]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGLF/FORWARD/doc/doc.tex
Fixed up for better look
[u/mrichter/AliRoot.git] / PWGLF / FORWARD / doc / doc.tex
CommitLineData
655b45b0 1\documentclass[11pt]{article}
9e3855d0 2\renewcommand{\rmdefault}{ptm}
3\usepackage{mathptmx}
655b45b0 4\usepackage[margin=2cm,twoside,a4paper]{geometry}
5\usepackage{amstext}
6\usepackage{amsmath}
7\usepackage[ruled,vlined,linesnumbered]{algorithm2e}
ffa07380 8\usepackage{graphicx}
9\usepackage{color}
10\usepackage{units}
11\usepackage{listings}
56bd6baf 12\usepackage[colorlinks,urlcolor=black,hyperindex,%
dc64f2ea 13 linktocpage,a4paper,bookmarks=true,%
14 bookmarksopen=true,bookmarksopenlevel=2,%
15 bookmarksnumbered=true]{hyperref}
16%% \usepackage{bookmark}
ffa07380 17\def\AlwaysText#1{\ifmmode\relax\text{#1}\else #1\fi}
18\newcommand{\AbbrName}[1]{\AlwaysText{{\scshape #1}}}
56bd6baf 19\newcommand{\CERN}{\AbbrName{cern}}
20\newcommand{\ALICE}{\AbbrName{alice}}
655b45b0 21\newcommand{\SPD}{\AbbrName{spd}}
22\newcommand{\ESD}{\AbbrName{esd}}
23\newcommand{\AOD}{\AbbrName{aod}}
24\newcommand{\INEL}{\AbbrName{inel}}
25\newcommand{\INELONE}{$\AbbrName{inel}>0$}
26\newcommand{\NSD}{\AbbrName{nsd}}
8c548214 27\newcommand{\FMD}[1][]{\AbbrName{fmd\ifx|#1|\else#1\fi}}
56bd6baf 28\newcommand{\OCDB}{\AbbrName{ocdb}}
29\newcommand{\mult}[1][]{\ensuremath N_{\text{ch}#1}}
655b45b0 30\newcommand{\dndetadphi}[1][]{{\ensuremath%
31 \ifx|#1|\else\left.\fi%
56bd6baf 32 \frac{d^2\mult{}}{d\eta\,d\varphi}%
655b45b0 33 \ifx|#1|\else\right|_{#1}\fi%
34}}
35\newcommand{\landau}[1]{{\ensuremath%
36 \text{landau}\left(#1\right)}}
37\newcommand{\dndeta}[1][]{{\ensuremath%
38 \ifx|#1|\else\left.\fi%
56bd6baf 39 \frac{1}{N}\frac{d\mult{}}{d\eta}%
655b45b0 40 \ifx|#1|\else\right|_{#1}\fi%
41}}
ffa07380 42\newcommand{\MC}{\AlwaysText{MC}}
fc6a90cc 43\newcommand{\N}[2]{{\ensuremath N_{#1#2}}}
44\newcommand{\NV}[1][]{\N{\text{V}}{#1}}
45\newcommand{\NnotV}{\N{\not{\text{V}}}}
46\newcommand{\NT}{\N{\text{T}}{}}
47\newcommand{\NA}{\N{\text{A}}{}}
56bd6baf 48\newcommand{\Ngood}{{\ensuremath N_{\text{good}}}}
ffa07380 49\newcommand{\GeV}[1]{\unit[#1]{\AlwaysText{GeV}}}
549a0be3 50\newcommand{\TeV}[1]{\unit[#1]{\AlwaysText{TeV}}}
ffa07380 51\newcommand{\cm}[1]{\unit[#1]{\AlwaysText{cm}}}
56bd6baf 52\newcommand{\secref}[1]{Section~\ref{#1}}
53\newcommand{\figref}[1]{Figure~\ref{#1}}
54\newcommand{\etaphi}{\ensuremath(\eta,\varphi)}
dc64f2ea 55% Azimuthal acceptance
56\newcommand{\Corners}{\ensuremath A^{\varphi}_{t}}
57% Acceptance due to dead strips
58\newcommand{\DeadCh}{\ensuremath A^{\eta}_{v,i}\etaphi}
59\newcommand{\SecMap}{\ensuremath S_v\etaphi}
655b45b0 60\setlength{\parskip}{1ex}
61\setlength{\parindent}{0em}
9e3855d0 62\title{%
63 {\LARGE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH}\\%
64 {\Large European Organization for Particle Physics}\\[2ex]%
65 {\normalsize%
66 \begin{tabular}[t]{@{}p{.25\textwidth}@{\hspace{.05\textwidth}}%
67 p{.4\textwidth}@{\hspace{.05\textwidth}}%
68 p{.25\textwidth}@{}}%
69 % \vfil%
70 \vfil
71 \includegraphics[keepaspectratio,width=.12\textwidth]{alice_logo_v3}%
72 \vfil%
73 &%
74 \vfil
75 \begin{center}%
76 {\LARGE\bf Analysing the FMD data for $\dndeta$}%
77 \end{center}%
78 \vfil
79 &%
80 % \vfil%
81 \vfil
82 \begin{tabular}[t]{@{}p{.25\textwidth}@{}}
83 \hfill\includegraphics[keepaspectratio,width=.12\textwidth]{%
84 cernlogo}\\
85 \hfill ALICE-INT-2012-040 v1\\
86 \hfill \today
87 \end{tabular}%
88 \vfil%
89 \end{tabular}}}
655b45b0 90\author{Christian Holm
ffa07380 91 Christensen\thanks{\texttt{$\langle$cholm@nbi.dk$\rangle$}}\quad\&\quad
92 Hans Hjersing Dalsgaard\thanks{\texttt{$\langle$canute@nbi.dk$\rangle$}}\\
655b45b0 93 Niels Bohr Institute\\
94 University of Copenhagen}
9e3855d0 95\date{}
655b45b0 96\begin{document}
dc64f2ea 97\pdfbookmark{Analysing the FMD data for dN/deta}{top}
655b45b0 98\maketitle
99
ffa07380 100\tableofcontents
101\section{Introduction}
655b45b0 102
103This document describes the steps performed in the analysis of the
104charged particle multiplicity in the forward pseudo--rapidity
56bd6baf 105regions. The primary detector used for this is the \FMD{}
dc64f2ea 106\cite{FWD:2004mz,cholm:2009}.
107
108The \FMD{} is
109organised in 3 \emph{sub--detectors} \FMD{1}, \FMD{2}, and \FMD{3}, each
110consisting of 1 (\FMD{1}) or 2 (\FMD{2} and~3) \emph{rings}.
111The rings fall into two types: \emph{Inner} or \emph{outer} rings.
112Each ring is in turn azimuthally divided into \emph{sectors}, and each
113sector is radially divided into \emph{strips}. How many sectors,
114strips, as well as the $\eta$ coverage is given in
115\tablename~\ref{tab:fmd:overview}.
