From Francesco: Added AliFlowVZEROResults class
[u/mrichter/AliRoot.git] / PWGJE / AliAnalysisTaskJetCore.h
CommitLineData
75bf77e3 1#ifndef ALIANALYSISTASKJETCORE_H
2#define ALIANALYSISTASKJETCORE_H
3
568f8fa2 4/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
5 * See cxx source for full Copyright notice */
6
7// **************************************
8// This task computes several jet observables like
9// the fraction of energy in inner and outer coronnas,
10// the distance from track to jet axis and a
11// correlation strength distribution of particles inside jets.
12// Author: lcunquei@cern.ch
13// *******************************************
14
75bf77e3 15class TH1F;
8c483a6b 16class TH1I;
75bf77e3 17class TH2F;
18class TH3F;
19class THnSparse;
20class AliESDEvent;
ea693273 21class AliAODExtension;
75bf77e3 22class AliAODEvent;
23
24#include "AliAnalysisTaskSE.h"
25#include "AliVEvent.h"
26
27class AliAnalysisTaskJetCore : public AliAnalysisTaskSE {
28public:
29 AliAnalysisTaskJetCore();
30 AliAnalysisTaskJetCore(const char *name);
31 virtual ~AliAnalysisTaskJetCore();
75bf77e3 32 virtual void LocalInit() {Init();}
33 virtual void Init();
34 virtual void UserCreateOutputObjects();
35 virtual void UserExec(Option_t *option);
36 virtual void Terminate(const Option_t*);
37
38 virtual Int_t GetNInputTracks();
75bf77e3 39
ea693273 40 Double_t RelativePhi(Double_t angle1,Double_t angle2);
75bf77e3 41
42 virtual AliVEvent::EOfflineTriggerTypes GetOfflineTrgMask() const { return fOfflineTrgMask; }
43 virtual void GetBranchNames(TString &branch1, TString &branch2) const { branch1 = fJetBranchName[0]; branch2 = fJetBranchName[1]; }
44 virtual Bool_t GetIsPbPb() const { return fIsPbPb; }
45 virtual Int_t GetMinContribVtx() const { return fMinContribVtx; };
46 virtual Float_t GetVtxZMin() const { return fVtxZMin; }
47 virtual Float_t GetVtxZMax() const { return fVtxZMax; }
48 virtual Int_t GetEvtClassMin() const { return fEvtClassMin; }
49 virtual Int_t GetEvtClassMax() const { return fEvtClassMax; }
50 virtual Float_t GetCentMin() const { return fCentMin; }
51 virtual Float_t GetCentMax() const { return fCentMax; }
52 virtual Int_t GetNInputTracksMin() const { return fNInputTracksMin; }
53 virtual Int_t GetNInputTracksMax() const { return fNInputTracksMax; }
54 virtual Float_t GetJetEtaMin() const { return fJetEtaMin; }
55 virtual Float_t GetJetEtaMax() const { return fJetEtaMax; }
56 virtual Float_t GetJetPtMin() const { return fJetPtMin; }
57 virtual Float_t GetJetPtFractionMin() const { return fJetPtFractionMin; }
58 virtual Int_t GetNMatchJets() const { return fNMatchJets; }
59 virtual void SetBranchNames(const TString &branch1, const TString &branch2);
60 virtual void SetBackgroundBranch(TString &branch) { fBackgroundBranch = branch;}
