8d2cd130 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
7cdba479 |
16 | /* $Id$ */ |
8d2cd130 |
17 | |
18 | #include "AliPythia.h" |
7cdba479 |
19 | #include "AliPythiaRndm.h" |
8d2cd130 |
20 | |
21 | ClassImp(AliPythia) |
22 | |
23 | #ifndef WIN32 |
24 | # define pyclus pyclus_ |
25 | # define pycell pycell_ |
452af8c7 |
26 | # define pyshow pyshow_ |
27 | # define pyrobo pyrobo_ |
8d2cd130 |
28 | # define type_of_call |
29 | #else |
30 | # define pyclus PYCLUS |
31 | # define pycell PYCELL |
452af8c7 |
32 | # define pyrobo PYROBO |
8d2cd130 |
33 | # define type_of_call _stdcall |
34 | #endif |
35 | |
36 | extern "C" void type_of_call pyclus(Int_t & ); |
37 | extern "C" void type_of_call pycell(Int_t & ); |
452af8c7 |
38 | extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); |
39 | extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); |
8d2cd130 |
40 | |
41 | //_____________________________________________________________________________ |
42 | |
43 | AliPythia* AliPythia::fgAliPythia=NULL; |
44 | |
45 | AliPythia::AliPythia() |
46 | { |
47 | // Default Constructor |
48 | // |
49 | // Set random number |
7cdba479 |
50 | if (!AliPythiaRndm::GetPythiaRandom()) |
51 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
52 | |
53 | } |
54 | |
55 | void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) |
56 | { |
57 | // Initialise the process to generate |
7cdba479 |
58 | if (!AliPythiaRndm::GetPythiaRandom()) |
59 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
60 | |
61 | fProcess = process; |
62 | fEcms = energy; |
63 | fStrucFunc = strucfunc; |
64 | // don't decay p0 |
65 | SetMDCY(Pycomp(111),1,0); |
66 | // select structure function |
67 | SetMSTP(52,2); |
68 | SetMSTP(51,strucfunc); |
69 | // |
70 | // Pythia initialisation for selected processes// |
71 | // |
72 | // Make MSEL clean |
73 | // |
74 | for (Int_t i=1; i<= 200; i++) { |
75 | SetMSUB(i,0); |
76 | } |
77 | // select charm production |
78 | switch (process) |
79 | { |
80 | case kPyCharm: |
81 | SetMSEL(4); |
82 | // |
83 | // heavy quark masses |
84 | |
85 | SetPMAS(4,1,1.2); |
86 | SetMSTU(16,2); |
87 | // |
88 | // primordial pT |
89 | SetMSTP(91,1); |
90 | SetPARP(91,1.); |
91 | SetPARP(93,5.); |
92 | // |
93 | break; |
94 | case kPyBeauty: |
95 | SetMSEL(5); |
96 | SetPMAS(5,1,4.75); |
97 | SetMSTU(16,2); |
98 | break; |
99 | case kPyJpsi: |
100 | SetMSEL(0); |
101 | // gg->J/Psi g |
102 | SetMSUB(86,1); |
103 | break; |
104 | case kPyJpsiChi: |
105 | SetMSEL(0); |
106 | // gg->J/Psi g |
107 | SetMSUB(86,1); |
108 | // gg-> chi_0c g |
109 | SetMSUB(87,1); |
110 | // gg-> chi_1c g |
111 | SetMSUB(88,1); |
112 | // gg-> chi_2c g |
113 | SetMSUB(89,1); |
114 | break; |
115 | case kPyCharmUnforced: |
116 | SetMSEL(0); |
117 | // gq->qg |
118 | SetMSUB(28,1); |
119 | // gg->qq |
120 | SetMSUB(53,1); |
121 | // gg->gg |
122 | SetMSUB(68,1); |
123 | break; |
124 | case kPyBeautyUnforced: |
125 | SetMSEL(0); |
126 | // gq->qg |
127 | SetMSUB(28,1); |
128 | // gg->qq |
129 | SetMSUB(53,1); |
130 | // gg->gg |
131 | SetMSUB(68,1); |
132 | break; |
133 | case kPyMb: |
134 | // Minimum Bias pp-Collisions |
135 | // |
136 | // |
137 | // select Pythia min. bias model |
138 | SetMSEL(0); |
