ESD can init the Bfield via AliESDRun::InitMagneticField()
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
cd07c39b 35# define pyshowq pyshowq_
694b39f9 36# define pytune pytune_
8d2cd130 37# define type_of_call
38#else
39# define pyclus PYCLUS
40# define pycell PYCELL
452af8c7 41# define pyrobo PYROBO
992f2843 42# define pyquen PYQUEN
16a82508 43# define pyevnw PYEVNW
cd07c39b 44# define pyshowq PYSHOWQ
694b39f9 45# define PYTUNE PYTUNE
8d2cd130 46# define type_of_call _stdcall
47#endif
48
49extern "C" void type_of_call pyclus(Int_t & );
50extern "C" void type_of_call pycell(Int_t & );
452af8c7 51extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
52extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 53extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 54extern "C" void type_of_call pyevnw(){;}
cd07c39b 55extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
694b39f9 56extern "C" void type_of_call pytune(Int_t &);
8d2cd130 57
58//_____________________________________________________________________________
59
60AliPythia* AliPythia::fgAliPythia=NULL;
61
e8a8adcd 62AliPythia::AliPythia():
63 fProcess(kPyMb),
64 fEcms(0.),
65 fStrucFunc(kCTEQ5L),
66 fXJet(0.),
67 fYJet(0.),
32c8e463 68 fNGmax(30),
69 fZmax(0.97),
e8a8adcd 70 fGlauber(0),
71 fQuenchingWeights(0)
8d2cd130 72{
73// Default Constructor
74//
75// Set random number
7cdba479 76 if (!AliPythiaRndm::GetPythiaRandom())
77 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 78 fGlauber = 0;
79 fQuenchingWeights = 0;
8d2cd130 80}
81
e8a8adcd 82AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 83 TPythia6(pythia),
84 AliRndm(pythia),
e8a8adcd 85 fProcess(kPyMb),
86 fEcms(0.),
87 fStrucFunc(kCTEQ5L),
88 fXJet(0.),
89 fYJet(0.),
32c8e463 90 fNGmax(30),
91 fZmax(0.97),
e8a8adcd 92 fGlauber(0),
93 fQuenchingWeights(0)
94{
95 // Copy Constructor
96 pythia.Copy(*this);
97}
98
efe3b1cd 99void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t itune)
8d2cd130 100{
101// Initialise the process to generate
7cdba479 102 if (!AliPythiaRndm::GetPythiaRandom())
103 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 104
105 fProcess = process;
106 fEcms = energy;
107 fStrucFunc = strucfunc;
1d5b1b20 108//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 109 SetMDCY(Pycomp(111) ,1,0); // pi0
110 SetMDCY(Pycomp(310) ,1,0); // K0S
111 SetMDCY(Pycomp(3122),1,0); // kLambda
112 SetMDCY(Pycomp(3112),1,0); // sigma -
113 SetMDCY(Pycomp(3212),1,0); // sigma 0
114 SetMDCY(Pycomp(3222),1,0); // sigma +
115 SetMDCY(Pycomp(3312),1,0); // xi -
116 SetMDCY(Pycomp(3322),1,0); // xi 0
117 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 118 // Select structure function
8d2cd130 119 SetMSTP(52,2);
e2de0ce1 120 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 121 // Particles produced in string fragmentation point directly to either of the two endpoints
122 // of the string (depending in the side they were generated from).
123 SetMSTU(16,2);
124
8d2cd130 125//
126// Pythia initialisation for selected processes//
127//
128// Make MSEL clean
129//
130 for (Int_t i=1; i<= 200; i++) {
131 SetMSUB(i,0);
132 }
133// select charm production
134 switch (process)
135 {
65f2626c 136 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
137// Multiple interactions on.
138 SetMSTP(81,1);
139// Double Gaussian matter distribution.
140 SetMSTP(82,4);
141 SetPARP(83,0.5);
142 SetPARP(84,0.4);
143// pT0.
144 SetPARP(82,2.0);
145// Reference energy for pT0 and energy rescaling pace.
146 SetPARP(89,1800);
147 SetPARP(90,0.25);
148// String drawing almost completely minimizes string length.
149 SetPARP(85,0.9);
150 SetPARP(86,0.95);
151// ISR and FSR activity.
152 SetPARP(67,4);
153 SetPARP(71,4);
154// Lambda_FSR scale.