116
117\begin{table}[htbp]
118 \begin{center}
119 \caption{Physical dimensions of Si segments and strips.}
120 \label{tab:fmd:overview}
121 \vglue0.2cm
122 \begin{tabular}{|c|cc|cr@{\space--\space}l|r@{\space--\space}l|}
123 \hline
124 \textbf{Sub--detector/} &
125 \textbf{Azimuthal}&
126 \textbf{Radial} &
127 $z$ &
128 \multicolumn{2}{c|}{\textbf{$r$}} &
129 \multicolumn{2}{c|}{\textbf{$\eta$}} \\
130 \textbf{Ring}&
131 \textbf{sectors} &
132 \textbf{strips} &
133 \textbf{[cm]} &
134 \multicolumn{2}{c|}{\textbf{range [cm]}} &
135 \multicolumn{2}{c|}{\textbf{coverage}} \\
136 \hline
137 FMD1i & 20& 512& 320 & 4.2& 17.2& 3.68& 5.03\\
138 FMD2i & 20& 512& 83.4& 4.2& 17.2& 2.28& 3.68\\
139 FMD2o & 40& 256& 75.2& 15.4& 28.4& 1.70& 2.29\\
140 FMD3i & 20& 512& -75.2& 4.2& 17.2&-2.29& -1.70\\
141 FMD3o & 40& 256& -83.4& 15.4& 28.4&-3.40& -2.01\\
142 \hline
143 \end{tabular}
144 \end{center}
145\end{table}
146
b9bd46b7 147The \FMD{} \ESD{} object contains the scaled energy deposited $\Delta
148E/\Delta E_{mip}$ for each of the 51,200 strips. This is determined
149in the reconstruction pass. The scaling to $\Delta E_{mip}$ is done
150using calibration factors extracted in designated pulser runs. In
151these runs, the front-end electronics is pulsed with an increasing
152known pulse size, and the conversion factor from ADC counts to $\Delta
153E_{mip}$ is determined \cite{cholm:2009}.
154
dc64f2ea 155The \SPD{} is used for determination of the position of the primary
156interaction point.
655b45b0 157
158The analysis is performed as a two--step process.
159\begin{enumerate}
160\item The Event--Summary--Data (\ESD{}) is processed event--by--event
161 and passed through a number of algorithms, and
162 $\dndetadphi$ for each event is output to an Analysis--Object--Data
dc64f2ea 163 (\AOD{}) tree (see \secref{sec:gen_aod}).
655b45b0 164\item The \AOD{} data is read in and the sub--sample of the data under
165 investigation is selected (e.g., \INEL{}, \INELONE{}, \NSD{}, or
166 some centrality class) and the $\dndetadphi$ histogram read in for
dc64f2ea 167 those events to build up $\dndeta$ (see \secref{sec:ana_aod}).
655b45b0 168\end{enumerate}
169The details of each step above will be expanded upon in the
170following.
171
dc64f2ea 172In Appendix~\ref{app:nomen} is an overview of the nomenclature used in
173this document.
174
175
176
ffa07380 177\section{Generating $\dndetadphi[i]$ event--by--event}
dc64f2ea 178\label{sec:gen_aod}
655b45b0 179
180When reading in the \ESD{}s and generating the $\dndetadphi$
181event--by--event the following steps are taken (in order) for each
182event $i$
183\begin{description}
184\item[Event inspection] The global properties of the event is
56bd6baf 185 determined, including the trigger type and primary interaction
186 point\footnote{`Vertex' and `primary interaction point' will be used
187 interchangeably in the text, since there is no ambiguity with
188 particle production vertex in this analysis.} $z$ coordinate (see
189 \secref{sec:sub:event_inspection}).
655b45b0 190\item[Sharing filter] The \ESD{} object is read in and corrected for
56bd6baf 191 sharing. The result is a new \ESD{} object (see
192 \secref{sec:sub:sharing_filter}).
655b45b0 193\item[Density calculator] The (possibly un--corrected) \ESD{} object
56bd6baf 194 is then inspected and an inclusive (primary \emph{and} secondary
195 particles), per--ring charged particle density
196 $\dndetadphi[incl,r,v,i]$ is made. This calculation depends in
197 general upon the interaction vertex position along the $z$ axis
198 $v_z$ (see \secref{sec:sub:density_calculator}).
199\item[Corrections] The 5 $\dndetadphi[incl,r,v,i]$ are corrected for
200 secondary production and acceptance. The correction for the
201 secondary particle production is highly dependent on the vertex $z$
202 coordinate. The result is a per--ring, charged primary particle
203 density $\dndetadphi[r,v,i]$ (see \secref{sec:sub:corrector}).
655b45b0 204\item[Histogram collector] Finally, the 5 $\dndetadphi[r,v,i]$ are
205 summed into a single $\dndetadphi[v,i]$ histogram, taking care of
206 the overlaps between the detector rings. In principle, this
207 histogram is independent of the vertex, except that the
208 pseudo--rapidity range, and possible holes in that range, depends on
56bd6baf 209 $v_z$ --- or rather the bin in which the $v_z$ falls (see
210 \secref{sec:sub:hist_collector}).
655b45b0 211\end{description}
212
213Each of these steps will be detailed in the following.
214
ffa07380 215\subsection{Event inspection}
56bd6baf 216\label{sec:sub:event_inspection}
655b45b0 217
218The first thing to do, is to inspect the event for triggers. A number
549a0be3 219of trigger bits, like \INEL{} (Minimum Bias for Pb+Pb), \INELONE{}, \NSD{}, and so on is then
655b45b0 220propagated to the \AOD{} output.
221
b9bd46b7 222Just after the sharing filter (described below) but before any further
655b45b0 223processing, the vertex information is queried. If there is no vertex
224information, or if the vertex $z$ coordinate is outside the
56bd6baf 225pre--defined range, then no further processing of that event takes place.
655b45b0 226
549a0be3 227\subsubsection{Displaced Vertices}
228\label{sec:sub:sub:dispvtx}
229
230The analysis can be set up to run on the `displaced vertices' that
231occur during LHC Pb+Pb running. Details on the displaced vertices, and
232their selection can be found in the VZERO analysis note \cite{maxime}.
ffa07380 233\subsection{Sharing filter}
56bd6baf 234\label{sec:sub:sharing_filter}
655b45b0 235
dc64f2ea 236A particle originating from the vertex can, because of its incident
56bd6baf 237angle on the \FMD{} sensors traverse more than one strip (see
238\figref{fig:share_fraction}). This means that the energy loss of the
239particle is distributed over 1 or more strips. The signal in each
b9bd46b7 240strip should therefore possibly be merged with its neighboring strip
56bd6baf 241signals to properly reconstruct the energy loss of a single particle.
655b45b0 242
56bd6baf 243\begin{figure}[htbp]
244 \centering
245 \includegraphics[keepaspectratio,height=3cm]{share_fraction}
246 \caption{A particle traversing 2 strips and depositing energy in
247 each strip. }
248 \label{fig:share_fraction}
249\end{figure}
250
251The effect is most pronounced in low--flux\footnote{Events with a low
252 hit density.} events, like proton--proton collisions or peripheral
253Pb--Pb collisions, while in high--flux events the hit density is so
254high that most likely each and every strip will be hit and the effect
255cancel out on average.
655b45b0 256
257Since the particles travel more or less in straight lines toward the
dc64f2ea 258\FMD{} sensors, the sharing effect is predominantly in the $r$ or
259\emph{strip} direction. Only neighbouring strips in a given sector is
655b45b0 260therefor investigated for this effect.
261
262Algorithm~\ref{algo:sharing} is applied to the signals in a given
263sector.
