]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia.cxx
Quenched pythia code in separate library and directory
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
cd07c39b 35# define pyshowq pyshowq_
8d2cd130 36# define type_of_call
37#else
38# define pyclus PYCLUS
39# define pycell PYCELL
452af8c7 40# define pyrobo PYROBO
992f2843 41# define pyquen PYQUEN
16a82508 42# define pyevnw PYEVNW
cd07c39b 43# define pyshowq PYSHOWQ
8d2cd130 44# define type_of_call _stdcall
45#endif
46
47extern "C" void type_of_call pyclus(Int_t & );
48extern "C" void type_of_call pycell(Int_t & );
452af8c7 49extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
50extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 51extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 52extern "C" void type_of_call pyevnw(){;}
cd07c39b 53extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
8d2cd130 54
55//_____________________________________________________________________________
56
57AliPythia* AliPythia::fgAliPythia=NULL;
58
e8a8adcd 59AliPythia::AliPythia():
60 fProcess(kPyMb),
61 fEcms(0.),
62 fStrucFunc(kCTEQ5L),
63 fXJet(0.),
64 fYJet(0.),
32c8e463 65 fNGmax(30),
66 fZmax(0.97),
e8a8adcd 67 fGlauber(0),
68 fQuenchingWeights(0)
8d2cd130 69{
70// Default Constructor
71//
72// Set random number
7cdba479 73 if (!AliPythiaRndm::GetPythiaRandom())
74 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 75 fGlauber = 0;
76 fQuenchingWeights = 0;
8d2cd130 77}
78
e8a8adcd 79AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 80 TPythia6(pythia),
81 AliRndm(pythia),
e8a8adcd 82 fProcess(kPyMb),
83 fEcms(0.),
84 fStrucFunc(kCTEQ5L),
85 fXJet(0.),
86 fYJet(0.),
32c8e463 87 fNGmax(30),
88 fZmax(0.97),
e8a8adcd 89 fGlauber(0),
90 fQuenchingWeights(0)
91{
92 // Copy Constructor
93 pythia.Copy(*this);
94}
95
8d2cd130 96void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
97{
98// Initialise the process to generate
7cdba479 99 if (!AliPythiaRndm::GetPythiaRandom())
100 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 101
102 fProcess = process;
103 fEcms = energy;
104 fStrucFunc = strucfunc;
1d5b1b20 105//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 106 SetMDCY(Pycomp(111) ,1,0); // pi0
107 SetMDCY(Pycomp(310) ,1,0); // K0S
108 SetMDCY(Pycomp(3122),1,0); // kLambda
109 SetMDCY(Pycomp(3112),1,0); // sigma -
110 SetMDCY(Pycomp(3212),1,0); // sigma 0
111 SetMDCY(Pycomp(3222),1,0); // sigma +
112 SetMDCY(Pycomp(3312),1,0); // xi -
113 SetMDCY(Pycomp(3322),1,0); // xi 0
114 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 115 // Select structure function
8d2cd130 116 SetMSTP(52,2);
e2de0ce1 117 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 118 // Particles produced in string fragmentation point directly to either of the two endpoints
119 // of the string (depending in the side they were generated from).
120 SetMSTU(16,2);
121
8d2cd130 122//
123// Pythia initialisation for selected processes//
124//
125// Make MSEL clean
126//
127 for (Int_t i=1; i<= 200; i++) {
128 SetMSUB(i,0);
129 }
130// select charm production
131 switch (process)
132 {
65f2626c 133 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
134// Multiple interactions on.
135 SetMSTP(81,1);
136// Double Gaussian matter distribution.
137 SetMSTP(82,4);
138 SetPARP(83,0.5);
139 SetPARP(84,0.4);
140// pT0.
141 SetPARP(82,2.0);
142// Reference energy for pT0 and energy rescaling pace.
143 SetPARP(89,1800);
144 SetPARP(90,0.25);
145// String drawing almost completely minimizes string length.
146 SetPARP(85,0.9);
147 SetPARP(86,0.95);
148// ISR and FSR activity.
149 SetPARP(67,4);
150 SetPARP(71,4);
151// Lambda_FSR scale.
152 SetPARJ(81,0.29);
153 break;
154 case kPyOldUEQ2ordered2:
155// Old underlying events with Q2 ordered QCD processes
156// Multiple interactions on.
157 SetMSTP(81,1);
158// Double Gaussian matter distribution.
159 SetMSTP(82,4);
160 SetPARP(83,0.5);
161 SetPARP(84,0.4);
162// pT0.
163 SetPARP(82,2.0);
164// Reference energy for pT0 and energy rescaling pace.
165 SetPARP(89,1800);
166 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
167// String drawing almost completely minimizes string length.
168 SetPARP(85,0.9);
169 SetPARP(86,0.95);
170// ISR and FSR activity.
171 SetPARP(67,4);
172 SetPARP(71,4);
173// Lambda_FSR scale.
