SetAnalysisSettings(TProfile* const as) {this->fAnalysisSettings = as;};
ecac11c2 105 TProfile* GetAnalysisSettings() const {return this->fAnalysisSettings;};
d66d46f7 106 void SetNoOfMultipicityBins(Int_t const nomb) {this->fNoOfMultipicityBins = nomb;};
107 Int_t GetNoOfMultipicityBins() const {return this->fNoOfMultipicityBins;};
108 void SetMultipicityBinWidth(Double_t const mbw) {this->fMultipicityBinWidth = mbw;};
109 Double_t GetMultipicityBinWidth() const {return this->fMultipicityBinWidth;};
110 void SetMinMultiplicity(Double_t const mm) {this->fMinMultiplicity = mm;};
111 Double_t GetMinMultiplicity() const {return this->fMinMultiplicity;};
e999459d 112 void SetOppositeChargesPOI(Bool_t const ocp) {this->fOppositeChargesPOI = ocp;};
113 Bool_t GetOppositeChargesPOI() const {return this->fOppositeChargesPOI;};
114 void SetEvaluateDifferential3pCorrelator(Bool_t const ed3pc) {this->fEvaluateDifferential3pCorrelator = ed3pc;};
115 Bool_t GetEvaluateDifferential3pCorrelator() const {return this->fEvaluateDifferential3pCorrelator;};
d66d46f7 116 void SetCorrectForDetectorEffects(Bool_t const cfde) {this->fCorrectForDetectorEffects = cfde;};
117 Bool_t GetCorrectForDetectorEffects() const {return this->fCorrectForDetectorEffects;};
5c078806 118 void SetPrintOnTheScreen(Bool_t const pots) {this->fPrintOnTheScreen = pots;};
b71a354b 119 Bool_t GetPrintOnTheScreen() const {return this->fPrintOnTheScreen;};
120 void SetCalculateVsM(Bool_t const cvm) {this->fCalculateVsM = cvm;};
121 Bool_t GetCalculateVsM() const {return this->fCalculateVsM;};
122 void SetShowBinLabelsVsM(Bool_t const sblvm) {this->fShowBinLabelsVsM = sblvm;};
123 Bool_t GetShowBinLabelsVsM() const {return this->fShowBinLabelsVsM;};
d66d46f7 124 void SetCommonHists(AliFlowCommonHist* const ch) {this->fCommonHists = ch;};
125 AliFlowCommonHist* GetCommonHists() const {return this->fCommonHists;};
126 void SetWeightsList(TList* const wl) {this->fWeightsList = (TList*)wl->Clone();}
127 TList* GetWeightsList() const {return this->fWeightsList;}
128 void SetUsePhiWeights(Bool_t const uPhiW) {this->fUsePhiWeights = uPhiW;};
129 Bool_t GetUsePhiWeights() const {return this->fUsePhiWeights;};
130 void SetUsePtWeights(Bool_t const uPtW) {this->fUsePtWeights = uPtW;};
131 Bool_t GetUsePtWeights() const {return this->fUsePtWeights;};
132 void SetUseEtaWeights(Bool_t const uEtaW) {this->fUseEtaWeights = uEtaW;};
133 Bool_t GetUseEtaWeights() const {return this->fUseEtaWeights;};
134 void SetUseParticleWeights(TProfile* const uPW) {this->fUseParticleWeights = uPW;};
135 TProfile* GetUseParticleWeights() const {return this->fUseParticleWeights;};
136 void SetPhiWeights(TH1F* const histPhiWeights) {this->fPhiWeights = histPhiWeights;};
137 TH1F* GetPhiWeights() const {return this->fPhiWeights;};
138 void SetPtWeights(TH1D* const histPtWeights) {this->fPtWeights = histPtWeights;};
139 TH1D* GetPtWeights() const {return this->fPtWeights;};
140 void SetEtaWeights(TH1D* const histEtaWeights) {this->fEtaWeights = histEtaWeights;};
141 TH1D* GetEtaWeights() const {return this->fEtaWeights;};
ecac11c2 142 void SetProfileList(TList* const plist) {this->fProfileList = plist;}