155 SetPARJ(81,0.29);
156 break;
157 case kPyOldUEQ2ordered2:
158// Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldPopcorn:
180// Old production mechanism: Old Popcorn
181 SetMSEL(1);
182 SetMSTJ(12,3);
183// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
184 SetMSTP(88,2);
185// (D=1)see can be used to form baryons (BARYON JUNCTION)
186 SetMSTJ(1,1);
e0e89f40 187 AtlasTuning();
65f2626c 188 break;
8d2cd130 189 case kPyCharm:
190 SetMSEL(4);
8d2cd130 191// heavy quark masses
192
193 SetPMAS(4,1,1.2);
8d2cd130 194//
195// primordial pT
196 SetMSTP(91,1);
197 SetPARP(91,1.);
198 SetPARP(93,5.);
199//
200 break;
201 case kPyBeauty:
202 SetMSEL(5);
203 SetPMAS(5,1,4.75);
8d2cd130 204 break;
205 case kPyJpsi:
206 SetMSEL(0);
207// gg->J/Psi g
208 SetMSUB(86,1);
209 break;
210 case kPyJpsiChi:
211 SetMSEL(0);
212// gg->J/Psi g
213 SetMSUB(86,1);
214// gg-> chi_0c g
215 SetMSUB(87,1);
216// gg-> chi_1c g
217 SetMSUB(88,1);
218// gg-> chi_2c g
219 SetMSUB(89,1);
220 break;
221 case kPyCharmUnforced:
222 SetMSEL(0);
223// gq->qg
224 SetMSUB(28,1);
225// gg->qq
226 SetMSUB(53,1);
227// gg->gg
228 SetMSUB(68,1);
229 break;
230 case kPyBeautyUnforced:
231 SetMSEL(0);
232// gq->qg
233 SetMSUB(28,1);
234// gg->qq
235 SetMSUB(53,1);
236// gg->gg
237 SetMSUB(68,1);
238 break;
239 case kPyMb:
240// Minimum Bias pp-Collisions
241//
242//
243// select Pythia min. bias model
244 SetMSEL(0);
511db649 245 SetMSUB(92,1); // single diffraction AB-->XB
246 SetMSUB(93,1); // single diffraction AB-->AX
247 SetMSUB(94,1); // double diffraction
248 SetMSUB(95,1); // low pt production
249
e0e89f40 250 AtlasTuning();
511db649 251 break;
04081a91 252
253 case kPyMbWithDirectPhoton:
254// Minimum Bias pp-Collisions with direct photon processes added
255//
256//
257// select Pythia min. bias model
258 SetMSEL(0);
259 SetMSUB(92,1); // single diffraction AB-->XB
260 SetMSUB(93,1); // single diffraction AB-->AX
261 SetMSUB(94,1); // double diffraction
262 SetMSUB(95,1); // low pt production
263
264 SetMSUB(14,1); //
265 SetMSUB(18,1); //
266 SetMSUB(29,1); //
267 SetMSUB(114,1); //
268 SetMSUB(115,1); //
269
270
271 AtlasTuning();
272 break;
273
f529e69b 274 case kPyMbDefault:
275// Minimum Bias pp-Collisions
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
285 break;
0a0cbcfd 286 case kPyLhwgMb:
287// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
288// -> Pythia 6.3 or above is needed
289//
290 SetMSEL(0);
291 SetMSUB(92,1); // single diffraction AB-->XB
292 SetMSUB(93,1); // single diffraction AB-->AX
293 SetMSUB(94,1); // double diffraction
294 SetMSUB(95,1); // low pt production
295
e2de0ce1 296 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 297 SetMSTP(52,2);
298 SetMSTP(68,1);
299 SetMSTP(70,2);
300 SetMSTP(81,1); // Multiple Interactions ON
301 SetMSTP(82,4); // Double Gaussian Model
302 SetMSTP(88,1);
303
304 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
305 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
306 SetPARP(84,0.5); // Core radius
307 SetPARP(85,0.9); // Regulates gluon prod. mechanism
308 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
309
310 break;
8d2cd130 311 case kPyMbNonDiffr:
312// Minimum Bias pp-Collisions
313//
314//
315// select Pythia min. bias model
316 SetMSEL(0);
511db649 317 SetMSUB(95,1); // low pt production
0f482ae4 318
e0e89f40 319 AtlasTuning();
8d2cd130 320 break;
d7de4a67 321 case kPyMbMSEL1:
322 ConfigHeavyFlavor();
323// Intrinsic <kT^2>
324 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
325 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
326 SetPARP(93,5.); // Upper cut-off
327// Set Q-quark mass
328 SetPMAS(4,1,1.2); // Charm quark mass
329 SetPMAS(5,1,4.78); // Beauty quark mass
330 SetPARP(71,4.); // Defaut value
331// Atlas Tuning
332 AtlasTuning();
333 break;
8d2cd130 334 case kPyJets:
335//
336// QCD Jets
337//
338 SetMSEL(1);
65f2626c 339 // Pythia Tune A (CDF)
340 //
4167b79f 341 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 342 SetMSTP(82,4); // Double Gaussian Model
343 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
344 SetPARP(84,0.4); // Core radius
345 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
346 SetPARP(86,0.95); // Regulates gluon prod. mechanism
347 SetPARP(89,1800.); // [GeV] Ref. energy
348 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
349 break;
8d2cd130 350 case kPyDirectGamma:
351 SetMSEL(10);
352 break;
adf4d898 353 case kPyCharmPbPbMNR:
354 case kPyD0PbPbMNR:
90d7b703 355 case kPyDPlusPbPbMNR:
e0e89f40 356 case kPyDPlusStrangePbPbMNR:
90d7b703 357 // Tuning of Pythia parameters aimed to get a resonable agreement
358 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
359 // c-cbar single inclusive and double differential distributions.
360 // This parameter settings are meant to work with Pb-Pb collisions
361 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
362 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
363 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 364 ConfigHeavyFlavor();
90d7b703 365 // Intrinsic <kT>
366 SetMSTP(91,1);
367 SetPARP(91,1.304);
368 SetPARP(93,6.52);
90d7b703 369 // Set c-quark mass
370 SetPMAS(4,1,1.2);
90d7b703 371 break;
adf4d898 372 case kPyCharmpPbMNR:
373 case kPyD0pPbMNR:
90d7b703 374 case kPyDPluspPbMNR:
e0e89f40 375 case kPyDPlusStrangepPbMNR:
90d7b703 376 // Tuning of Pythia parameters aimed to get a resonable agreement
377 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
378 // c-cbar single inclusive and double differential distributions.