139 | SetMSUB(92,1); // single diffraction AB-->XB |
140 | SetMSUB(93,1); // single diffraction AB-->AX |
141 | SetMSUB(94,1); // double diffraction |
142 | SetMSUB(95,1); // low pt production |
143 | SetMSTP(81,1); // multiple interactions switched on |
144 | SetMSTP(82,3); // model with varying impact param. & a single Gaussian |
145 | SetPARP(82,3.47); // set value pT_0 for turn-off of the cross section of |
146 | // multiple interaction at a reference energy = 14000 GeV |
147 | SetPARP(89,14000.); // reference energy for the above parameter |
148 | SetPARP(90,0.174); // set exponent for energy dependence of pT_0 |
149 | case kPyMbNonDiffr: |
150 | // Minimum Bias pp-Collisions |
151 | // |
152 | // |
153 | // select Pythia min. bias model |
154 | SetMSEL(0); |
155 | SetMSUB(95,1); // low pt production |
156 | SetMSTP(81,1); // multiple interactions switched on |
157 | SetMSTP(82,3); // model with varying impact param. & a single Gaussian |
158 | SetPARP(82,3.47); // set value pT_0 for turn-off of the cross section of |
159 | // multiple interaction at a reference energy = 14000 GeV |
160 | SetPARP(89,14000.); // reference energy for the above parameter |
161 | SetPARP(90,0.174); // set exponent for energy dependence of pT_0 |
162 | |
163 | break; |
164 | case kPyJets: |
165 | // |
166 | // QCD Jets |
167 | // |
168 | SetMSEL(1); |
169 | break; |
170 | case kPyDirectGamma: |
171 | SetMSEL(10); |
172 | break; |
adf4d898 |
173 | case kPyCharmPbPbMNR: |
174 | case kPyD0PbPbMNR: |
8d2cd130 |
175 | // Tuning of Pythia parameters aimed to get a resonable agreement |
176 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
177 | // c-cbar single inclusive and double differential distributions. |
178 | // This parameter settings are meant to work with Pb-Pb collisions |
adf4d898 |
179 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
8d2cd130 |
180 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
181 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
182 | |
183 | // All QCD processes |
184 | SetMSEL(1); |
185 | |
186 | // No multiple interactions |
187 | SetMSTP(81,0); |
188 | SetPARP(81,0.0); |
189 | SetPARP(82,0.0); |
190 | |
191 | // Initial/final parton shower on (Pythia default) |
192 | SetMSTP(61,1); |
193 | SetMSTP(71,1); |
194 | |
195 | // 2nd order alpha_s |
196 | SetMSTP(2,2); |
197 | |
198 | // QCD scales |
199 | SetMSTP(32,2); |
200 | SetPARP(34,1.0); |
201 | |
adf4d898 |
202 | // Intrinsic <kT> |
8d2cd130 |
203 | SetMSTP(91,1); |
204 | SetPARP(91,1.304); |
205 | SetPARP(93,6.52); |
206 | |
207 | // Set c-quark mass |
208 | SetPMAS(4,1,1.2); |
209 | |
210 | break; |
adf4d898 |
211 | case kPyCharmpPbMNR: |
212 | case kPyD0pPbMNR: |
213 | // Tuning of Pythia parameters aimed to get a resonable agreement |
214 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
215 | // c-cbar single inclusive and double differential distributions. |
216 | // This parameter settings are meant to work with p-Pb collisions |
217 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
218 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
219 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
220 | |
221 | // All QCD processes |
222 | SetMSEL(1); |
223 | |
224 | // No multiple interactions |