174 SetPARJ(81,0.29);
175 break;
176 case kPyOldPopcorn:
177// Old production mechanism: Old Popcorn
178 SetMSEL(1);
179 SetMSTJ(12,3);
180// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
181 SetMSTP(88,2);
182// (D=1)see can be used to form baryons (BARYON JUNCTION)
183 SetMSTJ(1,1);
e0e89f40 184 AtlasTuning();
65f2626c 185 break;
8d2cd130 186 case kPyCharm:
187 SetMSEL(4);
8d2cd130 188// heavy quark masses
189
190 SetPMAS(4,1,1.2);
8d2cd130 191//
192// primordial pT
193 SetMSTP(91,1);
194 SetPARP(91,1.);
195 SetPARP(93,5.);
196//
197 break;
198 case kPyBeauty:
199 SetMSEL(5);
200 SetPMAS(5,1,4.75);
8d2cd130 201 break;
202 case kPyJpsi:
203 SetMSEL(0);
204// gg->J/Psi g
205 SetMSUB(86,1);
206 break;
207 case kPyJpsiChi:
208 SetMSEL(0);
209// gg->J/Psi g
210 SetMSUB(86,1);
211// gg-> chi_0c g
212 SetMSUB(87,1);
213// gg-> chi_1c g
214 SetMSUB(88,1);
215// gg-> chi_2c g
216 SetMSUB(89,1);
217 break;
218 case kPyCharmUnforced:
219 SetMSEL(0);
220// gq->qg
221 SetMSUB(28,1);
222// gg->qq
223 SetMSUB(53,1);
224// gg->gg
225 SetMSUB(68,1);
226 break;
227 case kPyBeautyUnforced:
228 SetMSEL(0);
229// gq->qg
230 SetMSUB(28,1);
231// gg->qq
232 SetMSUB(53,1);
233// gg->gg
234 SetMSUB(68,1);
235 break;
236 case kPyMb:
237// Minimum Bias pp-Collisions
238//
239//
240// select Pythia min. bias model
241 SetMSEL(0);
511db649 242 SetMSUB(92,1); // single diffraction AB-->XB
243 SetMSUB(93,1); // single diffraction AB-->AX
244 SetMSUB(94,1); // double diffraction
245 SetMSUB(95,1); // low pt production
246
e0e89f40 247 AtlasTuning();
f529e69b 248 break;
04081a91 249
250 case kPyMbWithDirectPhoton:
251// Minimum Bias pp-Collisions with direct photon processes added
252//
253//
254// select Pythia min. bias model
255 SetMSEL(0);
256 SetMSUB(92,1); // single diffraction AB-->XB
257 SetMSUB(93,1); // single diffraction AB-->AX
258 SetMSUB(94,1); // double diffraction
259 SetMSUB(95,1); // low pt production
260
261 SetMSUB(14,1); //
262 SetMSUB(18,1); //
263 SetMSUB(29,1); //
264 SetMSUB(114,1); //
265 SetMSUB(115,1); //
266
267
268 AtlasTuning();
269 break;
270
f529e69b 271 case kPyMbDefault:
272// Minimum Bias pp-Collisions
273//
274//
275// select Pythia min. bias model
276 SetMSEL(0);
277 SetMSUB(92,1); // single diffraction AB-->XB
278 SetMSUB(93,1); // single diffraction AB-->AX
279 SetMSUB(94,1); // double diffraction
280 SetMSUB(95,1); // low pt production
281
0a0cbcfd 282 break;
283 case kPyLhwgMb:
284// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
285// -> Pythia 6.3 or above is needed
286//
287 SetMSEL(0);
288 SetMSUB(92,1); // single diffraction AB-->XB
289 SetMSUB(93,1); // single diffraction AB-->AX
290 SetMSUB(94,1); // double diffraction
291 SetMSUB(95,1); // low pt production
292
e2de0ce1 293 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 294 SetMSTP(52,2);
295 SetMSTP(68,1);
296 SetMSTP(70,2);
297 SetMSTP(81,1); // Multiple Interactions ON
298 SetMSTP(82,4); // Double Gaussian Model
299 SetMSTP(88,1);
300
301 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
302 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
303 SetPARP(84,0.5); // Core radius
304 SetPARP(85,0.9); // Regulates gluon prod. mechanism
305 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
306
511db649 307 break;
8d2cd130 308 case kPyMbNonDiffr:
309// Minimum Bias pp-Collisions
310//
311//
312// select Pythia min. bias model
313 SetMSEL(0);
511db649 314 SetMSUB(95,1); // low pt production
0f482ae4 315
d7de4a67 316 AtlasTuning();
317 break;
318 case kPyMbMSEL1:
319 ConfigHeavyFlavor();
320// Intrinsic <kT^2>
321 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
322 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
323 SetPARP(93,5.); // Upper cut-off
324// Set Q-quark mass
325 SetPMAS(4,1,1.2); // Charm quark mass
326 SetPMAS(5,1,4.78); // Beauty quark mass
327 SetPARP(71,4.); // Defaut value
328// Atlas Tuning
e0e89f40 329 AtlasTuning();
8d2cd130 330 break;
331 case kPyJets:
332//
333// QCD Jets
334//
335 SetMSEL(1);
65f2626c 336 // Pythia Tune A (CDF)
337 //
4167b79f 338 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 339 SetMSTP(82,4); // Double Gaussian Model
340 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
341 SetPARP(84,0.4); // Core radius
342 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
343 SetPARP(86,0.95); // Regulates gluon prod. mechanism
344 SetPARP(89,1800.); // [GeV] Ref. energy
345 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
346 break;
8d2cd130 347 case kPyDirectGamma:
348 SetMSEL(10);
349 break;
adf4d898 350 case kPyCharmPbPbMNR:
351 case kPyD0PbPbMNR:
90d7b703 352 case kPyDPlusPbPbMNR:
e0e89f40 353 case kPyDPlusStrangePbPbMNR:
90d7b703 354 // Tuning of Pythia parameters aimed to get a resonable agreement
355 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
356 // c-cbar single inclusive and double differential distributions.