379 // This parameter settings are meant to work with p-Pb collisions
380 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
381 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
382 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 383 ConfigHeavyFlavor();
90d7b703 384 // Intrinsic <kT>
3dc3ec94 385 SetMSTP(91,1);
386 SetPARP(91,1.16);
387 SetPARP(93,5.8);
388
90d7b703 389 // Set c-quark mass
3dc3ec94 390 SetPMAS(4,1,1.2);
90d7b703 391 break;
adf4d898 392 case kPyCharmppMNR:
393 case kPyD0ppMNR:
90d7b703 394 case kPyDPlusppMNR:
e0e89f40 395 case kPyDPlusStrangeppMNR:
90d7b703 396 // Tuning of Pythia parameters aimed to get a resonable agreement
397 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
398 // c-cbar single inclusive and double differential distributions.
399 // This parameter settings are meant to work with pp collisions
400 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
401 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
402 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 403 ConfigHeavyFlavor();
90d7b703 404 // Intrinsic <kT^2>
3dc3ec94 405 SetMSTP(91,1);
406 SetPARP(91,1.);
407 SetPARP(93,5.);
408
90d7b703 409 // Set c-quark mass
3dc3ec94 410 SetPMAS(4,1,1.2);
90d7b703 411 break;
e0e89f40 412 case kPyCharmppMNRwmi:
413 // Tuning of Pythia parameters aimed to get a resonable agreement
414 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
415 // c-cbar single inclusive and double differential distributions.
416 // This parameter settings are meant to work with pp collisions
417 // and with kCTEQ5L PDFs.
418 // Added multiple interactions according to ATLAS tune settings.
419 // To get a "reasonable" agreement with MNR results, events have to be
420 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
421 // set to 2.76 GeV.
422 // To get a "perfect" agreement with MNR results, events have to be
423 // generated in four ptHard bins with the following relative
424 // normalizations:
425 // 2.76-3 GeV: 25%
426 // 3-4 GeV: 40%
427 // 4-8 GeV: 29%
428 // >8 GeV: 6%
429 ConfigHeavyFlavor();
430 // Intrinsic <kT^2>
431 SetMSTP(91,1);
432 SetPARP(91,1.);
433 SetPARP(93,5.);
434
435 // Set c-quark mass
436 SetPMAS(4,1,1.2);
437 AtlasTuning();
438 break;
adf4d898 439 case kPyBeautyPbPbMNR:
8d2cd130 440 // Tuning of Pythia parameters aimed to get a resonable agreement
441 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
442 // b-bbar single inclusive and double differential distributions.
443 // This parameter settings are meant to work with Pb-Pb collisions
444 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
445 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
446 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 447 ConfigHeavyFlavor();
8d2cd130 448 // QCD scales
3dc3ec94 449 SetPARP(67,1.0);
450 SetPARP(71,1.0);
adf4d898 451 // Intrinsic <kT>
3dc3ec94 452 SetMSTP(91,1);
453 SetPARP(91,2.035);
454 SetPARP(93,10.17);
8d2cd130 455 // Set b-quark mass
3dc3ec94 456 SetPMAS(5,1,4.75);
8d2cd130 457 break;
adf4d898 458 case kPyBeautypPbMNR:
459 // Tuning of Pythia parameters aimed to get a resonable agreement
460 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
461 // b-bbar single inclusive and double differential distributions.
462 // This parameter settings are meant to work with p-Pb collisions
463 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
464 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
465 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 466 ConfigHeavyFlavor();
adf4d898 467 // QCD scales
3dc3ec94 468 SetPARP(67,1.0);
469 SetPARP(71,1.0);
adf4d898 470 // Intrinsic <kT>
3dc3ec94 471 SetMSTP(91,1);
472 SetPARP(91,1.60);
473 SetPARP(93,8.00);
adf4d898 474 // Set b-quark mass
3dc3ec94 475 SetPMAS(5,1,4.75);
adf4d898 476 break;
477 case kPyBeautyppMNR:
478 // Tuning of Pythia parameters aimed to get a resonable agreement
479 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
480 // b-bbar single inclusive and double differential distributions.
481 // This parameter settings are meant to work with pp collisions
482 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
483 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
484 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 485 ConfigHeavyFlavor();
adf4d898 486 // QCD scales
3dc3ec94 487 SetPARP(67,1.0);
488 SetPARP(71,1.0);
489
490 // Intrinsic <kT>
491 SetMSTP(91,1);
492 SetPARP(91,1.);
493 SetPARP(93,5.);
494
495 // Set b-quark mass
496 SetPMAS(5,1,4.75);
adf4d898 497 break;
9dfe63b3 498 case kPyBeautyJets:
e0e89f40 499 case kPyBeautyppMNRwmi:
500 // Tuning of Pythia parameters aimed to get a resonable agreement
501 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
502 // b-bbar single inclusive and double differential distributions.
503 // This parameter settings are meant to work with pp collisions
504 // and with kCTEQ5L PDFs.
505 // Added multiple interactions according to ATLAS tune settings.
506 // To get a "reasonable" agreement with MNR results, events have to be
507 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
508 // set to 2.76 GeV.