225 | SetMSTP(81,0); |
226 | SetPARP(81,0.0); |
227 | SetPARP(82,0.0); |
228 | |
229 | // Initial/final parton shower on (Pythia default) |
230 | SetMSTP(61,1); |
231 | SetMSTP(71,1); |
232 | |
233 | // 2nd order alpha_s |
234 | SetMSTP(2,2); |
235 | |
236 | // QCD scales |
237 | SetMSTP(32,2); |
238 | SetPARP(34,1.0); |
239 | |
240 | // Intrinsic <kT> |
241 | SetMSTP(91,1); |
242 | SetPARP(91,1.16); |
243 | SetPARP(93,5.8); |
244 | |
245 | // Set c-quark mass |
246 | SetPMAS(4,1,1.2); |
247 | |
248 | break; |
249 | case kPyCharmppMNR: |
250 | case kPyD0ppMNR: |
251 | // Tuning of Pythia parameters aimed to get a resonable agreement |
252 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
253 | // c-cbar single inclusive and double differential distributions. |
254 | // This parameter settings are meant to work with pp collisions |
255 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
256 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
257 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
258 | |
259 | // All QCD processes |
260 | SetMSEL(1); |
261 | |
262 | // No multiple interactions |
263 | SetMSTP(81,0); |
264 | SetPARP(81,0.0); |
265 | SetPARP(82,0.0); |
266 | |
267 | // Initial/final parton shower on (Pythia default) |
268 | SetMSTP(61,1); |
269 | SetMSTP(71,1); |
270 | |
271 | // 2nd order alpha_s |
272 | SetMSTP(2,2); |
273 | |
274 | // QCD scales |
275 | SetMSTP(32,2); |
276 | SetPARP(34,1.0); |
277 | |
278 | // Intrinsic <kT^2> |
279 | SetMSTP(91,1); |
280 | SetPARP(91,1.); |
281 | SetPARP(93,5.); |
282 | |
283 | // Set c-quark mass |
284 | SetPMAS(4,1,1.2); |
285 | |
286 | break; |
287 | case kPyBeautyPbPbMNR: |
8d2cd130 |
288 | // Tuning of Pythia parameters aimed to get a resonable agreement |
289 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
290 | // b-bbar single inclusive and double differential distributions. |
291 | // This parameter settings are meant to work with Pb-Pb collisions |
292 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
293 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
294 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
295 | |
296 | // All QCD processes |
297 | SetMSEL(1); |
298 | |
299 | // No multiple interactions |
300 | SetMSTP(81,0); |
301 | SetPARP(81,0.0); |
302 | SetPARP(82,0.0); |
303 | |
304 | // Initial/final parton shower on (Pythia default) |
305 | SetMSTP(61,1); |
306 | SetMSTP(71,1); |
307 | |
308 | // 2nd order alpha_s |
309 | SetMSTP(2,2); |
310 | |
311 | // QCD scales |
312 | SetMSTP(32,2); |
313 | SetPARP(34,1.0); |
314 | SetPARP(67,1.0); |
315 | SetPARP(71,1.0); |
316 | |
adf4d898 |
317 | // Intrinsic <kT> |
8d2cd130 |
318 | SetMSTP(91,1); |
319 | SetPARP(91,2.035); |
320 | SetPARP(93,10.17); |
321 | |
322 | // Set b-quark mass |
323 | SetPMAS(5,1,4.75); |
324 | |
adf4d898 |
325 | break; |
326 | case kPyBeautypPbMNR: |
327 | // Tuning of Pythia parameters aimed to get a resonable agreement |
328 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
329 | // b-bbar single inclusive and double differential distributions. |
330 | // This parameter settings are meant to work with p-Pb collisions |
331 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
332 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