264
265\begin{algorithm}[htpb]
dc64f2ea 266 \belowpdfbookmark{Algorithm 1}{algo:sharing}
655b45b0 267 \SetKwData{usedThis}{current strip used}
268 \SetKwData{usedPrev}{previous strip used}
269 \SetKwData{Output}{output}
270 \SetKwData{Input}{input}
271 \SetKwData{Nstr}{\# strips}
272 \SetKwData{Signal}{current}
273 \SetKwData{Eta}{$\eta$}
274 \SetKwData{prevE}{previous strip signal}
275 \SetKwData{nextE}{next strip signal}
276 \SetKwData{lowFlux}{low flux flag}
277 \SetKwFunction{SignalInStrip}{SignalInStrip}
278 \SetKwFunction{MultiplicityOfStrip}{MultiplicityOfStrip}
279 \usedThis $\leftarrow$ false\;
280 \usedPrev $\leftarrow$ false\;
281 \For{$t\leftarrow1$ \KwTo \Nstr}{
282 \Output${}_t\leftarrow 0$\;
283 \Signal $\leftarrow$ \SignalInStrip($t$)\;
284
285 \uIf{\Signal is not valid}{
286 \Output${}_t \leftarrow$ invalid\;
287 }
288 \uElseIf{\Signal is 0}{
289 \Output${}_t \leftarrow$ 0\;
290 }
291 \Else{
292 \Eta$\leftarrow$ $\eta$ of \Input${}_t$\;
293 \prevE$\leftarrow$ 0\;
294 \nextE$\leftarrow$ 0\;
295 \lIf{$t \ne 1$}{
296 \prevE$\leftarrow$ \SignalInStrip($t-1$)\;
297 }
298 \lIf{$t \ne $\Nstr}{
299 \nextE$\leftarrow$ \SignalInStrip($t+1$)\;
300 }
301 \Output${}_t\leftarrow$
302 \MultiplicityOfStrip(\Signal,\Eta,\prevE,\nextE,\\
303 \hfill\lowFlux,$t$,\usedPrev,\usedThis)\;
304 }
305 }
306 \caption{Sharing correction}
307 \label{algo:sharing}
308\end{algorithm}
309
310Here the function \FuncSty{SignalInStrip}($t$) returns the properly
311path--length corrected signal in strip $t$. The function
56bd6baf 312\FuncSty{MultiplicityOfStrip} is where the real processing takes
313place (see page \pageref{func:MultiplicityOfStrip}).
655b45b0 314
315\begin{function}[htbp]
dc64f2ea 316 \belowpdfbookmark{MultiplicityOfStrip}{func:MultiplicityOfStrip}
56bd6baf 317 \caption{MultiplicityOfStrip(\DataSty{current},$\eta$,\DataSty{previous},\DataSty{next},\DataSty{low
655b45b0 318 flux flag},\DataSty{previous signal used},\DataSty{this signal
319 used})}
56bd6baf 320 \label{func:MultiplicityOfStrip}
655b45b0 321 \SetKwData{Current}{current}
322 \SetKwData{Next}{next}
323 \SetKwData{Previous}{previous}
324 \SetKwData{lowFlux}{low flux flag}
325 \SetKwData{usedPrev}{previous signal used}
326 \SetKwData{usedThis}{this signal used}
327 \SetKwData{lowCut}{low cut}
328 \SetKwData{total}{Total}
329 \SetKwData{highCut}{high cut}
330 \SetKwData{Eta}{$\eta$}
331 \SetKwFunction{GetHighCut}{GetHighCut}
332 \If{\Current is very large or \Current $<$ \lowCut} {
333 \usedThis $\leftarrow$ false\;
334 \usedPrev $\leftarrow$ false\;
335 \Return{0}
336 }
337 \If{\usedThis}{
338 \usedThis $\leftarrow$ false\;
339 \usedPrev $\leftarrow$ true\;
340 \Return{0}
341 }
342 \highCut $\leftarrow$ \GetHighCut($t$,\Eta)\;
dc64f2ea 343 %\If{\Current $<$ \Next and \Next $>$ \highCut and \lowFlux set}{
344 % \usedThis $\leftarrow$ false\;
345 % \usedPrev $\leftarrow$ false\;
346 % \Return{0}
347 %}
655b45b0 348 \total $\leftarrow$ \Current\;
349 \lIf{\lowCut $<$ \Previous $<$ \highCut and not \usedPrev}{
350 \total $\leftarrow$ \total + \Previous\;
351 }
352 \If{\lowCut $<$ \Next $<$ \highCut}{
353 \total $\leftarrow$ \total + \Next\;
354 \usedThis $\leftarrow$ true\;
355 }
356 \eIf{\total $>$ 0}{
357 \usedPrev $\leftarrow$ true\;
358 \Return{\total}
359 }{
360 \usedPrev $\leftarrow$ false\;
361 \usedThis $\leftarrow$ false\;
362 \Return{0}
363 }
364\end{function}
56bd6baf 365Here, the function \FuncSty{GetHighCut} evaluates a fit to the energy
366distribution in the specified $\eta$ bin (see also
367\secref{sec:sub:density_calculator}). It returns
655b45b0 368$$
369\Delta_{mp} - 2 w
370$$
371where $\Delta_{mp}$ is the most probable energy loss, and $w$ is the
372width of the Landau distribution.
373
374The \KwSty{if} in line 5, says that if the previous strip was merged
375with current one, and the signal of the current strip was added to
56bd6baf 376that, then the current signal is set to 0, and we mark it as used for
377the next iteration (\DataSty{previous signal used}$\leftarrow$true).
655b45b0 378
dc64f2ea 379% The \KwSty{if} in line 10 checks if the current signal is smaller than
380% the next signal, if the next signal is larger than the upper cut
381% defined above, and if we have a low--flux event\footnote{Note, that in
382% the current implementation there are never any low--flux events.}.
383% If that condition is met, then the current signal is the smaller of
384% two possible candidates for merging, and it should be merged into the
385% next signal. Note, that this \emph{only} applies in low--flux events.
56bd6baf 386
dc64f2ea 387In line 11, % 15,
388we test if the previous signal lies between our low and
655b45b0 389high cuts, and if it has not been marked as being used. If so, we add
390it to our current signal.
391
dc64f2ea 392The next \KwSty{if} on line 12 % 16
393checks if the next signal is within our
655b45b0 394cut bounds. If so, we add that signal to the current signal and mark
395it as used for the next iteration (\DataSty{this signal
396 used}$\leftarrow$true). It will then be zero'ed on the next
397iteration by the condition on line 6.
398
399Finally, if our signal is still larger than 0, we return the signal
400and mark this signal as used (\DataSty{previous signal
401 used}$\leftarrow$true) so that it will not be used in the next
402iteration. Otherwise, we mark the current signal and the next signal
403as unused and return a 0.
404
405
ffa07380 406\subsection{Density calculator}
56bd6baf 407\label{sec:sub:density_calculator}
655b45b0 408
dc64f2ea 409The density calculator loops over all the strip signals in the sharing
410corrected\footnote{The sharing correction can be disabled, in which
411 case the density calculator used the input \ESD{} signals.} \ESD{}
56bd6baf 412and calculates the inclusive (primary + secondary) charged particle
413density in pre--defined $\etaphi$ bins.
655b45b0 414
549a0be3 415\subsubsection{Inclusive number of charged particles: Energy Fits}
dc64f2ea 416\label{sec:sub:sub:eloss_fits}
ffa07380 417
b9bd46b7 418The number charged particles in a strip $\mult[,t]$ is calculated
419using multiple Landau-like distributions fitted to the energy loss
420spectrum of all strips in a given at a given $\eta$ bin.