357 // This parameter settings are meant to work with Pb-Pb collisions
358 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
359 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
360 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 361 ConfigHeavyFlavor();
90d7b703 362 // Intrinsic <kT>
363 SetMSTP(91,1);
364 SetPARP(91,1.304);
365 SetPARP(93,6.52);
90d7b703 366 // Set c-quark mass
367 SetPMAS(4,1,1.2);
8d2cd130 368 break;
adf4d898 369 case kPyCharmpPbMNR:
370 case kPyD0pPbMNR:
90d7b703 371 case kPyDPluspPbMNR:
e0e89f40 372 case kPyDPlusStrangepPbMNR:
90d7b703 373 // Tuning of Pythia parameters aimed to get a resonable agreement
374 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
375 // c-cbar single inclusive and double differential distributions.
376 // This parameter settings are meant to work with p-Pb collisions
377 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
378 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
379 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 380 ConfigHeavyFlavor();
90d7b703 381 // Intrinsic <kT>
3dc3ec94 382 SetMSTP(91,1);
383 SetPARP(91,1.16);
384 SetPARP(93,5.8);
385
90d7b703 386 // Set c-quark mass
3dc3ec94 387 SetPMAS(4,1,1.2);
adf4d898 388 break;
389 case kPyCharmppMNR:
390 case kPyD0ppMNR:
90d7b703 391 case kPyDPlusppMNR:
e0e89f40 392 case kPyDPlusStrangeppMNR:
90d7b703 393 // Tuning of Pythia parameters aimed to get a resonable agreement
394 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
395 // c-cbar single inclusive and double differential distributions.
396 // This parameter settings are meant to work with pp collisions
397 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
398 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
399 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 400 ConfigHeavyFlavor();
90d7b703 401 // Intrinsic <kT^2>
3dc3ec94 402 SetMSTP(91,1);
403 SetPARP(91,1.);
404 SetPARP(93,5.);
405
90d7b703 406 // Set c-quark mass
3dc3ec94 407 SetPMAS(4,1,1.2);
adf4d898 408 break;
e0e89f40 409 case kPyCharmppMNRwmi:
410 // Tuning of Pythia parameters aimed to get a resonable agreement
411 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
412 // c-cbar single inclusive and double differential distributions.
413 // This parameter settings are meant to work with pp collisions
414 // and with kCTEQ5L PDFs.
415 // Added multiple interactions according to ATLAS tune settings.
416 // To get a "reasonable" agreement with MNR results, events have to be
417 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
418 // set to 2.76 GeV.
419 // To get a "perfect" agreement with MNR results, events have to be
420 // generated in four ptHard bins with the following relative
421 // normalizations:
422 // 2.76-3 GeV: 25%
423 // 3-4 GeV: 40%
424 // 4-8 GeV: 29%
425 // >8 GeV: 6%
426 ConfigHeavyFlavor();
427 // Intrinsic <kT^2>
428 SetMSTP(91,1);
429 SetPARP(91,1.);
430 SetPARP(93,5.);
431
432 // Set c-quark mass
433 SetPMAS(4,1,1.2);
434 AtlasTuning();
435 break;
adf4d898 436 case kPyBeautyPbPbMNR:
8d2cd130 437 // Tuning of Pythia parameters aimed to get a resonable agreement
438 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
439 // b-bbar single inclusive and double differential distributions.
440 // This parameter settings are meant to work with Pb-Pb collisions
441 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
442 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
443 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 444 ConfigHeavyFlavor();
8d2cd130 445 // QCD scales
3dc3ec94 446 SetPARP(67,1.0);
447 SetPARP(71,1.0);
adf4d898 448 // Intrinsic <kT>
3dc3ec94 449 SetMSTP(91,1);
450 SetPARP(91,2.035);
451 SetPARP(93,10.17);
8d2cd130 452 // Set b-quark mass
3dc3ec94 453 SetPMAS(5,1,4.75);
adf4d898 454 break;
455 case kPyBeautypPbMNR:
456 // Tuning of Pythia parameters aimed to get a resonable agreement
457 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
458 // b-bbar single inclusive and double differential distributions.
459 // This parameter settings are meant to work with p-Pb collisions
460 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
461 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
462 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 463 ConfigHeavyFlavor();
adf4d898 464 // QCD scales
3dc3ec94 465 SetPARP(67,1.0);
466 SetPARP(71,1.0);
adf4d898 467 // Intrinsic <kT>
3dc3ec94 468 SetMSTP(91,1);
469 SetPARP(91,1.60);
470 SetPARP(93,8.00);
adf4d898 471 // Set b-quark mass
3dc3ec94 472 SetPMAS(5,1,4.75);
adf4d898 473 break;
474 case kPyBeautyppMNR:
475 // Tuning of Pythia parameters aimed to get a resonable agreement
476 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
477 // b-bbar single inclusive and double differential distributions.