333 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
334 | |
335 | // All QCD processes |
336 | SetMSEL(1); |
337 | |
338 | // No multiple interactions |
339 | SetMSTP(81,0); |
340 | SetPARP(81,0.0); |
341 | SetPARP(82,0.0); |
342 | |
343 | // Initial/final parton shower on (Pythia default) |
344 | SetMSTP(61,1); |
345 | SetMSTP(71,1); |
346 | |
347 | // 2nd order alpha_s |
348 | SetMSTP(2,2); |
349 | |
350 | // QCD scales |
351 | SetMSTP(32,2); |
352 | SetPARP(34,1.0); |
353 | SetPARP(67,1.0); |
354 | SetPARP(71,1.0); |
355 | |
356 | // Intrinsic <kT> |
357 | SetMSTP(91,1); |
358 | SetPARP(91,1.60); |
359 | SetPARP(93,8.00); |
360 | |
361 | // Set b-quark mass |
362 | SetPMAS(5,1,4.75); |
363 | |
364 | break; |
365 | case kPyBeautyppMNR: |
366 | // Tuning of Pythia parameters aimed to get a resonable agreement |
367 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
368 | // b-bbar single inclusive and double differential distributions. |
369 | // This parameter settings are meant to work with pp collisions |
370 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
371 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
372 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
373 | |
374 | // All QCD processes |
375 | SetMSEL(1); |
376 | |
377 | // No multiple interactions |
378 | SetMSTP(81,0); |
379 | SetPARP(81,0.0); |
380 | SetPARP(82,0.0); |
381 | |
382 | // Initial/final parton shower on (Pythia default) |
383 | SetMSTP(61,1); |
384 | SetMSTP(71,1); |
385 | |
386 | // 2nd order alpha_s |
387 | SetMSTP(2,2); |
388 | |
389 | // QCD scales |
390 | SetMSTP(32,2); |
391 | SetPARP(34,1.0); |
392 | SetPARP(67,1.0); |
393 | SetPARP(71,1.0); |
394 | |
395 | // Intrinsic <kT> |
396 | SetMSTP(91,1); |
397 | SetPARP(91,1.); |
398 | SetPARP(93,5.); |
399 | |
400 | // Set b-quark mass |
401 | SetPMAS(5,1,4.75); |
402 | |
8d2cd130 |
403 | break; |
404 | } |
405 | // |
406 | // Initialize PYTHIA |
407 | SetMSTP(41,1); // all resonance decays switched on |
408 | |
409 | Initialize("CMS","p","p",fEcms); |
410 | |
411 | } |
412 | |
413 | Int_t AliPythia::CheckedLuComp(Int_t kf) |
414 | { |
415 | // Check Lund particle code (for debugging) |
416 | Int_t kc=Pycomp(kf); |
417 | printf("\n Lucomp kf,kc %d %d",kf,kc); |
418 | return kc; |
419 | } |
420 | |
421 | void AliPythia::SetNuclei(Int_t a1, Int_t a2) |
422 | { |
423 | // Treat protons as inside nuclei with mass numbers a1 and a2 |
424 | // The MSTP array in the PYPARS common block is used to enable and |
425 | // select the nuclear structure functions. |
426 | // MSTP(52) : (D=1) choice of proton and nuclear structure-function library |
427 | // =1: internal PYTHIA acording to MSTP(51) |
428 | // =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET |
429 | // If the following mass number both not equal zero, nuclear corrections of the stf are used. |
430 | // MSTP(192) : Mass number of nucleus side 1 |
431 | // MSTP(193) : Mass number of nucleus side 2 |
432 | SetMSTP(52,2); |
433 | SetMSTP(192, a1); |
434 | SetMSTP(193, a2); |
435 | } |
436 | |
437 | |
438 | AliPythia* AliPythia::Instance() |
439 | { |
440 | // Set random number generator |
441 | if (fgAliPythia) { |
442 | return fgAliPythia; |
443 | } else { |