143 TList* GetProfileList() const {return this->fProfileList;}
d66d46f7 144 void Set3pCorrelatorPro(TProfile* const s3pPro) {this->f3pCorrelatorPro = s3pPro;};
145 TProfile* Get3pCorrelatorPro() const {return this->f3pCorrelatorPro;};
ecac11c2 146 void SetNonIsotropicTermsPro(TProfile* const nitPro) {this->fNonIsotropicTermsPro = nitPro;};
d66d46f7 147 TProfile* GetNonIsotropicTermsPro() const {return this->fNonIsotropicTermsPro;};
ecac11c2 148 void Set3pCorrelatorVsMPro(TProfile* const s3pVsMPro) {this->f3pCorrelatorVsMPro = s3pVsMPro;};
d66d46f7 149 TProfile* Get3pCorrelatorVsMPro() const {return this->f3pCorrelatorVsMPro;};
41e6d9e4 150 void Set3pPOICorrelatorVsM(TProfile* const s3pPOIVsM) {this->f3pPOICorrelatorVsM = s3pPOIVsM;};
151 TProfile* Get3pPOICorrelatorVsM() const {return this->f3pPOICorrelatorVsM;};
ecac11c2 152 void SetNonIsotropicTermsVsMPro(TProfile2D* const nitVsMPro) {this->fNonIsotropicTermsVsMPro = nitVsMPro;};
d66d46f7 153 TProfile2D* GetNonIsotropicTermsVsMPro() const {return this->fNonIsotropicTermsVsMPro;};
e409ac85 154 void Set2pCorrelatorCosPsiDiff(TProfile* const g2pCorrelatorCosPsiDiff) {this->f2pCorrelatorCosPsiDiff = g2pCorrelatorCosPsiDiff;};
155 TProfile* Get2pCorrelatorCosPsiDiff() const {return this->f2pCorrelatorCosPsiDiff;};
156 void Set2pCorrelatorCosPsiSum(TProfile* const g2pCorrelatorCosPsiSum) {this->f2pCorrelatorCosPsiSum = g2pCorrelatorCosPsiSum;};
157 TProfile* Get2pCorrelatorCosPsiSum() const {return this->f2pCorrelatorCosPsiSum;};
158 void Set2pCorrelatorSinPsiDiff(TProfile* const g2pCorrelatorSinPsiDiff) {this->f2pCorrelatorSinPsiDiff = g2pCorrelatorSinPsiDiff;};
159 TProfile* Get2pCorrelatorSinPsiDiff() const {return this->f2pCorrelatorSinPsiDiff;};
160 void Set2pCorrelatorSinPsiSum(TProfile* const g2pCorrelatorSinPsiSum) {this->f2pCorrelatorSinPsiSum = g2pCorrelatorSinPsiSum;};
161 TProfile* Get2pCorrelatorSinPsiSum() const {return this->f2pCorrelatorSinPsiSum;};
162
163
d66d46f7 164 void SetResultsList(TList* const rlist) {this->fResultsList = rlist;}
5c078806 165 TList* GetResultsList() const {return this->fResultsList;}
166 void Set3pCorrelatorHist(TH1D* const s3pHist) {this->f3pCorrelatorHist = s3pHist;};
e558a733 167 TH1D* Get3pCorrelatorHist() const {return this->f3pCorrelatorHist;};
168 void Set3pCorrelatorVsMHist(TH1D* const s3pVsMHist) {this->f3pCorrelatorVsMHist = s3pVsMHist;};
169 TH1D* Get3pCorrelatorVsMHist() const {return this->f3pCorrelatorVsMHist;};
d66d46f7 170 void SetDetectorBiasHist(TH1D* const dbHist) {this->fDetectorBiasHist = dbHist;};
171 TH1D* GetDetectorBiasHist() const {return this->fDetectorBiasHist;};
d66d46f7 172 void SetDetectorBiasVsMHist(TH1D* const dbVsMHist) {this->fDetectorBiasVsMHist = dbVsMHist;};
173 TH1D* GetDetectorBiasVsMHist() const {return this->fDetectorBiasVsMHist;};
5c078806 174 void Set3pCorrelatorVsPtSumDiffPro(TProfile* const s3pcvpsd, Int_t const sd) {this->f3pCorrelatorVsPtSumDiffPro[sd] = s3pcvpsd;};
175 TProfile* Get3pCorrelatorVsPtSumDiffPro(Int_t sd) const {return this->f3pCorrelatorVsPtSumDiffPro[sd];};
41e6d9e4 176 void Set3pCorrelatorVsEtaSumDiffPro(TProfile* const s3pcvpsd, Int_t const sd) {this->f3pCorrelatorVsEtaSumDiffPro[sd] = s3pcvpsd;};