655b45b0 421\begin{align}
0a89eed1 422 \Delta_{i,mp} &= i (\Delta_{1,mp}+ \xi_1 \log(i))\nonumber\\
423 \xi_i &= i\xi_1\nonumber\\
424 \sigma_i &= \sqrt{i}\sigma_1\nonumber\\
56bd6baf 425 \mult[,t] &= \frac{\sum_i^{N_{max}}
0a89eed1 426 i\,a_i\,F(\Delta_t;\Delta_{i,mp},\xi_i,\sigma_i)}{
427 \sum_i^{N_{max}}\,a_i\,F(\Delta_t;\Delta_{i,mp},\xi_i,\sigma_i)}\quad,
655b45b0 428\end{align}
0a89eed1 429where $F(x;\Delta_{mp},\xi,\sigma)$ is the evaluation of the Landau
430distribution $f_L$ with most probable value $\Delta_{mp}$ and width
56bd6baf 431$\xi$, folded with a Gaussian distribution with spread $\sigma$ at the
432energy loss $x$ \cite{nim:b1:16,phyrev:a28:615}.
433\begin{align}
434 \label{eq:energy_response}
435 F(x;\Delta_{mp},\xi,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}
436 \int_{-\infty}^{+\infty} d\Delta' f_{L}(x;\Delta',\xi)
437 \exp{-\frac{(\Delta_{mp}-\Delta')^2}{2\sigma^2}}\quad,
438\end{align}
439where $\Delta_{1,mp}$, $\xi_1$, and $\sigma_1$ are the parameters for
440the first MIP peak, $a_1=1$, and $a_i$ is the relative weight of the
dc64f2ea 441$i$-fold MIP peak. The parameters $\Delta_{1,mp}, \xi_1,
442\sigma_1, \mathbf{a} = \left(a_2, \ldots a_{N_{max}}\right)$ are
443obtained by fitting
0a89eed1 444$$
dc64f2ea 445F_j(x;C,\Delta_{mp},\xi,\sigma,\mathbf{a}) = C
446\sum_{i=1}^{j} a_i F(x;\Delta_{i,mp},\xi_{i},\sigma_i)
0a89eed1 447$$
56bd6baf 448for increasing $j$ to the energy loss spectra in separate $\eta$ bins.
b9bd46b7 449The fit procedure is stopped when one for $j+1$
450\begin{itemize}
451\item the reduced $\chi^2$ exceeds a certain threshold, or
452\item the relative error $\delta p/p$ of any parameter of the fit
453 exceeds a certain threshold, or
454\item when the weight $a_j+1$ is smaller than some number (typically
455 $10^{-5}$).
456\end{itemize}
457$N_{max}$ is then set to $j$. Examples of the result of these fits
458are given in \figref{fig:eloss_fits} in Appendix~\ref{app:eloss_fits}.
549a0be3 459\subsubsection{Inclusive number of charged particles: Poisson Approach}
460\label{sec:sub:sub:poisson}
461Another approach to the calculation of the number of charged particles
462is using Poisson statistics.
463Assume that in a region of the FMD % where
464$\mult$
465%is azimuthally uniform in $\eta$ intervals it
466is
467distributed according to a Poisson distribution. This means that the
468probability of $\mult=n$ becomes:
469\begin{equation}
470P(n) = \frac{\mu^n e^{-\mu}}{n!} \label{eq:PoissonDef}
471\end{equation}
472In particular the measured occupancy, $\mu_{meas}$, is the probability
473of any number of hits, thus using \eqref{eq:PoissonDef} :
474\begin{equation}
475\mu_{meas} = 1 - P(0) = 1 - e^{-\mu }
476%\Rightarrow \mu = \ln
477%(1 - \mu_{meas})^{-1} \label{eq:PoissonDef2}
478\end{equation}
479which implies:
480\begin{equation}
481\mu = \ln
482(1 - \mu_{meas})^{-1} \label{eq:PoissonDef2}
483\end{equation}
484The mean number of particles in a hit strip becomes:
485\begin{eqnarray}
486C &=& \frac{\sum_{n>0} n P(n>0)}{\sum_{n>0} P(n>0)} \nonumber \\
487 &=& \frac{e^{-\mu}}{1-e^{-\mu}} \mu \sum \frac{\mu^n}{n!}
488 \nonumber \\
489 &=& \frac{e^{-\mu}}{1-e^{-\mu}} \mu e^{\mu} \nonumber \\
490 &=& \frac{\mu}{1-e^{-\mu}}
491\end{eqnarray}
492%While $\mu$ can be calculated analytically for practical purposes we
493With $\mu$ defined in \eqref{eq:PoissonDef2} this calculation is
494carried out per event in
495regions of the FMD each containing 256 strips. %Defining
496%$\mu_{meas}^{region}$ to be the measured occupancy
497 In such a region,
498$\mult$ for a hit strip ($N_{hits} \equiv 1$) in that region becomes:
499\begin{equation}
500\mult = N_{hits} \times C = 1 \times C = C
501\end{equation}
502Where C is calculated using $\mu_{meas}^{region}$.
655b45b0 503
56bd6baf 504\subsubsection{Azimuthal Acceptance}
ffa07380 505
56bd6baf 506Before the signal $\mult[,t]$ can be added to the $\etaphi$
655b45b0 507bin in one of the 5 per--ring histograms, it needs to be corrected for
56bd6baf 508the $\varphi$ acceptance of the strip.
655b45b0 509
b9bd46b7 510The sensors of the \FMD{} are not perfect arc--segments --- the two
511top corners are cut off to allow the largest possible sensor on a 6''
512Si-wafer. This means, however, that the strips in these outer
513regions do not fully cover $2\pi$ in azimuth, and there is therefore a
514need to correct for this limited acceptance.
515
655b45b0 516The acceptance correction is only applicable where the strip length
517does not cover the full sector. This is the case for the outer strips
518in both the inner and outer type rings. The acceptance correction is
519then simply
520\begin{align}
521 \label{eq:acc_corr}
dc64f2ea 522 \Corners{} &= \frac{l_t}{\Delta\varphi}\quad
655b45b0 523\end{align}
524where $l_t$ is the strip length in radians at constant $r$, and
525$\Delta\varphi$ is $2\pi$ divided by the number of sectors in the
526ring (20 for inner type rings, and 40 for outer type rings).
527
b9bd46b7 528Note, that this correction is a hardware--related correction, and does
529not depend on the properties of the collision (e.g., primary vertex
530location).
531
56bd6baf 532The final $\etaphi$ content of the 5 output vertex dependent,
655b45b0 533per--ring histograms of the inclusive charged particle density is then
534given by
535\begin{align}
8c548214 536 \label{eq:density}
56bd6baf 537 \dndetadphi[incl,r,v,i\etaphi] &= \sum_t^{t\in\etaphi}
dc64f2ea 538 \mult[,t]\,\Corners{}
655b45b0 539\end{align}
56bd6baf 540where $t$ runs over the strips in the $\etaphi$ bin.
655b45b0 541
ffa07380 542\subsection{Corrections}
56bd6baf 543\label{sec:sub:corrector}
655b45b0 544
545The corrections code receives the five vertex dependent,
546per--ring histograms of the inclusive charged particle density
547$\dndetadphi[incl,r,v,i]$ from the density calculator and applies
56bd6baf 548two corrections
ffa07380 549
550\subsubsection{Secondary correction}
551%%
552%% hHits_FMD<d><r>_vtx<v>
553%% hCorrection = -----------------------
554%% hPrimary_FMD_<r>_vtx<v>
555%%
556%% where
557%% - hPrimary_FMD_<r>_vtx<vtx> is 2D of eta,phi for all primary ch
558%% particles
559%% - hHits_FMD<d><r>_vtx<v> is 2D of eta,phi for all track-refs that
560%% hit the FMD - The 2D version of hMCHits_nocuts_FMD<d><r>_vtx<v>
561%% used below.