61 virtual void SetIsPbPb(Bool_t b=kTRUE) { fIsPbPb = b; }
62 virtual void SetOfflineTrgMask(AliVEvent::EOfflineTriggerTypes mask) { fOfflineTrgMask = mask; }
63 virtual void SetMinContribVtx(Int_t n) { fMinContribVtx = n; }
64 virtual void SetVtxZMin(Float_t z) { fVtxZMin = z; }
65 virtual void SetVtxZMax(Float_t z) { fVtxZMax = z; }
66 virtual void SetEvtClassMin(Int_t evtClass) { fEvtClassMin = evtClass; }
67 virtual void SetEvtClassMax(Int_t evtClass) { fEvtClassMax = evtClass; }
8b47ec90 68 virtual void SetFilterMask(UInt_t i){fFilterMask = i;}
ea693273 69 virtual void SetRadioFrac(Float_t radiofrac) { fRadioFrac = radiofrac; }
70 virtual void SetMinDist(Float_t minDist) { fMinDist = minDist; }
75bf77e3 71 virtual void SetCentMin(Float_t cent) { fCentMin = cent; }
72 virtual void SetCentMax(Float_t cent) { fCentMax = cent; }
73 virtual void SetNInputTracksMin(Int_t nTr) { fNInputTracksMin = nTr; }
74 virtual void SetNInputTracksMax(Int_t nTr) { fNInputTracksMax = nTr; }
ea693273 75 virtual void SetAngStructCloseTracks(Int_t yesno){fAngStructCloseTracks=yesno;}
75bf77e3 76 virtual void SetJetEtaMin(Float_t eta) { fJetEtaMin = eta; }
77 virtual void SetJetEtaMax(Float_t eta) { fJetEtaMax = eta; }
78 virtual void SetJetPtMin(Float_t pt) { fJetPtMin = pt; }
79 virtual void SetJetTriggerExclude(UChar_t i) { fJetTriggerExcludeMask = i; }
80 virtual void SetJetPtFractionMin(Float_t frac) { fJetPtFractionMin = frac; }
81 virtual void SetNMatchJets(Int_t n) { fNMatchJets = n; }
82 virtual void SetFillEvent(Bool_t b) { fbEvent = b; }
83 virtual void SetKeepJets(Bool_t b = kTRUE) { fKeepJets = b; }
ea693273 84 virtual void SetNonStdFile(char* c){fNonStdFile = c;}
75bf77e3 85
86
87private:
88 // ESD/AOD events
89 AliESDEvent *fESD; //! ESD object
90 AliAODEvent *fAOD; //! AOD event
ea693273 91 AliAODExtension *fAODExtension; //! where we take the jets from can be input or output AOD
92 Int_t GetListOfTracks(TList *list);
93 Int_t GetListOfTracksCloseToJet(TList *list,AliAODJet *jet);
75bf77e3 94 // jets to compare
95 TString fJetBranchName[2]; // name of jet branches to compare
96 TList *fListJets[2]; //! jet lists
97
98 TString fBackgroundBranch;
ea693273 99 TString fNonStdFile; // name of delta aod file to catch the extension
75bf77e3 100 // event selection
101 Bool_t fIsPbPb; // is Pb-Pb (fast embedding) or p-p (detector response)
102 AliVEvent::EOfflineTriggerTypes fOfflineTrgMask; // mask of offline triggers to accept
103 Int_t fMinContribVtx; // minimum number of track contributors for primary vertex
104 Float_t fVtxZMin; // lower bound on vertex z
105 Float_t fVtxZMax; // upper bound on vertex z
106 Int_t fEvtClassMin; // lower bound on event class
107 Int_t fEvtClassMax; // upper bound on event class