509 // To get a "perfect" agreement with MNR results, events have to be
510 // generated in four ptHard bins with the following relative
511 // normalizations:
512 // 2.76-4 GeV: 5%
513 // 4-6 GeV: 31%
514 // 6-8 GeV: 28%
515 // >8 GeV: 36%
516 ConfigHeavyFlavor();
517 // QCD scales
518 SetPARP(67,1.0);
519 SetPARP(71,1.0);
520
521 // Intrinsic <kT>
522 SetMSTP(91,1);
523 SetPARP(91,1.);
524 SetPARP(93,5.);
525
526 // Set b-quark mass
527 SetPMAS(5,1,4.75);
528
529 AtlasTuning();
530 break;
589380c6 531 case kPyW:
532
533 //Inclusive production of W+/-
534 SetMSEL(0);
535 //f fbar -> W+
536 SetMSUB(2,1);
537 // //f fbar -> g W+
538 // SetMSUB(16,1);
539 // //f fbar -> gamma W+
540 // SetMSUB(20,1);
541 // //f g -> f W+
542 // SetMSUB(31,1);
543 // //f gamma -> f W+
544 // SetMSUB(36,1);
545
546 // Initial/final parton shower on (Pythia default)
547 // With parton showers on we are generating "W inclusive process"
548 SetMSTP(61,1); //Initial QCD & QED showers on
549 SetMSTP(71,1); //Final QCD & QED showers on
550
551 break;
0f6ee828 552
553 case kPyZ:
554
555 //Inclusive production of Z
556 SetMSEL(0);
557 //f fbar -> Z/gamma
558 SetMSUB(1,1);
559
560 // // f fbar -> g Z/gamma
561 // SetMSUB(15,1);
562 // // f fbar -> gamma Z/gamma
563 // SetMSUB(19,1);
564 // // f g -> f Z/gamma
565 // SetMSUB(30,1);
566 // // f gamma -> f Z/gamma
567 // SetMSUB(35,1);
568
569 //only Z included, not gamma
570 SetMSTP(43,2);
571
572 // Initial/final parton shower on (Pythia default)
573 // With parton showers on we are generating "Z inclusive process"
574 SetMSTP(61,1); //Initial QCD & QED showers on
575 SetMSTP(71,1); //Final QCD & QED showers on
576
577 break;
578
8d2cd130 579 }
580//
581// Initialize PYTHIA
efe3b1cd 582//
583// Select the tune
584 if (itune > -1) Pytune(itune);
585
586//
8d2cd130 587 SetMSTP(41,1); // all resonance decays switched on
8d2cd130 588 Initialize("CMS","p","p",fEcms);
4167b79f 589
8d2cd130 590}
591
592Int_t AliPythia::CheckedLuComp(Int_t kf)
593{
594// Check Lund particle code (for debugging)
595 Int_t kc=Pycomp(kf);
596 printf("\n Lucomp kf,kc %d %d",kf,kc);
597 return kc;
598}
599
20e47f08 600void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 601{
602// Treat protons as inside nuclei with mass numbers a1 and a2
603// The MSTP array in the PYPARS common block is used to enable and
604// select the nuclear structure functions.
605// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
606// =1: internal PYTHIA acording to MSTP(51)
607// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
608// If the following mass number both not equal zero, nuclear corrections of the stf are used.
609// MSTP(192) : Mass number of nucleus side 1
610// MSTP(193) : Mass number of nucleus side 2
20e47f08 611// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 612 SetMSTP(52,2);
613 SetMSTP(192, a1);
20e47f08 614 SetMSTP(193, a2);
615 SetMSTP(194, pdf);
8d2cd130 616}
617
618
619AliPythia* AliPythia::Instance()
620{
621// Set random number generator
622 if (fgAliPythia) {
623 return fgAliPythia;
624 } else {
625 fgAliPythia = new AliPythia();
626 return fgAliPythia;
627 }
628}
629
630void AliPythia::PrintParticles()
631{
632// Print list of particl properties
633 Int_t np = 0;
c31f1d37 634 char* name = new char[16];
8d2cd130 635 for (Int_t kf=0; kf<1000000; kf++) {
636 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 637 Int_t kc = Pycomp(c*kf);
638 if (kc) {
639 Float_t mass = GetPMAS(kc,1);
640 Float_t width = GetPMAS(kc,2);
641 Float_t tau = GetPMAS(kc,4);
c31f1d37 642
8d2cd130 643 Pyname(kf,name);
644
645 np++;
646
647 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
648 c*kf, name, mass, width, tau);
649 }
650 }
651 }
652 printf("\n Number of particles %d \n \n", np);
653}
654
655void AliPythia::ResetDecayTable()
656{
657// Set default values for pythia decay switches
658 Int_t i;
659 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
660 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
661}
662
663void AliPythia::SetDecayTable()
664{
665// Set default values for pythia decay switches
666//
667 Int_t i;
668 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
669 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
670}
671
672void AliPythia::Pyclus(Int_t& njet)
673{
674// Call Pythia clustering algorithm
675//
676 pyclus(njet);
677}
678
679void AliPythia::Pycell(Int_t& njet)
680{
681// Call Pythia jet reconstruction algorithm
682//
683 pycell(njet);
684}
685
452af8c7 686void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
687{
688// Call Pythia jet reconstruction algorithm
689//
452af8c7 690 pyshow(ip1, ip2, qmax);
691}
692
693void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
694{
695 pyrobo(imi, ima, the, phi, bex, bey, bez);
696}
697
694b39f9 698void AliPythia::Pytune(Int_t itune)
699{
c5e2801a 700/*
701C
702C ITUNE NAME (detailed descriptions below)
703C 0 Default : No settings changed => linked Pythia version's defaults.