56bd6baf 562This is a 2 dimensional histogram generated from simulations, as the
563ratio of primary particles to the total number of particles that fall
564within an $\etaphi$ bin for a given vertex bin
565
566\begin{align}
567 \label{eq:secondary}
dc64f2ea 568 \SecMap{} &=
fc6a90cc 569 \frac{\sum_i^{\NV[,v]}\mult[,\text{primary},i]\etaphi}{
570 \sum_i^{\NV[,v]}\mult[,\text{\FMD{}},i]\etaphi}\quad,
56bd6baf 571\end{align}
fc6a90cc 572where $\NV[,v]$ is the number of events with a valid trigger and a
56bd6baf 573vertex in bin $v$, and $\mult[,\FMD{},i]$ is the total number of
574charged particles that hit the \FMD{} in event $i$ in the specified
575$\etaphi$ bin and $\mult[,\text{primary},i]$ is number of
576primary charged particles in event $i$ within the specified
577$\etaphi$ bin.
578
579$\mult[,\text{primary}]\etaphi$ is given by summing over the
580charged particles labelled as primaries \emph{at the time of the
581 collision} as defined in the simulation code. That is, it is the
582number of primaries within the $\etaphi$ bin at the collision
583point --- not at the \FMD{}.
584
b9bd46b7 585$\SecMap$ is varies from $\approx 1.5$ for the most forward bins to
586$\approx 3$ for the more central bins. For pp, different event
587generators were used and found to give compatible results within
5883--5\%. For pp, at least some millions of events must be
589accumulated to reach satisfactory statistics. For Pb--Pb where the
590general hit density is larger, reasonable statistics can be achieved
591with less data.
592
56bd6baf 593\subsubsection{Acceptance due to dead channels}
594
595Some of the strips in the \FMD{} have been marked up as \emph{dead},
596meaning that they are not used in the reconstruction or analysis.
597This leaves holes in the acceptance of each defined $\etaphi$
598which need to be corrected for.
599
600Dead channels are marked specially in the \ESD{}s with the flag
601\textit{Invalid Multiplicity}. This is used in the analysis to build
602up and event--by--event acceptance correction in each $\etaphi$
603bin by calculating the ratio
ffa07380 604\begin{align}
56bd6baf 605 \label{eq:dead_channels}
dc64f2ea 606 \DeadCh{} &=
56bd6baf 607 \frac{\sum_t^{t\in\etaphi}\left\{\begin{array}{cl}
608 1 & \text{if not dead}\\
609 0 & \text{otherwise}
610 \end{array}\right.}{\sum_t^{t\in\etaphi} 1}\quad,
ffa07380 611\end{align}
dc64f2ea 612where $t$ runs over the strips in the $\etaphi$ bin. This correction
613is obviously $v_z$ dependent since which $\etaphi$ bin a strip $t$
614corresponds to depends on its relative position to the primary vertex.
56bd6baf 615
616Alternatively, pre--made acceptance factors can be used. These are
617made from the off-line conditions database (\OCDB{}).
655b45b0 618
619The 5 output vertex dependent, per--ring histograms of the primary
620charged particle density is then given by
621\begin{align}
56bd6baf 622 \dndetadphi[r,v,i\etaphi] &=
dc64f2ea 623 \SecMap{} \frac{1}{\DeadCh{}}\dndetadphi[incl,r,v,i\etaphi]
655b45b0 624\end{align}
625
ffa07380 626\subsection{Histogram collector}
56bd6baf 627\label{sec:sub:hist_collector}
655b45b0 628
629The histogram collector collects the information from the 5 vertex
630dependent, per--ring histograms of the primary charged particle
631density $\dndetadphi[r,v,i]$ into a single vertex dependent histogram
632of the charged particle density $\dndetadphi[v,i]$.
633
634To do this, it first calculates, for each vertex bin, the $\eta$ bin
635range to use for each ring. It investigates the secondary correction
dc64f2ea 636maps $\SecMap{}$ to find the edges of each map. The edges are given
637by the $\eta$ range where $\SecMap{}$ is larger than some
638threshold\footnote{Typically $t_s\approx 0.1$.} $t_s$. The code
8c548214 639applies safety margin of a $N_{cut}$ bins\footnote{Typically
640 $N_{cut}=1$.}, to ensure that the data selected does not have too
641large corrections associated with it.
655b45b0 642
643It then loops over the bins in the defined $\eta$ range and sums the
8c548214 644contributions from each of the 5 histograms. In the $\eta$ ranges
645where two rings overlap, the collector calculates the average and adds
b9bd46b7 646the errors in quadrature\footnote{While not explicitly checked, it was
647 found that the histograms agrees within error bars in the
648 overlapping region}.
655b45b0 649
650The output vertex dependent histogram of the primary
651charged particle density is then given by
652\begin{align}
ffa07380 653 \label{eq:superhist}
56bd6baf 654 \dndetadphi[v,i\etaphi] &=
655 \frac{1}{N_{r\in\etaphi}}\sum_{r}^{r\in\etaphi}
656 \dndetadphi[r,v,i\etaphi]\\
657 \delta\left[\dndetadphi[v,i\etaphi]\right] &=
658 \frac{1}{N_{r\in\etaphi}}\sqrt{\sum_{r}^{r\in\etaphi}
659 \delta\left[\dndetadphi[r,v,i\etaphi]\right]^2}
655b45b0 660 \quad,
661\end{align}
56bd6baf 662where $N_{r\in\etaphi}$ is the number of overlapping histograms
663in the given $\etaphi$ bin.
655b45b0 664
ffa07380 665The histogram collector stores the found $\eta$ ranges in the
666underflow bin of the histogram produced. The content of the overflow
667bins are
668\begin{align}
669 \label{eq:overflow}
670 I_{v,i}(\eta) &=
671 \frac{1}{N_{r\in(\eta)}}
672 \sum_{r}^{r\in(\eta)} \left\{\begin{array}{cl}
673 0 & \eta \text{\ bin not selected}\\
674 1 & \eta \text{\ bin selected}
675 \end{array}\right.\quad,
676\end{align}
677where $N_{r\in(\eta)}$ is the number of overlapping histograms in the
678given $\eta$ bin. The subscript $v$ indicates that the content
679depends on the current vertex bin of event $i$.
680
681\section{Building the final $\dndeta$}
dc64f2ea 682\label{sec:ana_aod}
ffa07380 683
684To build the final $\dndeta$ distribution it is enough to sum
685\eqref{eq:superhist} and \eqref{eq:overflow} over all interesting
fc6a90cc 686events and correct for the acceptance $I(\eta)$
56bd6baf 687\begin{align}
fc6a90cc 688 \dndetadphi[\etaphi] &= \sum_i^{\NA}\dndetadphi[i,v\etaphi]\\
689 I(\eta) &= \sum_i^{\NA}I_{i,v}(\eta)\quad.
56bd6baf 690\end{align}
fc6a90cc 691Note, that $I(\eta)\le\NA$.