478 // This parameter settings are meant to work with pp collisions
479 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
480 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
481 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 482 ConfigHeavyFlavor();
adf4d898 483 // QCD scales
3dc3ec94 484 SetPARP(67,1.0);
485 SetPARP(71,1.0);
486
487 // Intrinsic <kT>
488 SetMSTP(91,1);
489 SetPARP(91,1.);
490 SetPARP(93,5.);
491
492 // Set b-quark mass
493 SetPMAS(5,1,4.75);
8d2cd130 494 break;
e0e89f40 495 case kPyBeautyppMNRwmi:
496 // Tuning of Pythia parameters aimed to get a resonable agreement
497 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
498 // b-bbar single inclusive and double differential distributions.
499 // This parameter settings are meant to work with pp collisions
500 // and with kCTEQ5L PDFs.
501 // Added multiple interactions according to ATLAS tune settings.
502 // To get a "reasonable" agreement with MNR results, events have to be
503 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
504 // set to 2.76 GeV.
505 // To get a "perfect" agreement with MNR results, events have to be
506 // generated in four ptHard bins with the following relative
507 // normalizations:
508 // 2.76-4 GeV: 5%
509 // 4-6 GeV: 31%
510 // 6-8 GeV: 28%
511 // >8 GeV: 36%
512 ConfigHeavyFlavor();
513 // QCD scales
514 SetPARP(67,1.0);
515 SetPARP(71,1.0);
516
517 // Intrinsic <kT>
518 SetMSTP(91,1);
519 SetPARP(91,1.);
520 SetPARP(93,5.);
521
522 // Set b-quark mass
523 SetPMAS(5,1,4.75);
524
525 AtlasTuning();
526 break;
589380c6 527 case kPyW:
528
529 //Inclusive production of W+/-
530 SetMSEL(0);
531 //f fbar -> W+
532 SetMSUB(2,1);
533 // //f fbar -> g W+
534 // SetMSUB(16,1);
535 // //f fbar -> gamma W+
536 // SetMSUB(20,1);
537 // //f g -> f W+
538 // SetMSUB(31,1);
539 // //f gamma -> f W+
540 // SetMSUB(36,1);
541
542 // Initial/final parton shower on (Pythia default)
543 // With parton showers on we are generating "W inclusive process"
544 SetMSTP(61,1); //Initial QCD & QED showers on
545 SetMSTP(71,1); //Final QCD & QED showers on
546
547 break;
0f6ee828 548
549 case kPyZ:
550
551 //Inclusive production of Z
552 SetMSEL(0);
553 //f fbar -> Z/gamma
554 SetMSUB(1,1);
555
556 // // f fbar -> g Z/gamma
557 // SetMSUB(15,1);
558 // // f fbar -> gamma Z/gamma
559 // SetMSUB(19,1);
560 // // f g -> f Z/gamma
561 // SetMSUB(30,1);
562 // // f gamma -> f Z/gamma
563 // SetMSUB(35,1);
564
565 //only Z included, not gamma
566 SetMSTP(43,2);
567
568 // Initial/final parton shower on (Pythia default)
569 // With parton showers on we are generating "Z inclusive process"
570 SetMSTP(61,1); //Initial QCD & QED showers on
571 SetMSTP(71,1); //Final QCD & QED showers on
572
573 break;
574
8d2cd130 575 }
576//
577// Initialize PYTHIA
578 SetMSTP(41,1); // all resonance decays switched on
8d2cd130 579 Initialize("CMS","p","p",fEcms);
4167b79f 580
8d2cd130 581}
582
583Int_t AliPythia::CheckedLuComp(Int_t kf)
584{
585// Check Lund particle code (for debugging)
586 Int_t kc=Pycomp(kf);
587 printf("\n Lucomp kf,kc %d %d",kf,kc);
588 return kc;
589}
590
20e47f08 591void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 592{
593// Treat protons as inside nuclei with mass numbers a1 and a2
594// The MSTP array in the PYPARS common block is used to enable and
595// select the nuclear structure functions.
596// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
597// =1: internal PYTHIA acording to MSTP(51)
598// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
599// If the following mass number both not equal zero, nuclear corrections of the stf are used.