704C ====== Old UE, Q2-ordered showers ==========================================
705C 100 A : Rick Field's CDF Tune A
706C 101 AW : Rick Field's CDF Tune AW
707C 102 BW : Rick Field's CDF Tune BW
708C 103 DW : Rick Field's CDF Tune DW
709C 104 DWT : Rick Field's CDF Tune DW with slower UE energy scaling
710C 105 QW : Rick Field's CDF Tune QW (NB: needs CTEQ6.1M pdfs externally)
711C 106 ATLAS-DC2: Arthur Moraes' (old) ATLAS tune (ATLAS DC2 / Rome)
712C 107 ACR : Tune A modified with annealing CR
713C 108 D6 : Rick Field's CDF Tune D6 (NB: needs CTEQ6L pdfs externally)
714C 109 D6T : Rick Field's CDF Tune D6T (NB: needs CTEQ6L pdfs externally)
715C ====== Intermediate Models =================================================
716C 200 IM 1 : Intermediate model: new UE, Q2-ordered showers, annealing CR
717C 201 APT : Tune A modified to use pT-ordered final-state showers
718C ====== New UE, interleaved pT-ordered showers, annealing CR ================
719C 300 S0 : Sandhoff-Skands Tune 0
720C 301 S1 : Sandhoff-Skands Tune 1
721C 302 S2 : Sandhoff-Skands Tune 2
722C 303 S0A : S0 with "Tune A" UE energy scaling
723C 304 NOCR : New UE "best try" without colour reconnections
724C 305 Old : New UE, original (primitive) colour reconnections
725C 306 ATLAS-CSC: Arthur Moraes' (new) ATLAS tune (needs CTEQ6L externally)
726C ======= The Uppsala models =================================================
727C ( NB! must be run with special modified Pythia 6.215 version )
728C ( available from http://www.isv.uu.se/thep/MC/scigal/ )
729C 400 GAL 0 : Generalized area-law model. Old parameters
730C 401 SCI 0 : Soft-Colour-Interaction model. Old parameters
731C 402 GAL 1 : Generalized area-law model. Tevatron MB retuned (Skands)
732*/
694b39f9 733 pytune(itune);
734}
735
452af8c7 736
737
32c8e463 738void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 739{
740// Initializes
741// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
742// (2) The nuclear geometry using the Glauber Model
743//
6b435cde 744
18b7a4a1 745 fGlauber = AliFastGlauber::Instance();
0f482ae4 746 fGlauber->Init(2);
747 fGlauber->SetCentralityClass(cMin, cMax);
748
749 fQuenchingWeights = new AliQuenchingWeights();
750 fQuenchingWeights->InitMult();
86b6ad68 751 fQuenchingWeights->SetK(k);
0f482ae4 752 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 753 fNGmax = ngmax;
754 fZmax = zmax;
755
0f482ae4 756}
757
758
452af8c7 759void AliPythia::Quench()
760{
761//
762//
763// Simple Jet Quenching routine:
764// =============================
765// The jet formed by all final state partons radiated by the parton created
0f482ae4 766// in the hard collisions is quenched by a factor (1-z) using light cone variables in
767// the initial parton reference frame:
452af8c7 768// (E + p_z)new = (1-z) (E + p_z)old
769//
0f482ae4 770//
771//
772//
452af8c7 773// The lost momentum is first balanced by one gluon with virtuality > 0.
774// Subsequently the gluon splits to yield two gluons with E = p.
775//
0f482ae4 776//
777//
4e383037 778 static Float_t eMean = 0.;
779 static Int_t icall = 0;
0f482ae4 780
c2c598a3 781 Double_t p0[4][5];
782 Double_t p1[4][5];
783 Double_t p2[4][5];
784 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 785
786 Int_t numpart = fPyjets->N;
86b6ad68 787 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 788 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
789 Bool_t quenched[4];
b280c4cc 790 Double_t wjtKick[4];
c2c598a3 791 Int_t nGluon[4];
86b6ad68 792 Int_t qPdg[4];
0f482ae4 793 Int_t imo, kst, pdg;
b280c4cc 794
511db649 795//
c2c598a3 796// Sore information about Primary partons
797//
798// j =
799// 0, 1 partons from hard scattering
800// 2, 3 partons from initial state radiation
801//
802 for (Int_t i = 2; i <= 7; i++) {
803 Int_t j = 0;
804 // Skip gluons that participate in hard scattering
805 if (i == 4 || i == 5) continue;
806 // Gluons from hard Scattering
807 if (i == 6 || i == 7) {
808 j = i - 6;
809 pxq[j] = fPyjets->P[0][i];
810 pyq[j] = fPyjets->P[1][i];
811 pzq[j] = fPyjets->P[2][i];
812 eq[j] = fPyjets->P[3][i];
813 mq[j] = fPyjets->P[4][i];
814 } else {
815 // Gluons from initial state radiation
816 //
817 // Obtain 4-momentum vector from difference between original parton and parton after gluon
818 // radiation. Energy is calculated independently because initial state radition does not
819 // conserve strictly momentum and energy for each partonic system independently.
820 //
821 // Not very clean. Should be improved !
822 //
823 //
824 j = i;
825 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
826 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
827 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
828 mq[j] = fPyjets->P[4][i];
829 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
830 }
831//
832// Calculate some kinematic variables
511db649 833//
4e383037 834 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 835 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
836 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
837 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
838 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 839 qPdg[j] = fPyjets->K[1][i];
840 }
841
842 Double_t int0[4];
843 Double_t int1[4];
86b6ad68 844
b280c4cc 845 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
846
86b6ad68 847 for (Int_t j = 0; j < 4; j++) {
c2c598a3 848 //
849 // Quench only central jets and with E > 10.