177 TProfile* Get3pCorrelatorVsEtaSumDiffPro(Int_t sd) const {return this->f3pCorrelatorVsEtaSumDiffPro[sd];};
178
e409ac85 179 //void Set2pCorrelatorHist(TH1D* const s2pHist) {this->f2pCorrelatorHist = s2pHist;};
180 //TH1D* Get2pCorrelatorHist() const {return this->f2pCorrelatorHist;};
41e6d9e4 181
d66d46f7 182 private:
183 AliFlowAnalysisWithMixedHarmonics(const AliFlowAnalysisWithMixedHarmonics& afawQc);
184 AliFlowAnalysisWithMixedHarmonics& operator=(const AliFlowAnalysisWithMixedHarmonics& afawQc);
41e6d9e4 185
d66d46f7 186 // 0.) Base:
187 TList *fHistList; // base list to hold all output objects
188 TString *fHistListName; // name of base list
e999459d 189 Int_t fHarmonic; // harmonic n in cos[n*(phi1+phi2-2phi3)] and cos[n*(psi1+psi2-2phi3)]
d66d46f7 190 TString *fAnalysisLabel; // analysis label
191 TProfile *fAnalysisSettings; // profile to hold analysis settings
d66d46f7 192 Int_t fNoOfMultipicityBins; // number of multiplicity bins
193 Double_t fMultipicityBinWidth; // width of multiplicity bin
194 Double_t fMinMultiplicity; // minimal multiplicity
e999459d 195 Bool_t fOppositeChargesPOI; // two POIs, psi1 and psi2, in correlator <<cos[psi1+psi2-2phi3)]>> will be taken with opposite charges
196 Bool_t fEvaluateDifferential3pCorrelator; // evaluate <<cos[psi1+psi2-2phi3)]>>, where psi1 and psi2 are two POIs
d66d46f7 197 Bool_t fCorrectForDetectorEffects; // correct 3-p correlator for detector effects
5c078806 198 Bool_t fPrintOnTheScreen; // print or not the final results on the screen
b71a354b 199 Bool_t fCalculateVsM; // calculate correlators vs multiplicity
200 Bool_t fShowBinLabelsVsM; // in histograms holding results vs multiplicity show bin labels in the format M_lowEdge \leq M < M_upperEdge
41e6d9e4 201
d66d46f7 202 // 1.) Common:
203 AliFlowCommonHist *fCommonHists; // common control histograms (filled only with events with 3 or more tracks for 3-p correlators)
204 Int_t fnBinsPhi; // number of phi bins
205 Double_t fPhiMin; // minimum phi
206 Double_t fPhiMax; // maximum phi
207 Double_t fPhiBinWidth; // bin width for phi histograms
208 Int_t fnBinsPt; // number of pt bins
209 Double_t fPtMin; // minimum pt
210 Double_t fPtMax; // maximum pt
211 Double_t fPtBinWidth; // bin width for pt histograms
212 Int_t fnBinsEta; // number of eta bins
213 Double_t fEtaMin; // minimum eta
214 Double_t fEtaMax; // maximum eta
215 Double_t fEtaBinWidth; // bin width for eta histograms
41e6d9e4 216
d66d46f7 217 // 2a.) Particle weights:
218 TList *fWeightsList; // list to hold all histograms with particle weights: fUseParticleWeights, fPhiWeights, fPtWeights and fEtaWeights
219 Bool_t fUsePhiWeights; // use phi weights
220 Bool_t fUsePtWeights; // use pt weights
221 Bool_t fUseEtaWeights; // use eta weights
222 TProfile *fUseParticleWeights; // profile with three bins to hold values of fUsePhiWeights, fUsePtWeights and fUseEtaWeights
223 TH1F *fPhiWeights; // histogram holding phi weights
224 TH1D *fPtWeights; // histogram holding phi weights
225 TH1D *fEtaWeights; // histogram holding phi weights
41e6d9e4 226