600// MSTP(192) : Mass number of nucleus side 1
601// MSTP(193) : Mass number of nucleus side 2
20e47f08 602// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 603 SetMSTP(52,2);
604 SetMSTP(192, a1);
20e47f08 605 SetMSTP(193, a2);
606 SetMSTP(194, pdf);
8d2cd130 607}
608
609
610AliPythia* AliPythia::Instance()
611{
612// Set random number generator
613 if (fgAliPythia) {
614 return fgAliPythia;
615 } else {
616 fgAliPythia = new AliPythia();
617 return fgAliPythia;
618 }
619}
620
621void AliPythia::PrintParticles()
622{
623// Print list of particl properties
624 Int_t np = 0;
c31f1d37 625 char* name = new char[16];
8d2cd130 626 for (Int_t kf=0; kf<1000000; kf++) {
627 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 628 Int_t kc = Pycomp(c*kf);
629 if (kc) {
630 Float_t mass = GetPMAS(kc,1);
631 Float_t width = GetPMAS(kc,2);
632 Float_t tau = GetPMAS(kc,4);
c31f1d37 633
8d2cd130 634 Pyname(kf,name);
635
636 np++;
637
638 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
639 c*kf, name, mass, width, tau);
640 }
641 }
642 }
643 printf("\n Number of particles %d \n \n", np);
644}
645
646void AliPythia::ResetDecayTable()
647{
648// Set default values for pythia decay switches
649 Int_t i;
650 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
651 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
652}
653
654void AliPythia::SetDecayTable()
655{
656// Set default values for pythia decay switches
657//
658 Int_t i;
659 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
660 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
661}
662
663void AliPythia::Pyclus(Int_t& njet)
664{
665// Call Pythia clustering algorithm
666//
667 pyclus(njet);
668}
669
670void AliPythia::Pycell(Int_t& njet)
671{
672// Call Pythia jet reconstruction algorithm
673//
674 pycell(njet);
675}
676
452af8c7 677void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
678{
679// Call Pythia jet reconstruction algorithm
680//
452af8c7 681 pyshow(ip1, ip2, qmax);
682}
683
684void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
685{
686 pyrobo(imi, ima, the, phi, bex, bey, bez);
687}
688
689
690
32c8e463 691void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 692{
693// Initializes
694// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
695// (2) The nuclear geometry using the Glauber Model
696//
6b435cde 697
18b7a4a1 698 fGlauber = AliFastGlauber::Instance();
0f482ae4 699 fGlauber->Init(2);
700 fGlauber->SetCentralityClass(cMin, cMax);
701
702 fQuenchingWeights = new AliQuenchingWeights();
703 fQuenchingWeights->InitMult();
86b6ad68 704 fQuenchingWeights->SetK(k);
0f482ae4 705 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 706 fNGmax = ngmax;
707 fZmax = zmax;
708
0f482ae4 709}
710
711
452af8c7 712void AliPythia::Quench()
713{
714//
715//
716// Simple Jet Quenching routine:
717// =============================
718// The jet formed by all final state partons radiated by the parton created
0f482ae4 719// in the hard collisions is quenched by a factor (1-z) using light cone variables in
720// the initial parton reference frame:
452af8c7 721// (E + p_z)new = (1-z) (E + p_z)old
722//
0f482ae4 723//
724//
725//
452af8c7 726// The lost momentum is first balanced by one gluon with virtuality > 0.
727// Subsequently the gluon splits to yield two gluons with E = p.
728//
0f482ae4 729//
730//
4e383037 731 static Float_t eMean = 0.;
732 static Int_t icall = 0;
0f482ae4 733
c2c598a3 734 Double_t p0[4][5];
735 Double_t p1[4][5];
736 Double_t p2[4][5];
737 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 738
739 Int_t numpart = fPyjets->N;
86b6ad68 740 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 741 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
742 Bool_t quenched[4];
b280c4cc 743 Double_t wjtKick[4];
c2c598a3 744 Int_t nGluon[4];
86b6ad68 745 Int_t qPdg[4];
0f482ae4 746 Int_t imo, kst, pdg;
b280c4cc 747
511db649 748//
c2c598a3 749// Sore information about Primary partons
750//
751// j =
752// 0, 1 partons from hard scattering
753// 2, 3 partons from initial state radiation
754//
755 for (Int_t i = 2; i <= 7; i++) {
756 Int_t j = 0;
757 // Skip gluons that participate in hard scattering
758 if (i == 4 || i == 5) continue;
759 // Gluons from hard Scattering
760 if (i == 6 || i == 7) {
761 j = i - 6;
762 pxq[j] = fPyjets->P[0][i];
763 pyq[j] = fPyjets->P[1][i];
764 pzq[j] = fPyjets->P[2][i];
765 eq[j] = fPyjets->P[3][i];
766 mq[j] = fPyjets->P[4][i];
767 } else {
768 // Gluons from initial state radiation
769 //
770 // Obtain 4-momentum vector from difference between original parton and parton after gluon
771 // radiation. Energy is calculated independently because initial state radition does not
772 // conserve strictly momentum and energy for each partonic system independently.
773 //
774 // Not very clean. Should be improved !
775 //
776 //
777 j = i;
778 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
779 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
780 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
781 mq[j] = fPyjets->P[4][i];
782 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
783 }
784//
785// Calculate some kinematic variables
511db649 786//
4e383037 787 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 788 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
789 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
790 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
791 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 792 qPdg[j] = fPyjets->K[1][i];
793 }
794
795 Double_t int0[4];
796 Double_t int1[4];
86b6ad68 797
b280c4cc 798 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
799
86b6ad68 800 for (Int_t j = 0; j < 4; j++) {
c2c598a3 801 //
802 // Quench only central jets and with E > 10.
803 //
86b6ad68 804
805
806 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
807 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
808
c2c598a3 809 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 810 fZQuench[j] = 0.;
0f482ae4 811 } else {
c2c598a3 812 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 813 icall ++;
814 eMean += eloss;
815 }
0f482ae4 816 //
817 // Extra pt
86b6ad68 818 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
819 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 820 //
821 // Fractional energy loss
b280c4cc 822 fZQuench[j] = eloss / eq[j];
0f482ae4 823 //
824 // Avoid complete loss
825 //
1044c4d8 826 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 827 //
828 // Some debug printing
86b6ad68 829
830
bf9bb016 831// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
832// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 833
b280c4cc 834// fZQuench[j] = 0.8;
835// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 836 }
4e383037 837
b280c4cc 838 quenched[j] = (fZQuench[j] > 0.01);
4e383037 839 } // primary partons
c2c598a3 840
b280c4cc 841
842
6e90ad26 843 Double_t pNew[1000][4];
844 Int_t kNew[1000];
845 Int_t icount = 0;
b280c4cc 846 Double_t zquench[4];
847
6e90ad26 848//
4e383037 849// System Loop
c2c598a3 850 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 851// Skip to next system if not quenched.