56bd6baf 692
fc6a90cc 693We then need to normalise to the total number of events $N_X$, given
694by
ffa07380 695\begin{align}
fc6a90cc 696 \N{X}{} &= \frac{1}{\epsilon_X}\left[\NA + \alpha(\NnotV -
697 \beta)\right] \label{eq:fulleventnorm}\\
698 & = \frac{1}{\epsilon_X}\left[\NA + \frac{\NA}{\NV}(\NT-\NV{} -
699 \beta)\right]\nonumber \\
700 & =\frac{1}{\epsilon_X}\NA\left[1+\frac{1}{\epsilon_V}-1-
701 \frac{\beta}{\NV}\right]\nonumber\\
702 & = \frac{1}{\epsilon_X}\frac{1}{\epsilon_V}\NA
703 \left(1-\frac{\beta}{\NT{}}\right)\nonumber
704\end{align}
705where
706\begin{description}
707\item[$\epsilon_X$] is the trigger efficiency for type
708 $X\in[\text{\INEL},\text{\INELONE},\text{\NSD},...]$
709\item[$\epsilon_V=\frac{\NV{}}{\NT{}}$] is the vertex efficiency
710 evaluated over the data.
711\item[$\NA$] is the number of events with a trigger \emph{and} a valid
712 vertex in the selected range
713\item[$\NV{}$] is the number of events with a trigger \emph{and} a valid
714 vertex.
715\item[$\NT$] is the number of events with a trigger.
716\item[$\NnotV{}=\NT-\NV{}$] is the number of events with a trigger
717 \emph{but no} valid vertex
718\item[$\alpha=\frac{\NA}{\NV}$] is the fraction of accepted events of
719 the total number of events with a trigger and valid vertex.
720\item[$\beta=\N{a}{}+\N{b}{}-\N{e}{}$] is the number of background
721 events \emph{with} a valid off-line trigger.
722\end{description}
723The two terms under the parenthesis in \eqref{eq:fulleventnorm} refers
724to the observed number of event $\NA$, and the events missed because
725of no vertex reconstruction. Note, for $\beta\ll\NT{}$
726\eqref{eq:fulleventnorm} reduces to the simpler expression
727$$
728\N{X}{} = \frac1{\epsilon_X}\frac1{\epsilon_V}\NA{}
729$$
730The trigger efficiency $\epsilon_X$ for a given trigger type $X$ is
731evaluated from simulations as
732\begin{align}
733 \epsilon_X = \frac{\N{X\wedge \text{T}}{}}{\N{X}{}}\quad,
734\end{align}
735that is, the ratio of number of events of type $X$ with a
736corresponding trigger to the number of events of type $X$.
737
738The final event--normalised charged particle density then becomes
739\begin{align}
740 \frac{1}{N}\frac{dN_{\text{ch}}}{d\eta} &=
741 \frac{1}{\N{X}{}} \int_0^{2\pi} d\varphi
742 \frac{\dndetadphi[\etaphi]}{I(\eta)}
743 \label{eq:eventnormdndeta}
744\end{align}
745
746If the trigger $X$ introduces a bias on the measured number of events,
747then \eqref{eq:eventnormdndeta} need to be modified to
748\begin{align}
749 \frac{1}{N}\frac{dN_{\text{ch}}}{d\eta} &=
750 \frac{1}{\N{X}{}} \int_0^{2\pi} d\varphi
751 \frac{\frac{1}{B\etaphi}\dndetadphi[\etaphi]}{I(\eta)}
752 \label{eq:eventnormdndeta2}\quad,
753\end{align}
754where $B\etaphi$ is the bias correction. This is typically
755calculated from simulations using the expression
756\begin{align}
757 B\etaphi = \frac{\frac{1}{\N{X\wedge
758 \text{T}}{}}\sum_i^{\N{X\wedge \text{T}}{}}
759 \mult[,\text{primary}]\etaphi}{\frac{1}{\N{X}{}}\sum_i^{\N{X}{}}
760 \mult[,\text{primary}]\etaphi}
ffa07380 761\end{align}
fc6a90cc 762
655b45b0 763
ffa07380 764\section{Using the per--event $\dndetadphi[i,v]$ histogram for other
765 analysis}
655b45b0 766
ffa07380 767\subsection{Multiplicity distribution}
655b45b0 768
ffa07380 769To build the multiplicity distribution for a given $\eta$ range
770$[\eta_1,\eta_2]$, one needs to find the total multiplicity in that
771$\eta$ range for each event. To do so, one should sum the
772$\dndetadphi[i,v]$ histogram over all $\varphi$ and in the selected
773$\eta$ range.
774\begin{align}
775 n'_{i[\eta_1,\eta_2]}, &= \int_{\eta_1}^{\eta_2}d\eta\int_0^{2\pi}d\varphi
776 \dndetadphi[i,v]\quad.\nonumber
777\end{align}
778However, $n'_i$ is not corrected for the coverage in $\eta$ for the
779particular vertex range $v$. One therefor needs to correct for the
780number of missing bins in the range $[\eta_1,\eta_2]$. Suppose
781$[\eta_1,\eta_2]$ covers $N_{[\eta_1,\eta_2]}$ $\eta$ bins, then the acceptance
782correction is given by
783\begin{align}
784 A_{i,[\eta_1,\eta_2]} = \frac{N_{[\eta_1,\eta_2]}}{\int_{\eta_1}^{\eta_2}d\eta\,
785 I_{i,v}(\eta)}\quad.\nonumber
786\end{align}
787The per--event multiplicity is then given by
788\begin{align}
789 n_{i,[\eta_1,\eta_2]} &= A_{i,[\eta_1,\eta_2]}\,n'_{i,[\eta_1,\eta_2]}\nonumber\\
790 &= \frac{N_{[\eta_1,\eta_2]}}{\int_{\eta_1}^{\eta_2}\eta
791 I_{i,v}(\eta)} \int_{\eta_1}^{\eta_2}d\eta\int_0^{2\pi}d\varphi
792 \dndetadphi[i,v]
793 \label{eq:event_n}
794\end{align}
795
796\subsection{Forward--Backward correlations}
797
798To do forward--backward correlations, one need to calculate
799$n_{i,[\eta_1,\eta_2]}$ as shown in \eqref{eq:event_n} in two bins
800$n_{i,[\eta_1,\eta_2]}$ and $n_{i,[-\eta_2,-\eta_1]}$ \textit{e.g.},
801$n_{i,f}=n_{i,[-3,-1]}$ and $n_{i,b}=n_{i,[1,3]}$.
802
dc64f2ea 803\clearpage
ffa07380 804\section{Some results}
805
dc64f2ea 806%% \figurename{}s \ref{fig:1} to \ref{fig:3} shows some results.
549a0be3 807Figures below show some examples \cite{hhd:2009}. Note these are not finalised
dc64f2ea 808plots.
549a0be3 809\begin{figure}[hbp]
810 \centering
811 \includegraphics[keepaspectratio,width=\textwidth]{%
812 results_ppdndeta}
813 \caption{$\dndeta$ for pp for \INEL{} events at
814 $\sqrt{s}=\GeV{900}$, $\sqrt{s}=\TeV{2.76}$, and $\sqrt{s}=\TeV{7}$
815 $\cm{-10}\le v_z\le\cm{10}$, rebinned by a factor 5 \cite{hhd:2009}.
816% Middle panel
817% shows the ratio of ALICE data to UA5, and the bottom panel shows
818% the ratio of the right (positive) side to the left (negative) side
819% of the forward $\dndeta$.
820}
821 \label{fig:1}
822\end{figure}
823\begin{figure}[hbp]
824 \centering
825 \includegraphics[keepaspectratio,width=\textwidth]{%
826 results_PbPbdndeta}
827 \caption{$\dndeta$ for Pb+Pb for Minimum Bias events at
828 $\sqrt{s_{NN}}=\TeV{2.76}$ $\cm{-10}\le v_z\le\cm{10}$, rebinned by a
829 factor 5 in 10 centrality intervals \cite{hhd:2009}.