850 //
86b6ad68 851
852
853 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
854 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
855
c2c598a3 856 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 857 fZQuench[j] = 0.;
0f482ae4 858 } else {
c2c598a3 859 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 860 icall ++;
861 eMean += eloss;
862 }
0f482ae4 863 //
864 // Extra pt
86b6ad68 865 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
866 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 867 //
868 // Fractional energy loss
b280c4cc 869 fZQuench[j] = eloss / eq[j];
0f482ae4 870 //
871 // Avoid complete loss
872 //
1044c4d8 873 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 874 //
875 // Some debug printing
86b6ad68 876
877
bf9bb016 878// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
879// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 880
b280c4cc 881// fZQuench[j] = 0.8;
882// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 883 }
4e383037 884
b280c4cc 885 quenched[j] = (fZQuench[j] > 0.01);
4e383037 886 } // primary partons
c2c598a3 887
b280c4cc 888
889
6e90ad26 890 Double_t pNew[1000][4];
891 Int_t kNew[1000];
892 Int_t icount = 0;
b280c4cc 893 Double_t zquench[4];
894
6e90ad26 895//
4e383037 896// System Loop
c2c598a3 897 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 898// Skip to next system if not quenched.
4e383037 899 if (!quenched[isys]) continue;
900
b280c4cc 901 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 902 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 903 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 904 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 905
4e383037 906
907
908 Int_t igMin = -1;
909 Int_t igMax = -1;
910 Double_t pg[4] = {0., 0., 0., 0.};
911
912//
913// Loop on radiation events
914
915 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 916 while (1) {
917 icount = 0;
918 for (Int_t k = 0; k < 4; k++)
919 {
920 p0[isys][k] = 0.;
921 p1[isys][k] = 0.;
922 p2[isys][k] = 0.;
923 }
924// Loop over partons
925 for (Int_t i = 0; i < numpart; i++)
926 {
927 imo = fPyjets->K[2][i];
928 kst = fPyjets->K[0][i];
929 pdg = fPyjets->K[1][i];
930
931
932
0f482ae4 933// Quarks and gluons only
6e90ad26 934 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 935// Particles from hard scattering only
c2c598a3 936
6e90ad26 937 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 938 Int_t imom = imo % 1000;
939 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
940 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
941
6e90ad26 942
0f482ae4 943// Skip comment lines
6e90ad26 944 if (kst != 1 && kst != 2) continue;
0f482ae4 945//
946// Parton kinematic
6e90ad26 947 px = fPyjets->P[0][i];
948 py = fPyjets->P[1][i];
949 pz = fPyjets->P[2][i];
950 e = fPyjets->P[3][i];
951 m = fPyjets->P[4][i];
952 pt = TMath::Sqrt(px * px + py * py);
953 p = TMath::Sqrt(px * px + py * py + pz * pz);
954 phi = TMath::Pi() + TMath::ATan2(-py, -px);
955 theta = TMath::ATan2(pt, pz);
956
0f482ae4 957//
c2c598a3 958// Save 4-momentum sum for balancing
959 Int_t index = isys;
6e90ad26 960
961 p0[index][0] += px;
962 p0[index][1] += py;
963 p0[index][2] += pz;
964 p0[index][3] += e;
6e90ad26 965
966 klast[index] = i;
967
0f482ae4 968//
969// Fractional energy loss
b280c4cc 970 Double_t z = zquench[index];
4e383037 971
c2c598a3 972
4e383037 973// Don't fully quench radiated gluons
974//
975 if (imo > 1000) {
976// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
977//
978
c2c598a3 979 z = 0.02;
4e383037 980 }
c2c598a3 981// printf("z: %d %f\n", imo, z);
982
4e383037 983
984//
6e90ad26 985
986 //
987 //
988 // Transform into frame in which initial parton is along z-axis
989 //
990 TVector3 v(px, py, pz);
991 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
992 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
993
994 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
995 Double_t mt2 = jt * jt + m * m;
996 Double_t zmax = 1.;
997 //
998 // Kinematic limit on z
999 //
4e383037 1000 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 1001 //
1002 // Change light-cone kinematics rel. to initial parton
1003 //
1004 Double_t eppzOld = e + pl;
1005 Double_t empzOld = e - pl;
1006
1007 Double_t eppzNew = (1. - z) * eppzOld;
1008 Double_t empzNew = empzOld - mt2 * z / eppzOld;
1009 Double_t eNew = 0.5 * (eppzNew + empzNew);
1010 Double_t plNew = 0.5 * (eppzNew - empzNew);
1011
1012 Double_t jtNew;
1013 //
1014 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
1015 Double_t mt2New = eppzNew * empzNew;
1016 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 1017 if (z < zmax) {
1018 if (m * m > mt2New) {
1019 //
1020 // This should not happen
1021 //
1022 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1023 jtNew = 0;
1024 } else {
1025 jtNew = TMath::Sqrt(mt2New - m * m);
1026 }
6e90ad26 1027 } else {
4e383037 1028 // If pT is to small (probably a leading massive particle) we scale only the energy
1029 // This can cause negative masses of the radiated gluon
1030 // Let's hope for the best ...