4e383037 852 if (!quenched[isys]) continue;
853
b280c4cc 854 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 855 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 856 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 857 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 858
4e383037 859
860
861 Int_t igMin = -1;
862 Int_t igMax = -1;
863 Double_t pg[4] = {0., 0., 0., 0.};
864
865//
866// Loop on radiation events
867
868 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 869 while (1) {
870 icount = 0;
871 for (Int_t k = 0; k < 4; k++)
872 {
873 p0[isys][k] = 0.;
874 p1[isys][k] = 0.;
875 p2[isys][k] = 0.;
876 }
877// Loop over partons
878 for (Int_t i = 0; i < numpart; i++)
879 {
880 imo = fPyjets->K[2][i];
881 kst = fPyjets->K[0][i];
882 pdg = fPyjets->K[1][i];
883
884
885
0f482ae4 886// Quarks and gluons only
6e90ad26 887 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 888// Particles from hard scattering only
c2c598a3 889
6e90ad26 890 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 891 Int_t imom = imo % 1000;
892 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
893 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
894
6e90ad26 895
0f482ae4 896// Skip comment lines
6e90ad26 897 if (kst != 1 && kst != 2) continue;
0f482ae4 898//
899// Parton kinematic
6e90ad26 900 px = fPyjets->P[0][i];
901 py = fPyjets->P[1][i];
902 pz = fPyjets->P[2][i];
903 e = fPyjets->P[3][i];
904 m = fPyjets->P[4][i];
905 pt = TMath::Sqrt(px * px + py * py);
906 p = TMath::Sqrt(px * px + py * py + pz * pz);
907 phi = TMath::Pi() + TMath::ATan2(-py, -px);
908 theta = TMath::ATan2(pt, pz);
909
0f482ae4 910//
c2c598a3 911// Save 4-momentum sum for balancing
912 Int_t index = isys;
6e90ad26 913
914 p0[index][0] += px;
915 p0[index][1] += py;
916 p0[index][2] += pz;
917 p0[index][3] += e;
6e90ad26 918
919 klast[index] = i;
920
0f482ae4 921//
922// Fractional energy loss
b280c4cc 923 Double_t z = zquench[index];
4e383037 924
c2c598a3 925
4e383037 926// Don't fully quench radiated gluons
927//
928 if (imo > 1000) {
929// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
930//
931
c2c598a3 932 z = 0.02;
4e383037 933 }
c2c598a3 934// printf("z: %d %f\n", imo, z);
935
4e383037 936
937//
6e90ad26 938
939 //
940 //
941 // Transform into frame in which initial parton is along z-axis
942 //
943 TVector3 v(px, py, pz);
944 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
945 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
946
947 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
948 Double_t mt2 = jt * jt + m * m;
949 Double_t zmax = 1.;
950 //
951 // Kinematic limit on z
952 //
4e383037 953 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 954 //
955 // Change light-cone kinematics rel. to initial parton
956 //
957 Double_t eppzOld = e + pl;
958 Double_t empzOld = e - pl;
959
960 Double_t eppzNew = (1. - z) * eppzOld;
961 Double_t empzNew = empzOld - mt2 * z / eppzOld;
962 Double_t eNew = 0.5 * (eppzNew + empzNew);
963 Double_t plNew = 0.5 * (eppzNew - empzNew);
964
965 Double_t jtNew;
966 //
967 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
968 Double_t mt2New = eppzNew * empzNew;
969 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 970 if (z < zmax) {
971 if (m * m > mt2New) {
972 //
973 // This should not happen
974 //
975 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
976 jtNew = 0;
977 } else {
978 jtNew = TMath::Sqrt(mt2New - m * m);
979 }
6e90ad26 980 } else {
4e383037 981 // If pT is to small (probably a leading massive particle) we scale only the energy
982 // This can cause negative masses of the radiated gluon
983 // Let's hope for the best ...