8b47ec90 108 UInt_t fFilterMask; // filter bit for slecected tracks
ea693273 109 Float_t fRadioFrac; //!size of the concentric cone
110 Float_t fMinDist;
75bf77e3 111 Float_t fCentMin; // lower bound on centrality
112 Float_t fCentMax; // upper bound on centrality
113 Int_t fNInputTracksMin; // lower bound of nb. of input tracks
114 Int_t fNInputTracksMax; // upper bound of nb. of input tracks
ea693273 115 Int_t fAngStructCloseTracks;//only constituents or all tracks with R<0.8 for the angular structure
75bf77e3 116 Float_t fJetEtaMin; // lower bound on eta for found jets
117 Float_t fJetEtaMax; // upper bound on eta for found jets
118 Float_t fJetPtMin; // minimum jet pT
119 UChar_t fJetTriggerExcludeMask; // mask for jet triggeres to exclude
120 Float_t fJetPtFractionMin; // minimum fraction for positiv match of jets
121 Int_t fNMatchJets; // maximal nb. of jets taken for matching
122 Double_t fMatchMaxDist; // maximal distance of matching jets
123 Bool_t fKeepJets; // keep jets with negative pt after background subtraction
ea693273 124
75bf77e3 125
126 // output objects
127 const Int_t fkNbranches; //! number of branches to be read
128 const Int_t fkEvtClasses; //! number of event classes
129
130 TList *fOutputList; //! output data container
131 Bool_t fbEvent; // fill fhnEvent
132 TH1I *fHistEvtSelection; //! event selection statistic
133 TH1I *fHistJetSelection; //! jet selection statistic
134 TH2F *fh2JetSelection; //! jet selection statistic, with
ea693273 135
136
568f8fa2 137 TH2F *fh2JetCoreMethod1C10; //Energy fraction in the core C10 method 1
138 TH2F *fh2JetCoreMethod2C10; //Energy fraction in the core C10 method 2
139 TH2F *fh2JetCoreMethod3C10; //Energy fraction in the core C10 method 3
140 TH2F *fh2JetCoreMethod1C20; //Energy fraction in the core C20 method 1
141 TH2F *fh2JetCoreMethod2C20; //Energy fraction in the core C20 method 2
142 TH2F *fh2JetCoreMethod3C20; //Energy fraction in the core C20 method 3
143 TH2F *fh2JetCoreMethod1C30; //Energy fraction in the core C30 method 1
144 TH2F *fh2JetCoreMethod2C30; //Energy fraction in the core C30 method 2
145 TH2F *fh2JetCoreMethod3C30; //Energy fraction in the core C30 method 3
146 TH2F *fh2JetCoreMethod1C60; //Energy fraction in the core C60 method 1
147 TH2F *fh2JetCoreMethod2C60; //Energy fraction in the core C60 method 2
148 TH2F *fh2JetCoreMethod3C60; //Energy fraction in the core C60 method 3
a9e585a7 149 TH2F *fh2JetCoreMethod3C10lead; //Energy fraction in the core C30 method 3
150 TH2F *fh2JetCoreMethod3C20lead; //Energy fraction in the core C60 method 1
151 TH2F *fh2JetCoreMethod3C30lead; //Energy fraction in the core C60 method 2
152 TH2F *fh2JetCoreMethod3C60lead; //Energy fraction in the core C60 method 3
153 TH2F *fh2JetCoreMethod3C10sublead; //Energy fraction in the core C30 method 3