444 | fgAliPythia = new AliPythia(); |
445 | return fgAliPythia; |
446 | } |
447 | } |
448 | |
449 | void AliPythia::PrintParticles() |
450 | { |
451 | // Print list of particl properties |
452 | Int_t np = 0; |
c31f1d37 |
453 | char* name = new char[16]; |
8d2cd130 |
454 | for (Int_t kf=0; kf<1000000; kf++) { |
455 | for (Int_t c = 1; c > -2; c-=2) { |
8d2cd130 |
456 | Int_t kc = Pycomp(c*kf); |
457 | if (kc) { |
458 | Float_t mass = GetPMAS(kc,1); |
459 | Float_t width = GetPMAS(kc,2); |
460 | Float_t tau = GetPMAS(kc,4); |
c31f1d37 |
461 | |
8d2cd130 |
462 | Pyname(kf,name); |
463 | |
464 | np++; |
465 | |
466 | printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e", |
467 | c*kf, name, mass, width, tau); |
468 | } |
469 | } |
470 | } |
471 | printf("\n Number of particles %d \n \n", np); |
472 | } |
473 | |
474 | void AliPythia::ResetDecayTable() |
475 | { |
476 | // Set default values for pythia decay switches |
477 | Int_t i; |
478 | for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]); |
479 | for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]); |
480 | } |
481 | |
482 | void AliPythia::SetDecayTable() |
483 | { |
484 | // Set default values for pythia decay switches |
485 | // |
486 | Int_t i; |
487 | for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1); |
488 | for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1); |
489 | } |
490 | |
491 | void AliPythia::Pyclus(Int_t& njet) |
492 | { |
493 | // Call Pythia clustering algorithm |
494 | // |
495 | pyclus(njet); |
496 | } |
497 | |
498 | void AliPythia::Pycell(Int_t& njet) |
499 | { |
500 | // Call Pythia jet reconstruction algorithm |
501 | // |
502 | pycell(njet); |
503 | } |
504 | |
452af8c7 |
505 | void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax) |
506 | { |
507 | // Call Pythia jet reconstruction algorithm |
508 | // |
509 | Int_t numpart = fPyjets->N; |
510 | for (Int_t i = 0; i < numpart; i++) |
511 | { |
512 | if (fPyjets->K[2][i] == 7) ip1 = i+1; |
513 | if (fPyjets->K[2][i] == 8) ip2 = i+1; |
514 | } |
515 | |
516 | |
517 | qmax = 2. * GetVINT(51); |
518 | printf("Pyshow %d %d %f", ip1, ip2, qmax); |
519 | |
520 | pyshow(ip1, ip2, qmax); |
521 | } |
522 | |
523 | void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez) |
524 | { |
525 | pyrobo(imi, ima, the, phi, bex, bey, bez); |
526 | } |
527 | |
528 | |
529 | |
530 | void AliPythia::Quench() |
531 | { |
532 | // |
533 | // |
534 | // Simple Jet Quenching routine: |
535 | // ============================= |
536 | // The jet formed by all final state partons radiated by the parton created |
537 | // in the hard collisions is quenched by a factor z using: |
538 | // (E + p_z)new = (1-z) (E + p_z)old |
539 | // |
540 | // The lost momentum is first balanced by one gluon with virtuality > 0. |
541 | // Subsequently the gluon splits to yield two gluons with E = p. |
542 | // |
543 | Float_t p0[2][5]; |
544 | Float_t p1[2][5]; |
545 | Float_t p2[2][5]; |
546 | Int_t klast[2] = {-1, -1}; |
547 | Int_t kglu[2]; |
548 | for (Int_t i = 0; i < 4; i++) |
549 | { |
550 | p0[0][i] = 0.; |
551 | p0[1][i] = 0.; |
552 | p1[0][i] = 0.; |
553 | p1[1][i] = 0.; |
554 | p2[0][i] = 0.; |
555 | p2[1][i] = 0.; |
556 | } |
557 | |
558 | Int_t numpart = fPyjets->N; |