830% Middle panel
831% shows the ratio of ALICE data to UA5, and the bottom panel shows
832% the ratio of the right (positive) side to the left (negative) side
833% of the forward $\dndeta$.
834}
835 \label{fig:2}
836\end{figure}
ffa07380 837
549a0be3 838
839\iffalse
dc64f2ea 840\begin{figure}[hbp]
ffa07380 841 \centering
842 \includegraphics[keepaspectratio,width=\textwidth]{%
b9bd46b7 843 dndeta_pp_0900GeV_INEL_m10p10cm}
ffa07380 844 \caption{$\dndeta$ for pp for \INEL{} events at $\sqrt{s}=\GeV{900}$,
b9bd46b7 845 $\cm{-10}\le v_z\le\cm{10}$, rebinned by a factor 5. Middle panel
846 shows the ratio of ALICE data to UA5, and the bottom panel shows
847 the ratio of the right (positive) side to the left (negative) side
848 of the forward $\dndeta$.}
ffa07380 849 \label{fig:1}
850\end{figure}
dc64f2ea 851
549a0be3 852
ffa07380 853\begin{figure}[tbp]
854 \centering
855 \includegraphics[keepaspectratio,width=\textwidth]{%
856 dndeta_0900GeV_m10-p10cm_rb05_inelgt0}
857 \caption{$\dndeta$ for pp for \INELONE{} events at
858 $\sqrt{s}=\GeV{900}$, $\cm{-10}\le v_z\le\cm{10}$, rebinned by a
859 factor 5. Comparisons to other measurements shown where
860 applicable}
861 \label{fig:2}
862\end{figure}
863\begin{figure}[tbp]
864 \centering
865 \includegraphics[keepaspectratio,width=\textwidth]{%
866 dndeta_0900GeV_m10-p10cm_rb05_nsd}
867 \caption{$\dndeta$ for pp for \NSD{} events at $\sqrt{s}=\GeV{900}$,
868 $\cm{-10}\le v_z\le\cm{10}$, rebinned by a factor 5. Comparisons
869 to other measurements shown where applicable}
870 \label{fig:3}
871\end{figure}
dc64f2ea 872\fi
ffa07380 873
874\clearpage
dc64f2ea 875%% \currentpdfbookmark{Appendices}{Appendices}
ffa07380 876\appendix
56bd6baf 877\section{Nomenclature}
dc64f2ea 878\label{app:nomen}
56bd6baf 879
880\begin{table}[hbp]
881 \centering
882 \begin{tabular}[t]{|lp{.8\textwidth}|}
883 \hline
884 \textbf{Symbol}&\textbf{Description}\\
885 \hline
886 \INEL & In--elastic event\\
887 \INELONE & In--elastic event with at least one tracklet in the
888 \SPD{} in the region $-1\le\eta\le1$\\
889 \NSD{} & Non--single--diffractive event. Single diffractive
890 events are events where one of the incident collision systems
891 (proton or nucleus) is excited and radiates particles, but there
892 is no other processes taking place\\
893 \hline
fc6a90cc 894 $\NT{}$ & Number of events with a valid trigger\\
895 $\NV{}$ & Number of events with a valid trigger \emph{and} a valid
896 vertex.\\
897 $\NA{}$ & Number of events with a valid trigger
898 \emph{and} a valid vertex \emph{within} the selected vertex range.\\
899 $\N{a,c,ac,e}{}$ & Number of events with background triggers $A$,
900 $B$, $AC$, or $E$, \emph{and} a valid off-line trigger of the
901 considered type. Background triggers are typically flagged with
902 the trigger words \texttt{CINT1-A}, \texttt{CINT1-C},
903 \texttt{CINT1-AC}, \texttt{CINT1-E}, or similar.\\
56bd6baf 904 \hline
905 $\mult{}$ & Charged particle multiplicity\\
906 $\mult[,\text{primary}]$ & Primary charged particle multiplicity
907 as given by simulations\\
908 $\mult[,\text{\FMD{}}]$ & Number of charged particles that hit the
909 \FMD{} as given by simulations\\
910 $\mult[,t]$ & Number of charged particles in an \FMD{} strip as
911 given by evaluating the energy response functions $F$\\
912 \hline
913 $F$ & Energy response function (see \eqref{eq:energy_response})\\
914 $\Delta_{mp}$ & Most probably energy loss\\
915 $\xi$ & `Width' parameter of a Landau distribution\\
916 $\sigma$ & Variance of a Gaussian distribution\\
dc64f2ea 917 $a_i$ & Relative weight of the $i$--fold MIP peak in the energy
56bd6baf 918 loss spectra.\\
919 \hline
dc64f2ea 920 $\Corners{}$ & Azimuthal acceptance of strip $t$\\
921 $\SecMap{}$ & Secondary particle correction factor in $\etaphi$
922 for a given vertex bin $v$\\
923 $\DeadCh{}$ & Acceptance in $\etaphi$ for a given vertex bin $v$\\
56bd6baf 924 \hline
925 $\dndetadphi[incl,r,v,i]$ & Inclusive (primary \emph{and}
926 secondary) charge particle density in event $i$ with vertex $v$,
927 for \FMD{} ring $r$.\\
928 $\dndetadphi[r,v,i]$ & Primary charged particle
929 density in event $i$ with vertex $v$ for \FMD{} ring $r$. \\
930 $\dndetadphi[v,i]$ & Primary charged particle density in event $i$
931 with vertex $v$\\
932 $I_{v,i}(\eta)$ & $\eta$ acceptance of event $i$ with vertex $v$\\
fc6a90cc 933 $I(\eta)$ & Integrated $\eta$ acceptance over $\NA$ events.
934 Note, that this has a value of $\NA$ for $(\eta)$ bins where we
56bd6baf 935 have full coverage\\
936 \hline
b9bd46b7 937 $X_t$ & Value $X$ for strip number $t$ (0-511 for inner rings,
938 0-255 for outer rings)\\
939 $X_r$ & Value $X$ for ring $r$ (where rings are \FMD{1i},
940 \FMD{2i}, \FMD{2o}, \FMD{3o}, and \FMD{3i} in decreasing $\eta$
941 coverage).\\
942 $X_v$ & Value $X$ for vertex bin $v$ (typically 10 bins from -10cm
943 to +10cm)\\
944 $X_i$ & Value $X$ for event $i$\\
945 \hline
56bd6baf 946 \end{tabular}
947 \caption{Nomenclature used in this document}
948 \label{tab:nomenclature}
949\end{table}
950\clearpage
951
952
ffa07380 953\section{Second pass example code}
56bd6baf 954\label{app:exa_pass2}
ffa07380 955\lstset{basicstyle=\small\ttfamily,%
956 keywordstyle=\color[rgb]{0.627,0.125,0.941}\bfseries,%
957 identifierstyle=\color[rgb]{0.133,0.545,0.133}\itshape,%
958 commentstyle=\color[rgb]{0.698,0.133,0.133},%
959 stringstyle=\color[rgb]{0.737,0.561,0.561},
fc6a90cc 960 emph={TH2D,TH1D,TFile,TTree,AliAODForwardMult},emphstyle=\color{blue},%
ffa07380 961 emph={[2]dndeta,sum,norm},emphstyle={[2]\bfseries\underbar},%
fc6a90cc 962 emph={[3]file,tree,mult,nV,nBg,nA,nT,i,gSystem},emphstyle={[3]},%
ffa07380 963 language=c++,%
964}
965\begin{lstlisting}[caption={Example 2\textsuperscript{nd} pass code to
966 do $\dndeta$},label={lst:example},frame=single,captionpos=b]
fc6a90cc 967void Analyse(int mask=AliAODForwardMult::kInel,
968 float vzLow=-10, float vzHigh=10, float trigEff=1)
ffa07380 969{
970 gSystem->Load("libANALYSIS.so"); // Load analysis libraries
971 gSystem->Load("libANALYSISalice.so"); // General ALICE stuff
bd6f5206 972 gSystem->Load("libPWGLFforward2.so"); // Forward analysis code
ffa07380 973
fc6a90cc 974 int nT = 0; // # of ev. w/trigger
975 int nV = 0; // # of ev. w/trigger&vertex
976 int nA = 0; // # of accepted ev.