154 TH2F *fh2JetCoreMethod3C20sublead; //Energy fraction in the core C60 method 1
155 TH2F *fh2JetCoreMethod3C30sublead; //Energy fraction in the core C60 method 2
156 TH2F *fh2JetCoreMethod3C60sublead; //Energy fraction in the core C60 method 3
157
568f8fa2 158 TH2F *fh2SumPtInC10; //energy fraction in inner corona C10
159 TH2F *fh2SumPtInC20; //energy fraction in inner corona C20
160 TH2F *fh2SumPtInC30; //energy fraction in inner corona C30
161 TH2F *fh2SumPtInC60; //energy fraction in inner corona C60
a9e585a7 162 TH2F *fh2SumPtInC10lead; //energy fraction in inner corona C10 leading
163 TH2F *fh2SumPtInC20lead; //energy fraction in inner corona C20 leading
164 TH2F *fh2SumPtInC30lead; //energy fraction in inner corona C30 leading
165 TH2F *fh2SumPtInC60lead; //energy fraction in inner corona C60 leading
166 TH2F *fh2SumPtInC10sublead; //energy fraction in inner corona C10 subleading
167 TH2F *fh2SumPtInC20sublead; //energy fraction in inner corona C20 subleading
168 TH2F *fh2SumPtInC30sublead; //energy fraction in inner corona C30 subleading
169 TH2F *fh2SumPtInC60sublead; //energy fraction in inner corona C60 subleading
568f8fa2 170 TH2F *fh2SumPtOutC10; //energy fraction in outer corona C10
568f8fa2 171 TH2F *fh2SumPtOutC20; //energy fraction in outer corona C20
172 TH2F *fh2SumPtOutC30; //energy fraction in outer corona C30
173 TH2F *fh2SumPtOutC60; //energy fraction in outer corona C60
a9e585a7 174 TH2F *fh2SumPtOutC10lead; //energy fraction in outer corona C10 leading
175 TH2F *fh2SumPtOutC20lead; //energy fraction in outer corona C20 leading
176 TH2F *fh2SumPtOutC30lead; //energy fraction in outer corona C30 leading
177 TH2F *fh2SumPtOutC60lead; //energy fraction in outer corona C60 leading
178 TH2F *fh2SumPtOutC10sublead; //energy fraction in outer corona C10 subleading
179 TH2F *fh2SumPtOutC20sublead; //energy fraction in outer corona C20 subleading
180 TH2F *fh2SumPtOutC30sublead; //energy fraction in outer corona C30 subleading
181 TH2F *fh2SumPtOutC60sublead; //energy fraction in outer corona C60 subleading
568f8fa2 182 TH2F *fh2SumPtInC10bkg; //expected from background inner C10
183 TH2F *fh2SumPtInC20bkg; //expected from background inner C20
184 TH2F *fh2SumPtInC30bkg; //expected from background inner C30
185 TH2F *fh2SumPtInC60bkg; //expected from background inner C60
a9e585a7 186 TH2F *fh2SumPtInC10bkglead; //expected from background inner C10 lead
187 TH2F *fh2SumPtInC20bkglead; //expected from background inner C20 lead
188 TH2F *fh2SumPtInC30bkglead; //expected from background inner C30 lead
189 TH2F *fh2SumPtInC60bkglead; //expected from background inner C60 lead
190 TH2F *fh2SumPtInC10bkgsublead; //expected from background inner C10 sublead
191 TH2F *fh2SumPtInC20bkgsublead; //expected from background inner C20 sublead