984 jtNew = jt;
985 eNew = TMath::Sqrt(plNew * plNew + mt2);
986
6e90ad26 987 }
6e90ad26 988 //
989 // Calculate new px, py
990 //
b07be423 991 Double_t pxNew = 0;
992 Double_t pyNew = 0;
6e90ad26 993
b07be423 994 if (jt>0) {
6b118b3c 995 pxNew = jtNew / jt * pxs;
996 pyNew = jtNew / jt * pys;
b07be423 997 }
6e90ad26 998// Double_t dpx = pxs - pxNew;
999// Double_t dpy = pys - pyNew;
1000// Double_t dpz = pl - plNew;
1001// Double_t de = e - eNew;
1002// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1003// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1004// printf("New mass (2) %e %e \n", pxNew, pyNew);
1005 //
1006 // Rotate back
1007 //
1008 TVector3 w(pxNew, pyNew, plNew);
1009 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1010 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1011
1012 p1[index][0] += pxNew;
1013 p1[index][1] += pyNew;
1014 p1[index][2] += plNew;
1015 p1[index][3] += eNew;
1016 //
1017 // Updated 4-momentum vectors
1018 //
1019 pNew[icount][0] = pxNew;
1020 pNew[icount][1] = pyNew;
1021 pNew[icount][2] = plNew;
1022 pNew[icount][3] = eNew;
1023 kNew[icount] = i;
1024 icount++;
1025 } // parton loop
0f482ae4 1026 //
6e90ad26 1027 // Check if there was phase-space for quenching
0f482ae4 1028 //
0f482ae4 1029
6e90ad26 1030 if (icount == 0) quenched[isys] = kFALSE;
1031 if (!quenched[isys]) break;
1032
1033 for (Int_t j = 0; j < 4; j++)
1034 {
1035 p2[isys][j] = p0[isys][j] - p1[isys][j];
1036 }
1037 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1038 if (p2[isys][4] > 0.) {
1039 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1040 break;
1041 } else {
b280c4cc 1042 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1043 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1044 if (p2[isys][4] < -0.01) {
4e383037 1045 printf("Negative mass squared !\n");
1046 // Here we have to put the gluon back to mass shell
1047 // This will lead to a small energy imbalance
1048 p2[isys][4] = 0.;
1049 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1050 break;
6e90ad26 1051 } else {
1052 p2[isys][4] = 0.;
1053 break;
1054 }
1055 }
6e90ad26 1056 /*
6e90ad26 1057 zHeavy *= 0.98;
1058 printf("zHeavy lowered to %f\n", zHeavy);
1059 if (zHeavy < 0.01) {
1060 printf("No success ! \n");
1061 icount = 0;
1062 quenched[isys] = kFALSE;
1063 break;
1064 }
4e383037 1065 */
1066 } // iteration on z (while)
1067
6e90ad26 1068// Update event record
1069 for (Int_t k = 0; k < icount; k++) {
1070// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1071 fPyjets->P[0][kNew[k]] = pNew[k][0];
1072 fPyjets->P[1][kNew[k]] = pNew[k][1];
1073 fPyjets->P[2][kNew[k]] = pNew[k][2];
1074 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1075 }
4e383037 1076 //
1077 // Add the gluons
1078 //
1079 Int_t ish = 0;
1837e95c 1080 Int_t iGlu;
4e383037 1081 if (!quenched[isys]) continue;
0f482ae4 1082//
1083// Last parton from shower i
4e383037 1084 Int_t in = klast[isys];
0f482ae4 1085//
1086// Continue if no parton in shower i selected
1087 if (in == -1) continue;
1088//
1089// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1090 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1091//
1092// Starting index
452af8c7 1093
4e383037 1094// jmin = in - 1;
0f482ae4 1095// How many additional gluons will be generated
1096 ish = 1;
4e383037 1097 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1098//
1099// Position of gluons
4e383037 1100 iGlu = numpart;
1101 if (iglu == 0) igMin = iGlu;
1102 igMax = iGlu;
0f482ae4 1103 numpart += ish;
1104 (fPyjets->N) += ish;
4e383037 1105
0f482ae4 1106 if (ish == 1) {
4e383037 1107 fPyjets->P[0][iGlu] = p2[isys][0];
1108 fPyjets->P[1][iGlu] = p2[isys][1];
1109 fPyjets->P[2][iGlu] = p2[isys][2];
1110 fPyjets->P[3][iGlu] = p2[isys][3];
1111 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1112
4e383037 1113 fPyjets->K[0][iGlu] = 1;
1114 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1115 fPyjets->K[1][iGlu] = 21;
4e383037 1116 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1117 fPyjets->K[3][iGlu] = -1;
1118 fPyjets->K[4][iGlu] = -1;
4e383037 1119
1120 pg[0] += p2[isys][0];
1121 pg[1] += p2[isys][1];
1122 pg[2] += p2[isys][2];
1123 pg[3] += p2[isys][3];
0f482ae4 1124 } else {
1125 //
1126 // Split gluon in rest frame.
1127 //
4e383037 1128 Double_t bx = p2[isys][0] / p2[isys][3];
1129 Double_t by = p2[isys][1] / p2[isys][3];
1130 Double_t bz = p2[isys][2] / p2[isys][3];
1131 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1132 //
1133 // Isotropic decay ????