977 int nBg = 0; // # of background ev
978 TH2D* sum = 0; // Summed hist
979 AliAODForwardMult* mult = 0; // AOD object
980 TFile* file = TFile::Open("AliAODs.root","READ");
981 TTree* tree = static_cast<TTree*>(file->Get("aodTree"));
982 tree->SetBranchAddress("Forward", &forward); // Set the address
ffa07380 983
56bd6baf 984 for (int i = 0; i < tree->GetEntries(); i++) {
ffa07380 985 // Read the i'th event
986 tree->GetEntry(i);
987
988 // Create sum histogram on first event - to match binning to input
0a89eed1 989 if (!sum)
990 sum = static_cast<TH2D*>(mult->GetHistogram()->Clone("d2ndetadphi"));
ffa07380 991
fc6a90cc 992 // Calculate beta=A+C-E
993 if (mult->IsTriggerBits(mask|AliAODForwardMult::kA)) nBg++;
994 if (mult->IsTriggerBits(mask|AliAODForwardMult::kC)) nBg++;
995 if (mult->IsTriggerBits(mask|AliAODForwardMult::kE)) nBg--;
56bd6baf 996
ffa07380 997 // Other trigger/event requirements could be defined
998 if (!mult->IsTriggerBits(mask)) continue;
fc6a90cc 999 nT++;
ffa07380 1000
56bd6baf 1001 // Check if we have vertex and select vertex range (in centimeters)
fc6a90cc 1002 if (!mult->HasIpZ()) continue;
1003 nV++;
1004
1005 if (!mult->InRange(vzLow, vzHigh) continue;
1006 nA++;
ffa07380 1007
1008 // Add contribution from this event
1009 sum->Add(&(mult->GetHistogram()));
1010 }
655b45b0 1011
ffa07380 1012 // Get acceptance normalisation from underflow bins
fc6a90cc 1013 TH1D* norm = sum->ProjectionX("norm", 0, 0, "");
ffa07380 1014 // Project onto eta axis - _ignoring_underflow_bins_!
fc6a90cc 1015 TH1D* dndeta = sum->ProjectionX("dndeta", 1, -1, "e");
ffa07380 1016 // Normalize to the acceptance, and scale by the vertex efficiency
1017 dndeta->Divide(norm);
fc6a90cc 1018 dndeta->Scale(trigEff * nT/nV / (1 - nBg/nT), "width");
ffa07380 1019 // And draw the result
1020 dndeta->Draw();
1021}
1022\end{lstlisting}
0a89eed1 1023
56bd6baf 1024\section{$\Delta E$ fits}
1025\label{app:eloss_fits}
1026
1027\begin{figure}[htbp]
1028 \centering
dc64f2ea 1029 \includegraphics[keepaspectratio,width=\textwidth]{eloss_fits}
1030 \caption{Summary of energy loss fits in each $\eta$ bin (see also
1031 \secref{sec:sub:sub:eloss_fits}).
1032 \newline
1033 On the left side: Top panel shows the
1034 reduced $\chi^2$, second from the top shows the found
1035 scaling constant, 3\textsuperscript{rd} from the top is
1036 the most probable energy loss $\Delta_{mp}$, 4\textsuperscript{th}
1037 shows the width parameter $\xi$ of the Landau, and the
1038 5\textsuperscript{th} is the Gaussian width $\sigma$.
b9bd46b7 1039 $\Delta_{mp}$, $\xi$, and $\sigma$ have units of $\Delta E/\Delta
1040 E_{mip}$.
dc64f2ea 1041 \newline
1042 On the right: The top panel shows the maximum number of
1043 multi--particle signals that where fitted, and the 4 bottom panels
1044 shows the weights $a_2,a_3,a_4,$ and $a_5$ for 2, 3, 4, and 5
1045 particle responses.}
56bd6baf 1046 \label{fig:eloss_fits}
1047\end{figure}
1048
dc64f2ea 1049\clearpage
1050\currentpdfbookmark{References}{References}
0a89eed1 1051\begin{thebibliography}{99}
56bd6baf 1052\bibitem{FWD:2004mz} \ALICE{} Collaboration, Bearden, I.~G.\ \textit{et al}
1053 \textit{ALICE technical design report on forward detectors: FMD, T0
1054 and V0}, \CERN{}, 2004, CERN-LHCC-2004-025
1055\bibitem{cholm:2009} Christensen, C.~H., \textit{The ALICE Forward
1056 Multiplicity Detector --- From Design to Installation},
1057 Ph.D.~thesis, University of Copenhagen, 2009,
1058 \url{http://www.nbi.dk/~cholm/}.
549a0be3 1059\bibitem{maxime} Guilbaud, M. \textit{et al}, \textit{Measurement of the charged-particle
1060multiplicity density at forward rapidity
1061with ALICE VZERO detector in central
1062Pb-Pb collision at $\sqrt{s_{NN}}=\TeV{2.76}$},
1063 ALICE internal note, 2012,
1064 \url{https://aliceinfo.cern.ch/Notes/node/17/}.
dc64f2ea 1065\bibitem{nim:b1:16}
1066%% \bibitem{Hancock:1983ry}
1067 S.~Hancock, F.~James, J.~Movchet {\it et al.},
1068 ``Energy Loss Distributions For Single Particles And Several
1069 Particles In A Thin Silicon Absorber,'' Nucl.\ Instrum.\ Meth.\
b9bd46b7 1070 \textbf{B1} (1984) 16, \url{http://cdsweb.cern.ch/record/147286/files/cer-000058451.pdf}.
dc64f2ea 1071\bibitem{phyrev:a28:615}
1072%% \bibitem{Hancock:1983fp}
1073 S.~Hancock, F.~James, J.~Movchet {\it et al.}, ``Energy Loss And
1074 Energy Straggling Of Protons And Pions In The Momentum Range
b9bd46b7 1075 0.7-gev/c To 115-gev/c,'' Phys.\ Rev.\ \textbf{A28} (1983) 615,
1076 \url{http://cdsweb.cern.ch/record/145395/files/PhysRevA.28.615.pdf}.
549a0be3 1077\bibitem{hhd:2009} Dalsgaard, H.~H., \textit{Pseudorapidity Densities in p+p and Pb+Pb collisions at
1078 LHC measured with the ALICE experiment},
1079 Ph.D.~thesis, University of Copenhagen, 2011,
1080 \url{http://www.nbi.dk/~canute/thesis.pdf}.
0a89eed1 1081\end{thebibliography}
655b45b0 1082\end{document}
56bd6baf 1083
1084% Local Variables:
1085% ispell-local-dictionary: "british"
9e3855d0 1086% TeX-PDF-mode: t
56bd6baf 1087% End:
1088%
fc6a90cc 1089% LocalWords: tracklet diffractive IsTriggerBits AliAODForwardMult ProjectionX