192 TH2F *fh2SumPtInC30bkgsublead; //expected from background inner C30 sublead
193 TH2F *fh2SumPtInC60bkgsublead; //expected from background inner C60 sublead
194
568f8fa2 195 TH2F *fh2SumPtOutC10bkg; //expected from background outer C10
196 TH2F *fh2SumPtOutC20bkg; //expected from background outer C10
197 TH2F *fh2SumPtOutC30bkg; //expected from background outer C10
198 TH2F *fh2SumPtOutC60bkg; //expected from background outer C10
a9e585a7 199 TH2F *fh2SumPtOutC10bkglead; //expected from background outer C10 lead
200 TH2F *fh2SumPtOutC20bkglead; //expected from background outer C10 lead
201 TH2F *fh2SumPtOutC30bkglead; //expected from background outer C10 lead
202 TH2F *fh2SumPtOutC60bkglead; //expected from background outer C10 lead
203 TH2F *fh2SumPtOutC10bkgsublead; //expected from background outer C10 sublead
204 TH2F *fh2SumPtOutC20bkgsublead; //expected from background outer C10 sublead
205 TH2F *fh2SumPtOutC30bkgsublead; //expected from background outer C10 sublead
206 TH2F *fh2SumPtOutC60bkgsublead; //expected from background outer C10 sublead
75bf77e3 207
568f8fa2 208 TH2F* fh2DeltaRC10pt1; //Jet track R distance:C10 pt1
209 TH2F* fh2DeltaRC20pt1; //C20 pt1
210 TH2F* fh2DeltaRC30pt1; //C30 pt1
211 TH2F* fh2DeltaRC60pt1; //C60 pt1
212 TH2F* fh2DeltaRC10pt2; //C10 pt2
213 TH2F* fh2DeltaRC20pt2; //C20 pt2
214 TH2F* fh2DeltaRC30pt2; //C30 pt2
215 TH2F* fh2DeltaRC60pt2; //C60 pt2
216 TH2F* fh2DeltaRC10pt3; //C10 pt3
217 TH2F* fh2DeltaRC20pt3; //C20 pt3
218 TH2F* fh2DeltaRC30pt3; //C30 pt3
219 TH2F* fh2DeltaRC60pt3; //C60 pt3
220 TH2F* fh2DeltaRC10pt4; //C10 pt4
221 TH2F* fh2DeltaRC20pt4; //C20 pt4
222 TH2F* fh2DeltaRC30pt4; //C30 pt4
223 TH2F* fh2DeltaRC60pt4; //C60 pt4
224 TH2F* fh2DeltaEtaC10pt1; //The same but eta distance:C10 pt1
225 TH2F* fh2DeltaEtaC20pt1; //C20 pt1
226 TH2F* fh2DeltaEtaC30pt1; //C30 pt1
227 TH2F* fh2DeltaEtaC60pt1; //C60 pt1
228 TH2F* fh2DeltaEtaC10pt2; //C10 pt2
229 TH2F* fh2DeltaEtaC20pt2; //C20 pt2
230 TH2F* fh2DeltaEtaC30pt2; //C30 pt2
231 TH2F* fh2DeltaEtaC60pt2; //C60 pt2
232 TH2F* fh2DeltaEtaC10pt3; //C10 pt3
233 TH2F* fh2DeltaEtaC20pt3; //C20 pt3
234 TH2F* fh2DeltaEtaC30pt3; //C30 pt3
235 TH2F* fh2DeltaEtaC60pt3; //C60 pt3
236 TH2F* fh2DeltaEtaC10pt4; //C10 pt4
237 TH2F* fh2DeltaEtaC20pt4; //C20 pt4
238 TH2F* fh2DeltaEtaC30pt4; //C30 pt4
239 TH2F* fh2DeltaEtaC60pt4; //C60 pt4
240 TH2F* fh2DeltaPhiC10pt1; //The same but phi distance:C10 pt1
241 TH2F* fh2DeltaPhiC20pt1; //C20 pt1
242 TH2F* fh2DeltaPhiC30pt1; //C30 pt1
243 TH2F* fh2DeltaPhiC60pt1; //C60 pt1
244 TH2F* fh2DeltaPhiC10pt2; //C10 pt2
245 TH2F* fh2DeltaPhiC20pt2; //C20 pt2
246 TH2F* fh2DeltaPhiC30pt2; //C30 pt2
247 TH2F* fh2DeltaPhiC60pt2; //C60 pt2
248 TH2F* fh2DeltaPhiC10pt3; //C10 pt3
249 TH2F* fh2DeltaPhiC20pt3; //C20 pt3