559 | |
560 | for (Int_t i = 0; i < numpart; i++) |
561 | { |
562 | Int_t imo = fPyjets->K[2][i]; |
563 | Int_t kst = fPyjets->K[0][i]; |
564 | Int_t pdg = fPyjets->K[1][i]; |
565 | |
566 | // Quarks and gluons only |
567 | if (pdg != 21 && TMath::Abs(pdg) > 6) continue; |
568 | |
569 | // Particles from hard scattering only |
570 | |
571 | |
572 | Float_t px = fPyjets->P[0][i]; |
573 | Float_t py = fPyjets->P[1][i]; |
574 | Float_t pz = fPyjets->P[2][i]; |
575 | Float_t e = fPyjets->P[3][i]; |
576 | Float_t m = fPyjets->P[4][i]; |
577 | Float_t pt = TMath::Sqrt(px * px + py * py); |
578 | // Skip comment lines |
579 | if (kst != 1 && kst != 2) continue; |
580 | |
581 | Float_t mt = TMath::Sqrt(px * px + py * py + m * m); |
582 | |
583 | // |
584 | // Some cuts to be in a save kinematic region |
585 | // |
586 | if (imo != 7 && imo != 8) continue; |
587 | Int_t index = imo - 7; |
588 | klast[index] = i; |
589 | |
590 | p0[index][0] += px; |
591 | p0[index][1] += py; |
592 | p0[index][2] += pz; |
593 | p0[index][3] += e; |
594 | |
595 | // |
596 | // Fix z |
597 | // |
598 | |
599 | Float_t z = 0.2; |
600 | Float_t eppzOld = e + pz; |
601 | Float_t empzOld = e - pz; |
602 | |
603 | |
604 | // |
605 | // Kinematics of the original parton |
606 | // |
607 | |
608 | Float_t eppzNew = (1. - z) * eppzOld; |
609 | Float_t empzNew = empzOld - mt * mt * z / eppzOld; |
610 | Float_t eNew0 = 0.5 * (eppzNew + empzNew); |
611 | Float_t pzNew0 = 0.5 * (eppzNew - empzNew); |
612 | // |
613 | // Skip if pt too small |
614 | // |
615 | if (m * m > eppzNew * empzNew) continue; |
616 | Float_t ptNew = TMath::Sqrt(eppzNew * empzNew - m * m); |
617 | Float_t pxNew0 = ptNew / pt * px; |
618 | Float_t pyNew0 = ptNew / pt * py; |
619 | |
620 | p1[index][0] += pxNew0; |
621 | p1[index][1] += pyNew0; |
622 | p1[index][2] += pzNew0; |
623 | p1[index][3] += eNew0; |
624 | // |
625 | // Update event record |
626 | // |
627 | fPyjets->P[0][i] = pxNew0; |
628 | fPyjets->P[1][i] = pyNew0; |
629 | fPyjets->P[2][i] = pzNew0; |
630 | fPyjets->P[3][i] = eNew0; |
631 | |
632 | } |
633 | |
634 | // |
635 | // Gluons |
636 | // |
637 | |
638 | for (Int_t k = 0; k < 2; k++) |
639 | { |
640 | for (Int_t j = 0; j < 4; j++) |
641 | { |
642 | p2[k][j] = p0[k][j] - p1[k][j]; |
643 | } |
644 | p2[k][4] = p2[k][3] * p2[k][3] - p2[k][0] * p2[k][0] - p2[k][1] * p2[k][1] - p2[k][2] * p2[k][2]; |
645 | |
646 | if (p2[k][4] > 0.) |
647 | { |
648 | |
649 | // |
650 | // Bring gluon back to mass shell via momentum scaling |
651 | // (momentum will not be conserved, but energy) |
652 | // |
653 | // not used anymore |
654 | /* |
655 | Float_t psq = p2[k][0] * p2[k][0] + p2[k][1] * p2[k][1] + p2[k][2] * p2[k][2]; |
656 | Float_t fact = TMath::Sqrt(1. + p2[k][4] / psq); |
657 | p2[k][0] *= fact; |
658 | p2[k][1] *= fact; |
659 | p2[k][2] *= fact; |
660 | p2[k][3] = TMath::Sqrt(psq) * fact; |
661 | p2[k][4] = 0.; |
662 | */ |
663 | } |
664 | } |
665 | |
666 | if (p2[0][4] > 0.) { |
667 | p2[0][4] = TMath::Sqrt(p2[0][4]); |
668 | } else { |
669 | printf("Warning negative mass squared ! \n"); |
670 | } |
671 | |
672 | if (p2[1][4] > 0.) { |
673 | p2[1][4] = TMath::Sqrt(p2[1][4]); |
674 | } else { |
675 | printf("Warning negative mass squared ! \n"); |