1031 jtNew = jt;
1032 eNew = TMath::Sqrt(plNew * plNew + mt2);
1033
6e90ad26 1034 }
6e90ad26 1035 //
1036 // Calculate new px, py
1037 //
b07be423 1038 Double_t pxNew = 0;
1039 Double_t pyNew = 0;
6e90ad26 1040
b07be423 1041 if (jt>0) {
6b118b3c 1042 pxNew = jtNew / jt * pxs;
1043 pyNew = jtNew / jt * pys;
b07be423 1044 }
6e90ad26 1045// Double_t dpx = pxs - pxNew;
1046// Double_t dpy = pys - pyNew;
1047// Double_t dpz = pl - plNew;
1048// Double_t de = e - eNew;
1049// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1050// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1051// printf("New mass (2) %e %e \n", pxNew, pyNew);
1052 //
1053 // Rotate back
1054 //
1055 TVector3 w(pxNew, pyNew, plNew);
1056 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1057 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1058
1059 p1[index][0] += pxNew;
1060 p1[index][1] += pyNew;
1061 p1[index][2] += plNew;
1062 p1[index][3] += eNew;
1063 //
1064 // Updated 4-momentum vectors
1065 //
1066 pNew[icount][0] = pxNew;
1067 pNew[icount][1] = pyNew;
1068 pNew[icount][2] = plNew;
1069 pNew[icount][3] = eNew;
1070 kNew[icount] = i;
1071 icount++;
1072 } // parton loop
0f482ae4 1073 //
6e90ad26 1074 // Check if there was phase-space for quenching
0f482ae4 1075 //
0f482ae4 1076
6e90ad26 1077 if (icount == 0) quenched[isys] = kFALSE;
1078 if (!quenched[isys]) break;
1079
1080 for (Int_t j = 0; j < 4; j++)
1081 {
1082 p2[isys][j] = p0[isys][j] - p1[isys][j];
1083 }
1084 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1085 if (p2[isys][4] > 0.) {
1086 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1087 break;
1088 } else {
b280c4cc 1089 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1090 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1091 if (p2[isys][4] < -0.01) {
4e383037 1092 printf("Negative mass squared !\n");
1093 // Here we have to put the gluon back to mass shell
1094 // This will lead to a small energy imbalance
1095 p2[isys][4] = 0.;
1096 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1097 break;
6e90ad26 1098 } else {
1099 p2[isys][4] = 0.;
1100 break;
1101 }
1102 }
6e90ad26 1103 /*
6e90ad26 1104 zHeavy *= 0.98;
1105 printf("zHeavy lowered to %f\n", zHeavy);
1106 if (zHeavy < 0.01) {
1107 printf("No success ! \n");
1108 icount = 0;
1109 quenched[isys] = kFALSE;
1110 break;
1111 }
4e383037 1112 */
1113 } // iteration on z (while)
1114
6e90ad26 1115// Update event record
1116 for (Int_t k = 0; k < icount; k++) {
1117// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1118 fPyjets->P[0][kNew[k]] = pNew[k][0];
1119 fPyjets->P[1][kNew[k]] = pNew[k][1];
1120 fPyjets->P[2][kNew[k]] = pNew[k][2];
1121 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1122 }
4e383037 1123 //
1124 // Add the gluons
1125 //
1126 Int_t ish = 0;
1837e95c 1127 Int_t iGlu;
4e383037 1128 if (!quenched[isys]) continue;
0f482ae4 1129//
1130// Last parton from shower i
4e383037 1131 Int_t in = klast[isys];
0f482ae4 1132//
1133// Continue if no parton in shower i selected
1134 if (in == -1) continue;
1135//
1136// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1137 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1138//
1139// Starting index
452af8c7 1140
4e383037 1141// jmin = in - 1;
0f482ae4 1142// How many additional gluons will be generated
1143 ish = 1;
4e383037 1144 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1145//
1146// Position of gluons
4e383037 1147 iGlu = numpart;
1148 if (iglu == 0) igMin = iGlu;
1149 igMax = iGlu;
0f482ae4 1150 numpart += ish;
1151 (fPyjets->N) += ish;
4e383037 1152
0f482ae4 1153 if (ish == 1) {
4e383037 1154 fPyjets->P[0][iGlu] = p2[isys][0];
1155 fPyjets->P[1][iGlu] = p2[isys][1];
1156 fPyjets->P[2][iGlu] = p2[isys][2];
1157 fPyjets->P[3][iGlu] = p2[isys][3];
1158 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1159
4e383037 1160 fPyjets->K[0][iGlu] = 1;
1161 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1162 fPyjets->K[1][iGlu] = 21;
4e383037 1163 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1164 fPyjets->K[3][iGlu] = -1;
1165 fPyjets->K[4][iGlu] = -1;
4e383037 1166
1167 pg[0] += p2[isys][0];
1168 pg[1] += p2[isys][1];
1169 pg[2] += p2[isys][2];
1170 pg[3] += p2[isys][3];
0f482ae4 1171 } else {
1172 //
1173 // Split gluon in rest frame.
1174 //
4e383037 1175 Double_t bx = p2[isys][0] / p2[isys][3];
1176 Double_t by = p2[isys][1] / p2[isys][3];
1177 Double_t bz = p2[isys][2] / p2[isys][3];
1178 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1179 //
1180 // Isotropic decay ????