1134 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1135 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1136 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1137
1138 Double_t pz1 = pst * cost;
1139 Double_t pz2 = -pst * cost;
1140 Double_t pt1 = pst * sint;
1141 Double_t pt2 = -pst * sint;
2ab330c9 1142 Double_t px1 = pt1 * TMath::Cos(phis);
1143 Double_t py1 = pt1 * TMath::Sin(phis);
1144 Double_t px2 = pt2 * TMath::Cos(phis);
1145 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1146
1147 fPyjets->P[0][iGlu] = px1;
1148 fPyjets->P[1][iGlu] = py1;
1149 fPyjets->P[2][iGlu] = pz1;
1150 fPyjets->P[3][iGlu] = pst;
1151 fPyjets->P[4][iGlu] = 0.;
1152
4e383037 1153 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1154 fPyjets->K[1][iGlu] = 21;
4e383037 1155 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1156 fPyjets->K[3][iGlu] = -1;
1157 fPyjets->K[4][iGlu] = -1;
1158
1159 fPyjets->P[0][iGlu+1] = px2;
1160 fPyjets->P[1][iGlu+1] = py2;
1161 fPyjets->P[2][iGlu+1] = pz2;
1162 fPyjets->P[3][iGlu+1] = pst;
1163 fPyjets->P[4][iGlu+1] = 0.;
1164
4e383037 1165 fPyjets->K[0][iGlu+1] = 1;
1166 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1167 fPyjets->K[1][iGlu+1] = 21;
4e383037 1168 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1169 fPyjets->K[3][iGlu+1] = -1;
1170 fPyjets->K[4][iGlu+1] = -1;
1171 SetMSTU(1,0);
1172 SetMSTU(2,0);
1173 //
1174 // Boost back
1175 //
1176 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1177 }
4e383037 1178/*
1179 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1180 Double_t px, py, pz;
1181 px = fPyjets->P[0][ig];
1182 py = fPyjets->P[1][ig];
1183 pz = fPyjets->P[2][ig];
1184 TVector3 v(px, py, pz);
1185 v.RotateZ(-phiq[isys]);
1186 v.RotateY(-thetaq[isys]);
1187 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1188 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1189 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1190 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1191 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1192 pxs += jtKick * TMath::Cos(phiKick);
1193 pys += jtKick * TMath::Sin(phiKick);
1194 TVector3 w(pxs, pys, pzs);
1195 w.RotateY(thetaq[isys]);
1196 w.RotateZ(phiq[isys]);
1197 fPyjets->P[0][ig] = w.X();
1198 fPyjets->P[1][ig] = w.Y();
1199 fPyjets->P[2][ig] = w.Z();
1200 fPyjets->P[2][ig] = w.Mag();
1201 }
1202*/
1203 } // kGluon
1204
6e90ad26 1205
4e383037 1206 // Check energy conservation
0f482ae4 1207 Double_t pxs = 0.;
1208 Double_t pys = 0.;
1209 Double_t pzs = 0.;
1210 Double_t es = 14000.;
1211
1212 for (Int_t i = 0; i < numpart; i++)
1213 {
1214 kst = fPyjets->K[0][i];
1215 if (kst != 1 && kst != 2) continue;
1216 pxs += fPyjets->P[0][i];
1217 pys += fPyjets->P[1][i];
1218 pzs += fPyjets->P[2][i];
1219 es -= fPyjets->P[3][i];
1220 }
1221 if (TMath::Abs(pxs) > 1.e-2 ||
1222 TMath::Abs(pys) > 1.e-2 ||
1223 TMath::Abs(pzs) > 1.e-1) {
1224 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1225// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1226 }
4e383037 1227
1228 } // end quenching loop (systems)
6e90ad26 1229// Clean-up
0f482ae4 1230 for (Int_t i = 0; i < numpart; i++)
1231 {
4e383037 1232 imo = fPyjets->K[2][i];
1233 if (imo > 1000) {
1234 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1235 }
0f482ae4 1236 }
4e383037 1237// this->Pylist(1);
0f482ae4 1238} // end quench
90d7b703 1239
992f2843 1240
1241void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1242{
1243 // Igor Lokthine's quenching routine
12cb0bc0 1244 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1245
992f2843 1246 pyquen(a, ibf, b);
1247}
b280c4cc 1248
12cb0bc0 1249void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1250{
1251 // Set the parameters for the PYQUEN package.
1252 // See comments in PyquenCommon.h
1253
1254
1255 PYQPAR.t0 = t0;
1256 PYQPAR.tau0 = tau0;
1257 PYQPAR.nf = nf;
1258 PYQPAR.iengl = iengl;
1259 PYQPAR.iangl = iangl;
1260}
1261
1262
16a82508 1263void AliPythia::Pyevnw()
1264{
1265 // New multiple interaction scenario
1266 pyevnw();
1267}
1268
cd07c39b 1269void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
1270{
1271 // Call medium-modified Pythia jet reconstruction algorithm
1272 //
1273 pyshowq(ip1, ip2, qmax);
1274}
1275
b280c4cc 1276void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1277{
1278 // Return event specific quenching parameters
1279 xp = fXJet;
1280 yp = fYJet;
1281 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1282
1283}
1284
3dc3ec94 1285void AliPythia::ConfigHeavyFlavor()
1286{
1287 //
1288 // Default configuration for Heavy Flavor production
1289 //
1290 // All QCD processes
1291 //
1292 SetMSEL(1);
1293
1294 // No multiple interactions
1295 SetMSTP(81,0);
39c2e610 1296 SetPARP(81, 0.);
1297 SetPARP(82, 0.);
3dc3ec94 1298 // Initial/final parton shower on (Pythia default)
1299 SetMSTP(61,1);
1300 SetMSTP(71,1);
1301
1302 // 2nd order alpha_s
1303 SetMSTP(2,2);
1304
1305 // QCD scales
1306 SetMSTP(32,2);
1307 SetPARP(34,1.0);
1308}
e0e89f40 1309
1310void AliPythia::AtlasTuning()
1311{
1312 //
1313 // Configuration for the ATLAS tuning
e2de0ce1 1314 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
e0e89f40 1315 SetMSTP(81,1); // Multiple Interactions ON
1316 SetMSTP(82,4); // Double Gaussian Model
39c2e610 1317 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
e0e89f40 1318 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1319 SetPARP(89,1000.); // [GeV] Ref. energy
1320 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1321 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1322 SetPARP(84,0.5); // Core radius
1323 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1324 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1325 SetPARP(67,1); // Regulates Initial State Radiation
1326}
e8a8adcd 1327
1328AliPythia& AliPythia::operator=(const AliPythia& rhs)
1329{
1330// Assignment operator
1331 rhs.Copy(*this);
1332 return *this;
1333}
1334
1335 void AliPythia::Copy(TObject&) const
1336{
1337 //
1338 // Copy
1339 //
1340 Fatal("Copy","Not implemented!\n");
1341}
cd07c39b 1342