d66d46f7 227 // 3.) Event-by-event quantities:
228 TMatrixD *fReQnk; // fReQ[n][k] = Re[Q_{n,k}] = sum_{i=1}^{M} w_{i}^{k} cos(n*phi_{i})
229 TMatrixD *fImQnk; // fImQ[n][k] = Im[Q_{n,k}] = sum_{i=1}^{M} w_{i}^{k} sin(n*phi_{i})
230 TMatrixD *fSpk; // fS[p][k] = S_{p,k} = (sum_{i=1}^{M} w_{i}^{k})^{p+1} // note p+1 in the power to use 0th index in p in non-trivial way
5c078806 231 TProfile *fRePEBE[2]; // real part of p_n vs [(p1+p2)/2,|p1-p2|]
232 TProfile *fImPEBE[2]; // imaginary part of p_n vs [(p1+p2)/2,|p1-p2|]
e999459d 233 TProfile *fOverlapEBE[2][2]; // cos[n(psi-phi)] vs [(p1+p2)/2,|p1-p2|], where phi stands for 1st/2nd POI which is also RP
41e6d9e4 234 TProfile *fReEtaEBE[2]; // real part of p_n vs [(eta1+eta2)/2,|eta1-eta2|]
235 TProfile *fImEtaEBE[2]; // imaginary part of p_n vs [(eta1+eta2)/2,|eta1-eta2|]
236 TProfile *fOverlapEBE2[2][2]; // cos[n(psi-phi)] vs [(eta1+eta2)/2,|eta1-eta2|], where phi stands for 1st/2nd POI which is also RP
237
d66d46f7 238 // 4.) Profiles:
ecac11c2 239 TList *fProfileList; // list holding all all-event profiles
e999459d 240 TProfile *f3pCorrelatorPro; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> (not corrected for detector effects)
241 TProfile *fNonIsotropicTermsPro; // non-isotropic terms in the decomposition of 3-p correlator <<cos[n(phi1+phi2-2phi3)]>>
242 TProfile *f3pCorrelatorVsMPro; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> vs multiplicity
41e6d9e4 243 TProfile *f3pPOICorrelatorVsM; // 3-p correlator <<cos[n(psi1+psi2-2phi3)]>> vs multiplicity
e999459d 244 TProfile2D *fNonIsotropicTermsVsMPro; // non-isotropic terms in the decomposition of <cos[n(phi1+phi2-2phi3))]> vs multiplicity
245 TProfile *f3pCorrelatorVsPtSumDiffPro[2]; // differential 3-p correlator <<cos[psi1+psi2-2phi3)]>> vs [(p1+p2)/2,|p1-p2|]
41e6d9e4 246 TProfile *f3pCorrelatorVsEtaSumDiffPro[2]; // differential 3-p correlator <<cos[psi1+psi2-2phi3)]>> vs [(eta1+eta2)/2,|eta1-eta2|]
e409ac85 247 TProfile *f2pCorrelatorCosPsiDiff; // <<cos[n(psi1-psi2)]
248 TProfile *f2pCorrelatorCosPsiSum; // <<cos[n(psi1+psi2)]
249 TProfile *f2pCorrelatorSinPsiDiff; // <<sin[n(psi1-psi2)]
250 TProfile *f2pCorrelatorSinPsiSum; // <<sin[n(psi1+psi2)]
41e6d9e4 251
d66d46f7 252 // 5.) Final results:
253 TList *fResultsList; // list holding objects with final results
e999459d 254 TH1D *f3pCorrelatorHist; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> corrected for detector effects
255 TH1D *fDetectorBiasHist; // bias coming from detector inefficiencies to 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> (in %)
256 TH1D *f3pCorrelatorVsMHist; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> vs multiplicity corrected for detector effects
257 TH1D *fDetectorBiasVsMHist; // bias coming from detector inefficiencies to 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> (in %) versus multiplicity
e409ac85 258 //TH1D *f2pCorrelatorHist;//<<cos[(psi1-psi2)]>>
5c078806 259
d66d46f7 260 ClassDef(AliFlowAnalysisWithMixedHarmonics, 0);
261
262};
263
264//================================================================================================================
265
266#endif
267
268
269
270
271