1181 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1182 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1183 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1184
1185 Double_t pz1 = pst * cost;
1186 Double_t pz2 = -pst * cost;
1187 Double_t pt1 = pst * sint;
1188 Double_t pt2 = -pst * sint;
2ab330c9 1189 Double_t px1 = pt1 * TMath::Cos(phis);
1190 Double_t py1 = pt1 * TMath::Sin(phis);
1191 Double_t px2 = pt2 * TMath::Cos(phis);
1192 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1193
1194 fPyjets->P[0][iGlu] = px1;
1195 fPyjets->P[1][iGlu] = py1;
1196 fPyjets->P[2][iGlu] = pz1;
1197 fPyjets->P[3][iGlu] = pst;
1198 fPyjets->P[4][iGlu] = 0.;
1199
4e383037 1200 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1201 fPyjets->K[1][iGlu] = 21;
4e383037 1202 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1203 fPyjets->K[3][iGlu] = -1;
1204 fPyjets->K[4][iGlu] = -1;
1205
1206 fPyjets->P[0][iGlu+1] = px2;
1207 fPyjets->P[1][iGlu+1] = py2;
1208 fPyjets->P[2][iGlu+1] = pz2;
1209 fPyjets->P[3][iGlu+1] = pst;
1210 fPyjets->P[4][iGlu+1] = 0.;
1211
4e383037 1212 fPyjets->K[0][iGlu+1] = 1;
1213 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1214 fPyjets->K[1][iGlu+1] = 21;
4e383037 1215 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1216 fPyjets->K[3][iGlu+1] = -1;
1217 fPyjets->K[4][iGlu+1] = -1;
1218 SetMSTU(1,0);
1219 SetMSTU(2,0);
1220 //
1221 // Boost back
1222 //
1223 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1224 }
4e383037 1225/*
1226 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1227 Double_t px, py, pz;
1228 px = fPyjets->P[0][ig];
1229 py = fPyjets->P[1][ig];
1230 pz = fPyjets->P[2][ig];
1231 TVector3 v(px, py, pz);
1232 v.RotateZ(-phiq[isys]);
1233 v.RotateY(-thetaq[isys]);
1234 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1235 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1236 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1237 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1238 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1239 pxs += jtKick * TMath::Cos(phiKick);
1240 pys += jtKick * TMath::Sin(phiKick);
1241 TVector3 w(pxs, pys, pzs);
1242 w.RotateY(thetaq[isys]);
1243 w.RotateZ(phiq[isys]);
1244 fPyjets->P[0][ig] = w.X();
1245 fPyjets->P[1][ig] = w.Y();
1246 fPyjets->P[2][ig] = w.Z();
1247 fPyjets->P[2][ig] = w.Mag();
1248 }
1249*/
1250 } // kGluon
1251
6e90ad26 1252
4e383037 1253 // Check energy conservation
0f482ae4 1254 Double_t pxs = 0.;
1255 Double_t pys = 0.;
1256 Double_t pzs = 0.;
1257 Double_t es = 14000.;
1258
1259 for (Int_t i = 0; i < numpart; i++)
1260 {
1261 kst = fPyjets->K[0][i];
1262 if (kst != 1 && kst != 2) continue;
1263 pxs += fPyjets->P[0][i];
1264 pys += fPyjets->P[1][i];
1265 pzs += fPyjets->P[2][i];
1266 es -= fPyjets->P[3][i];
1267 }
1268 if (TMath::Abs(pxs) > 1.e-2 ||
1269 TMath::Abs(pys) > 1.e-2 ||
1270 TMath::Abs(pzs) > 1.e-1) {
1271 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1272// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1273 }
4e383037 1274
1275 } // end quenching loop (systems)
6e90ad26 1276// Clean-up
0f482ae4 1277 for (Int_t i = 0; i < numpart; i++)
1278 {
4e383037 1279 imo = fPyjets->K[2][i];
1280 if (imo > 1000) {
1281 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1282 }
0f482ae4 1283 }
4e383037 1284// this->Pylist(1);
0f482ae4 1285} // end quench
90d7b703 1286
992f2843 1287
1288void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1289{
1290 // Igor Lokthine's quenching routine
12cb0bc0 1291 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1292
992f2843 1293 pyquen(a, ibf, b);
1294}
b280c4cc 1295
12cb0bc0 1296void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1297{
1298 // Set the parameters for the PYQUEN package.
1299 // See comments in PyquenCommon.h
1300
1301
1302 PYQPAR.t0 = t0;
1303 PYQPAR.tau0 = tau0;
1304 PYQPAR.nf = nf;
1305 PYQPAR.iengl = iengl;
1306 PYQPAR.iangl = iangl;
1307}
1308
1309
16a82508 1310void AliPythia::Pyevnw()
1311{
1312 // New multiple interaction scenario
1313 pyevnw();
1314}
1315
cd07c39b 1316void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
1317{
1318 // Call medium-modified Pythia jet reconstruction algorithm
1319 //
1320 pyshowq(ip1, ip2, qmax);
1321}
1322
b280c4cc 1323void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1324{
1325 // Return event specific quenching parameters
1326 xp = fXJet;
1327 yp = fYJet;
1328 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1329
1330}
1331
3dc3ec94 1332void AliPythia::ConfigHeavyFlavor()
1333{
1334 //
1335 // Default configuration for Heavy Flavor production
1336 //
1337 // All QCD processes
1338 //
1339 SetMSEL(1);
1340
1341 // No multiple interactions
1342 SetMSTP(81,0);
39c2e610 1343 SetPARP(81, 0.);
1344 SetPARP(82, 0.);
3dc3ec94 1345 // Initial/final parton shower on (Pythia default)
1346 SetMSTP(61,1);
1347 SetMSTP(71,1);
1348
1349 // 2nd order alpha_s
1350 SetMSTP(2,2);
1351
1352 // QCD scales
1353 SetMSTP(32,2);
1354 SetPARP(34,1.0);
1355}
e0e89f40 1356
1357void AliPythia::AtlasTuning()
1358{
1359 //
1360 // Configuration for the ATLAS tuning
e2de0ce1 1361 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
e0e89f40 1362 SetMSTP(81,1); // Multiple Interactions ON
1363 SetMSTP(82,4); // Double Gaussian Model
39c2e610 1364 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
e0e89f40 1365 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1366 SetPARP(89,1000.); // [GeV] Ref. energy
1367 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1368 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1369 SetPARP(84,0.5); // Core radius
1370 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1371 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1372 SetPARP(67,1); // Regulates Initial State Radiation
1373}
e8a8adcd 1374
1375AliPythia& AliPythia::operator=(const AliPythia& rhs)
1376{
1377// Assignment operator
1378 rhs.Copy(*this);
1379 return *this;
1380}
1381
1382 void AliPythia::Copy(TObject&) const
1383{
1384 //
1385 // Copy
1386 //
1387 Fatal("Copy","Not implemented!\n");
1388}
cd07c39b 1389