250 TH2F* fh2DeltaPhiC30pt3; //C30 pt3
251 TH2F* fh2DeltaPhiC60pt3; //C60 pt3
252 TH2F* fh2DeltaPhiC10pt4; //C10 pt4
253 TH2F* fh2DeltaPhiC20pt4; //C20 pt4
254 TH2F* fh2DeltaPhiC30pt4; //C30 pt4
255 TH2F* fh2DeltaPhiC60pt4; //C60 pt4
a9e585a7 256
257 TH2F* fh2DeltaRC10pt1lead; //Jet track R distance:C10 pt1
258 TH2F* fh2DeltaRC20pt1lead; //C20 pt1
259 TH2F* fh2DeltaRC30pt1lead; //C30 pt1
260 TH2F* fh2DeltaRC60pt1lead; //C60 pt1
261 TH2F* fh2DeltaRC10pt2lead; //C10 pt2
262 TH2F* fh2DeltaRC20pt2lead; //C20 pt2
263 TH2F* fh2DeltaRC30pt2lead; //C30 pt2
264 TH2F* fh2DeltaRC60pt2lead; //C60 pt2
265 TH2F* fh2DeltaRC10pt3lead; //C10 pt3
266 TH2F* fh2DeltaRC20pt3lead; //C20 pt3
267 TH2F* fh2DeltaRC30pt3lead; //C30 pt3
268 TH2F* fh2DeltaRC60pt3lead; //C60 pt3
269 TH2F* fh2DeltaRC10pt4lead; //C10 pt4
270 TH2F* fh2DeltaRC20pt4lead; //C20 pt4
271 TH2F* fh2DeltaRC30pt4lead; //C30 pt4
272 TH2F* fh2DeltaRC60pt4lead; //C60 pt4
273 TH2F* fh2DeltaEtaC10pt1lead; //The same but eta distance:C10 pt1
274 TH2F* fh2DeltaEtaC20pt1lead; //C20 pt1
275 TH2F* fh2DeltaEtaC30pt1lead; //C30 pt1
276 TH2F* fh2DeltaEtaC60pt1lead; //C60 pt1
277 TH2F* fh2DeltaEtaC10pt2lead; //C10 pt2
278 TH2F* fh2DeltaEtaC20pt2lead; //C20 pt2
279 TH2F* fh2DeltaEtaC30pt2lead; //C30 pt2
280 TH2F* fh2DeltaEtaC60pt2lead; //C60 pt2
281 TH2F* fh2DeltaEtaC10pt3lead; //C10 pt3
282 TH2F* fh2DeltaEtaC20pt3lead; //C20 pt3
283 TH2F* fh2DeltaEtaC30pt3lead; //C30 pt3
284 TH2F* fh2DeltaEtaC60pt3lead; //C60 pt3
285 TH2F* fh2DeltaEtaC10pt4lead; //C10 pt4
286 TH2F* fh2DeltaEtaC20pt4lead; //C20 pt4
287 TH2F* fh2DeltaEtaC30pt4lead; //C30 pt4
288 TH2F* fh2DeltaEtaC60pt4lead; //C60 pt4
289 TH2F* fh2DeltaPhiC10pt1lead; //The same but phi distance:C10 pt1
290 TH2F* fh2DeltaPhiC20pt1lead; //C20 pt1
291 TH2F* fh2DeltaPhiC30pt1lead; //C30 pt1
292 TH2F* fh2DeltaPhiC60pt1lead; //C60 pt1
293 TH2F* fh2DeltaPhiC10pt2lead; //C10 pt2
294 TH2F* fh2DeltaPhiC20pt2lead; //C20 pt2
295 TH2F* fh2DeltaPhiC30pt2lead; //C30 pt2
296 TH2F* fh2DeltaPhiC60pt2lead; //C60 pt2
297 TH2F* fh2DeltaPhiC10pt3lead; //C10 pt3
298 TH2F* fh2DeltaPhiC20pt3lead; //C20 pt3
299 TH2F* fh2DeltaPhiC30pt3lead; //C30 pt3
300 TH2F* fh2DeltaPhiC60pt3lead; //C60 pt3
301 TH2F* fh2DeltaPhiC10pt4lead; //C10 pt4
302 TH2F* fh2DeltaPhiC20pt4lead; //C20 pt4
303 TH2F* fh2DeltaPhiC30pt4lead; //C30 pt4
304 TH2F* fh2DeltaPhiC60pt4lead; //C60 pt4
305
306 TH2F* fh2DeltaRC10pt1sublead; //Jet track R distance:C10 pt1
307 TH2F* fh2DeltaRC20pt1sublead; //C20 pt1
308 TH2F* fh2DeltaRC30pt1sublead; //C30 pt1
309 TH2F* fh2DeltaRC60pt1sublead; //C60 pt1
310 TH2F* fh2DeltaRC10pt2sublead; //C10 pt2
311 TH2F* fh2DeltaRC20pt2sublead; //C20 pt2
312 TH2F* fh2DeltaRC30pt2sublead; //C30 pt2
313 TH2F* fh2DeltaRC60pt2sublead; //C60 pt2
314 TH2F* fh2DeltaRC10pt3sublead; //C10 pt3
315 TH2F* fh2DeltaRC20pt3sublead; //C20 pt3