676 | } |
677 | |
678 | // |
679 | // Add the gluons |
680 | // |
681 | |
682 | |
683 | for (Int_t i = 0; i < 2; i++) { |
684 | Int_t ish, jmin, jmax, iGlu, iNew; |
685 | Int_t in = klast[i]; |
686 | ish = 0; |
687 | |
688 | if (in == -1) continue; |
689 | if (i == 1 && klast[1] > klast[0]) in += ish; |
690 | |
691 | jmin = in - 1; |
692 | ish = 1; |
693 | |
694 | if (p2[i][4] > 0) ish = 2; |
695 | |
696 | iGlu = in; |
697 | iNew = in + ish; |
698 | jmax = numpart + ish - 1; |
699 | |
700 | if (fPyjets->K[0][in-1] == 1 || fPyjets->K[0][in-1] == 21 || fPyjets->K[0][in-1] == 11) { |
701 | jmin = in; |
702 | iGlu = in + 1; |
703 | iNew = in; |
704 | } |
705 | |
706 | kglu[i] = iGlu; |
707 | |
708 | for (Int_t j = jmax; j > jmin; j--) |
709 | { |
710 | for (Int_t k = 0; k < 5; k++) { |
711 | fPyjets->K[k][j] = fPyjets->K[k][j-ish]; |
712 | fPyjets->P[k][j] = fPyjets->P[k][j-ish]; |
713 | fPyjets->V[k][j] = fPyjets->V[k][j-ish]; |
714 | } |
715 | } // end shifting |
716 | numpart += ish; |
717 | (fPyjets->N) += ish; |
718 | |
719 | if (ish == 1) { |
720 | fPyjets->P[0][iGlu] = p2[i][0]; |
721 | fPyjets->P[1][iGlu] = p2[i][1]; |
722 | fPyjets->P[2][iGlu] = p2[i][2]; |
723 | fPyjets->P[3][iGlu] = p2[i][3]; |
724 | fPyjets->P[4][iGlu] = p2[i][4]; |
725 | |
726 | fPyjets->K[0][iGlu] = 2; |
727 | fPyjets->K[1][iGlu] = 21; |
728 | fPyjets->K[2][iGlu] = fPyjets->K[2][iNew]; |
729 | fPyjets->K[3][iGlu] = -1; |
730 | fPyjets->K[4][iGlu] = -1; |
731 | } else { |
732 | // |
733 | // Split gluon in rest frame. |
734 | // |
735 | Double_t bx = p2[i][0] / p2[i][3]; |
736 | Double_t by = p2[i][1] / p2[i][3]; |
737 | Double_t bz = p2[i][2] / p2[i][3]; |
738 | |
739 | Float_t pst = p2[i][4] / 2.; |
740 | |
741 | Float_t cost = 2. * gRandom->Rndm() - 1.; |
742 | Float_t sint = TMath::Sqrt(1. - cost * cost); |
743 | Float_t phi = 2. * TMath::Pi() * gRandom->Rndm(); |
744 | |
745 | Float_t pz1 = pst * cost; |
746 | Float_t pz2 = -pst * cost; |
747 | Float_t pt1 = pst * sint; |
748 | Float_t pt2 = -pst * sint; |
749 | Float_t px1 = pt1 * TMath::Cos(phi); |
750 | Float_t py1 = pt1 * TMath::Sin(phi); |
751 | Float_t px2 = pt2 * TMath::Cos(phi); |
752 | Float_t py2 = pt2 * TMath::Sin(phi); |
753 | |
754 | fPyjets->P[0][iGlu] = px1; |
755 | fPyjets->P[1][iGlu] = py1; |
756 | fPyjets->P[2][iGlu] = pz1; |
757 | fPyjets->P[3][iGlu] = pst; |
758 | fPyjets->P[4][iGlu] = 0.; |
759 | |
760 | fPyjets->K[0][iGlu] = 2; |
761 | fPyjets->K[1][iGlu] = 21; |
762 | fPyjets->K[2][iGlu] = fPyjets->K[2][iNew]; |
763 | fPyjets->K[3][iGlu] = -1; |
764 | fPyjets->K[4][iGlu] = -1; |
765 | |
766 | fPyjets->P[0][iGlu+1] = px2; |
767 | fPyjets->P[1][iGlu+1] = py2; |
768 | fPyjets->P[2][iGlu+1] = pz2; |
769 | fPyjets->P[3][iGlu+1] = pst; |
770 | fPyjets->P[4][iGlu+1] = 0.; |
771 | |
772 | fPyjets->K[0][iGlu+1] = 2; |
773 | fPyjets->K[1][iGlu+1] = 21; |
774 | fPyjets->K[2][iGlu+1] = fPyjets->K[2][iNew]; |
775 | fPyjets->K[3][iGlu+1] = -1; |
776 | fPyjets->K[4][iGlu+1] = -1; |
777 | SetMSTU(1,0); |
778 | SetMSTU(2,0); |
779 | |
780 | // |
781 | // Boost back |
782 | // |
783 | Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz); |
784 | |
785 | } |
786 | } // end adding gluons |
787 | } // end quench |
788 | |
789 | |