316 TH2F* fh2DeltaRC30pt3sublead; //C30 pt3
317 TH2F* fh2DeltaRC60pt3sublead; //C60 pt3
318 TH2F* fh2DeltaRC10pt4sublead; //C10 pt4
319 TH2F* fh2DeltaRC20pt4sublead; //C20 pt4
320 TH2F* fh2DeltaRC30pt4sublead; //C30 pt4
321 TH2F* fh2DeltaRC60pt4sublead; //C60 pt4
322 TH2F* fh2DeltaEtaC10pt1sublead; //The same but eta distance:C10 pt1
323 TH2F* fh2DeltaEtaC20pt1sublead; //C20 pt1
324 TH2F* fh2DeltaEtaC30pt1sublead; //C30 pt1
325 TH2F* fh2DeltaEtaC60pt1sublead; //C60 pt1
326 TH2F* fh2DeltaEtaC10pt2sublead; //C10 pt2
327 TH2F* fh2DeltaEtaC20pt2sublead; //C20 pt2
328 TH2F* fh2DeltaEtaC30pt2sublead; //C30 pt2
329 TH2F* fh2DeltaEtaC60pt2sublead; //C60 pt2
330 TH2F* fh2DeltaEtaC10pt3sublead; //C10 pt3
331 TH2F* fh2DeltaEtaC20pt3sublead; //C20 pt3
332 TH2F* fh2DeltaEtaC30pt3sublead; //C30 pt3
333 TH2F* fh2DeltaEtaC60pt3sublead; //C60 pt3
334 TH2F* fh2DeltaEtaC10pt4sublead; //C10 pt4
335 TH2F* fh2DeltaEtaC20pt4sublead; //C20 pt4
336 TH2F* fh2DeltaEtaC30pt4sublead; //C30 pt4
337 TH2F* fh2DeltaEtaC60pt4sublead; //C60 pt4
338 TH2F* fh2DeltaPhiC10pt1sublead; //The same but phi distance:C10 pt1
339 TH2F* fh2DeltaPhiC20pt1sublead; //C20 pt1
340 TH2F* fh2DeltaPhiC30pt1sublead; //C30 pt1
341 TH2F* fh2DeltaPhiC60pt1sublead; //C60 pt1
342 TH2F* fh2DeltaPhiC10pt2sublead; //C10 pt2
343 TH2F* fh2DeltaPhiC20pt2sublead; //C20 pt2
344 TH2F* fh2DeltaPhiC30pt2sublead; //C30 pt2
345 TH2F* fh2DeltaPhiC60pt2sublead; //C60 pt2
346 TH2F* fh2DeltaPhiC10pt3sublead; //C10 pt3
347 TH2F* fh2DeltaPhiC20pt3sublead; //C20 pt3
348 TH2F* fh2DeltaPhiC30pt3sublead; //C30 pt3
349 TH2F* fh2DeltaPhiC60pt3sublead; //C60 pt3
350 TH2F* fh2DeltaPhiC10pt4sublead; //C10 pt4
351 TH2F* fh2DeltaPhiC20pt4sublead; //C20 pt4
352 TH2F* fh2DeltaPhiC30pt4sublead; //C30 pt4
353 TH2F* fh2DeltaPhiC60pt4sublead; //C60 pt4
354
355
356
357
358
568f8fa2 359 TH2F* fh2AngStructpt1C10; //Average two particle correlation function:C10 pt1
360 TH2F* fh2AngStructpt2C10; //C10 pt2
361 TH2F* fh2AngStructpt3C10; //C10 pt3
362 TH2F* fh2AngStructpt4C10; //C10 pt4
363 TH2F* fh2AngStructpt1C20; //C20 pt1
364 TH2F* fh2AngStructpt2C20; //C20 pt2
365 TH2F* fh2AngStructpt3C20; //C20 pt3
366 TH2F* fh2AngStructpt4C20; //C20 pt4
367 TH2F* fh2AngStructpt1C30; //C30 pt1
368 TH2F* fh2AngStructpt2C30; //C30 pt2
369 TH2F* fh2AngStructpt3C30; //C30 pt3
370 TH2F* fh2AngStructpt4C30; //C30 pt4
371 TH2F* fh2AngStructpt1C60; //C60 pt1
372 TH2F* fh2AngStructpt2C60; //C60 pt2
373 TH2F* fh2AngStructpt3C60; //C60 pt3
374 TH2F* fh2AngStructpt4C60; //C60 pt4
ea693273 375
75bf77e3 376
377
378
379 AliAnalysisTaskJetCore(const AliAnalysisTaskJetCore&); // not implemented
380 AliAnalysisTaskJetCore& operator=(const AliAnalysisTaskJetCore&); // not implemented
381
382 ClassDef(AliAnalysisTaskJetCore, 4);
383};
384
385#endif
386