8d2cd130 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
7cdba479 |
16 | /* $Id$ */ |
8d2cd130 |
17 | |
18 | #include "AliPythia.h" |
7cdba479 |
19 | #include "AliPythiaRndm.h" |
0f482ae4 |
20 | #include "../FASTSIM/AliFastGlauber.h" |
21 | #include "../FASTSIM/AliQuenchingWeights.h" |
22 | #include "TVector3.h" |
8d2cd130 |
23 | |
24 | ClassImp(AliPythia) |
25 | |
26 | #ifndef WIN32 |
27 | # define pyclus pyclus_ |
28 | # define pycell pycell_ |
452af8c7 |
29 | # define pyshow pyshow_ |
30 | # define pyrobo pyrobo_ |
992f2843 |
31 | # define pyquen pyquen_ |
16a82508 |
32 | # define pyevnw pyevnw_ |
8d2cd130 |
33 | # define type_of_call |
34 | #else |
35 | # define pyclus PYCLUS |
36 | # define pycell PYCELL |
452af8c7 |
37 | # define pyrobo PYROBO |
992f2843 |
38 | # define pyquen PYQUEN |
16a82508 |
39 | # define pyevnw PYEVNW |
8d2cd130 |
40 | # define type_of_call _stdcall |
41 | #endif |
42 | |
43 | extern "C" void type_of_call pyclus(Int_t & ); |
44 | extern "C" void type_of_call pycell(Int_t & ); |
452af8c7 |
45 | extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); |
46 | extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); |
992f2843 |
47 | extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &); |
0a2cfc0a |
48 | extern "C" void type_of_call pyevnw(){;} |
8d2cd130 |
49 | |
50 | //_____________________________________________________________________________ |
51 | |
52 | AliPythia* AliPythia::fgAliPythia=NULL; |
53 | |
54 | AliPythia::AliPythia() |
55 | { |
56 | // Default Constructor |
57 | // |
58 | // Set random number |
7cdba479 |
59 | if (!AliPythiaRndm::GetPythiaRandom()) |
60 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
0f482ae4 |
61 | fGlauber = 0; |
62 | fQuenchingWeights = 0; |
8d2cd130 |
63 | } |
64 | |
65 | void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) |
66 | { |
67 | // Initialise the process to generate |
7cdba479 |
68 | if (!AliPythiaRndm::GetPythiaRandom()) |
69 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
70 | |
71 | fProcess = process; |
72 | fEcms = energy; |
73 | fStrucFunc = strucfunc; |
1d5b1b20 |
74 | //...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-. |
75 | SetMDCY(Pycomp(111) ,1,0); |
76 | SetMDCY(Pycomp(310) ,1,0); |
77 | SetMDCY(Pycomp(3122),1,0); |
78 | SetMDCY(Pycomp(3112),1,0); |
79 | SetMDCY(Pycomp(3212),1,0); |
80 | SetMDCY(Pycomp(3222),1,0); |
81 | SetMDCY(Pycomp(3312),1,0); |
82 | SetMDCY(Pycomp(3322),1,0); |
83 | SetMDCY(Pycomp(3334),1,0); |
84 | // select structure function |
8d2cd130 |
85 | SetMSTP(52,2); |
86 | SetMSTP(51,strucfunc); |
87 | // |
88 | // Pythia initialisation for selected processes// |
89 | // |
90 | // Make MSEL clean |
91 | // |
92 | for (Int_t i=1; i<= 200; i++) { |
93 | SetMSUB(i,0); |
94 | } |
95 | // select charm production |
96 | switch (process) |
97 | { |
65f2626c |
98 | case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes |
99 | // Multiple interactions on. |
100 | SetMSTP(81,1); |
101 | // Double Gaussian matter distribution. |
102 | SetMSTP(82,4); |
103 | SetPARP(83,0.5); |
104 | SetPARP(84,0.4); |
105 | // pT0. |
106 | SetPARP(82,2.0); |
107 | // Reference energy for pT0 and energy rescaling pace. |
108 | SetPARP(89,1800); |
109 | SetPARP(90,0.25); |
110 | // String drawing almost completely minimizes string length. |
111 | SetPARP(85,0.9); |
112 | SetPARP(86,0.95); |
113 | // ISR and FSR activity. |
114 | SetPARP(67,4); |
115 | SetPARP(71,4); |
116 | // Lambda_FSR scale. |
117 | SetPARJ(81,0.29); |
118 | break; |
119 | case kPyOldUEQ2ordered2: |
120 | // Old underlying events with Q2 ordered QCD processes |
121 | // Multiple interactions on. |
122 | SetMSTP(81,1); |
123 | // Double Gaussian matter distribution. |
124 | SetMSTP(82,4); |
125 | SetPARP(83,0.5); |
126 | SetPARP(84,0.4); |
127 | // pT0. |
128 | SetPARP(82,2.0); |
129 | // Reference energy for pT0 and energy rescaling pace. |
130 | SetPARP(89,1800); |
131 | SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered |
132 | // String drawing almost completely minimizes string length. |
133 | SetPARP(85,0.9); |
134 | SetPARP(86,0.95); |
135 | // ISR and FSR activity. |
136 | SetPARP(67,4); |
137 | SetPARP(71,4); |
138 | // Lambda_FSR scale. |
139 | SetPARJ(81,0.29); |
140 | break; |
141 | case kPyOldPopcorn: |
142 | // Old production mechanism: Old Popcorn |
143 | SetMSEL(1); |
144 | SetMSTJ(12,3); |
145 | // (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon |
146 | SetMSTP(88,2); |
147 | // (D=1)see can be used to form baryons (BARYON JUNCTION) |
148 | SetMSTJ(1,1); |
149 | SetMSTP(51,kCTEQ5L);// CTEQ 5L ! CTEQ5L pdf |
150 | SetMSTP(81,1); // Multiple Interactions ON |
151 | SetMSTP(82,4); // Double Gaussian Model |
152 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
153 | SetPARP(89,1000.); // [GeV] Ref. energy |
154 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
155 | SetPARP(83,0.5); // Core density in proton matter dist. (def.value) |
156 | SetPARP(84,0.5); // Core radius |
157 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
158 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
159 | SetPARP(67,1); // Regulate gluon prod. mechanism |
160 | break; |
8d2cd130 |
161 | case kPyCharm: |
162 | SetMSEL(4); |
8d2cd130 |
163 | // heavy quark masses |
164 | |
165 | SetPMAS(4,1,1.2); |
166 | SetMSTU(16,2); |
167 | // |
168 | // primordial pT |
169 | SetMSTP(91,1); |
170 | SetPARP(91,1.); |
171 | SetPARP(93,5.); |
172 | // |
173 | break; |
174 | case kPyBeauty: |
175 | SetMSEL(5); |
176 | SetPMAS(5,1,4.75); |
177 | SetMSTU(16,2); |
178 | break; |
179 | case kPyJpsi: |
180 | SetMSEL(0); |
181 | // gg->J/Psi g |
182 | SetMSUB(86,1); |
183 | break; |
184 | case kPyJpsiChi: |
185 | SetMSEL(0); |
186 | // gg->J/Psi g |
187 | SetMSUB(86,1); |
188 | // gg-> chi_0c g |
189 | SetMSUB(87,1); |
190 | // gg-> chi_1c g |
191 | SetMSUB(88,1); |
192 | // gg-> chi_2c g |
193 | SetMSUB(89,1); |
194 | break; |
195 | case kPyCharmUnforced: |
196 | SetMSEL(0); |
197 | // gq->qg |
198 | SetMSUB(28,1); |
199 | // gg->qq |
200 | SetMSUB(53,1); |
201 | // gg->gg |
202 | SetMSUB(68,1); |
203 | break; |
204 | case kPyBeautyUnforced: |
205 | SetMSEL(0); |
206 | // gq->qg |
207 | SetMSUB(28,1); |
208 | // gg->qq |
209 | SetMSUB(53,1); |
210 | // gg->gg |
211 | SetMSUB(68,1); |
212 | break; |
213 | case kPyMb: |
214 | // Minimum Bias pp-Collisions |
215 | // |
216 | // |
217 | // select Pythia min. bias model |
218 | SetMSEL(0); |
511db649 |
219 | SetMSUB(92,1); // single diffraction AB-->XB |
220 | SetMSUB(93,1); // single diffraction AB-->AX |
221 | SetMSUB(94,1); // double diffraction |
222 | SetMSUB(95,1); // low pt production |
223 | |
224 | // |
225 | // ATLAS Tuning |
226 | // |
c01c4118 |
227 | |
228 | SetMSTP(51, kCTEQ5L); // CTEQ5L pdf |
511db649 |
229 | SetMSTP(81,1); // Multiple Interactions ON |
230 | SetMSTP(82,4); // Double Gaussian Model |
231 | |
232 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
233 | SetPARP(89,1000.); // [GeV] Ref. energy |
234 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
235 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
236 | SetPARP(84,0.5); // Core radius |
237 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
238 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
239 | SetPARP(67,1); // Regulates Initial State Radiation |
240 | break; |
8d2cd130 |
241 | case kPyMbNonDiffr: |
242 | // Minimum Bias pp-Collisions |
243 | // |
244 | // |
245 | // select Pythia min. bias model |
246 | SetMSEL(0); |
511db649 |
247 | SetMSUB(95,1); // low pt production |
0f482ae4 |
248 | |
249 | // |
250 | // ATLAS Tuning |
251 | // |
511db649 |
252 | |
d682afd1 |
253 | SetMSTP(51,kCTEQ5L); // CTEQ5L pdf |
511db649 |
254 | SetMSTP(81,1); // Multiple Interactions ON |
255 | SetMSTP(82,4); // Double Gaussian Model |
256 | |
257 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
258 | SetPARP(89,1000.); // [GeV] Ref. energy |
259 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
260 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
261 | SetPARP(84,0.5); // Core radius |
262 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
263 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
264 | SetPARP(67,1); // Regulates Initial State Radiation |
8d2cd130 |
265 | break; |
266 | case kPyJets: |
267 | // |
268 | // QCD Jets |
269 | // |
270 | SetMSEL(1); |
65f2626c |
271 | // Pythia Tune A (CDF) |
272 | // |
273 | SetPARP(67,4.); // Regulates Initial State Radiation |
274 | SetMSTP(82,4); // Double Gaussian Model |
275 | SetPARP(82,2.0); // [GeV] PT_min at Ref. energy |
276 | SetPARP(84,0.4); // Core radius |
277 | SetPARP(85,0.90) ; // Regulates gluon prod. mechanism |
278 | SetPARP(86,0.95); // Regulates gluon prod. mechanism |
279 | SetPARP(89,1800.); // [GeV] Ref. energy |
280 | SetPARP(90,0.25); // 2*epsilon (exponent in power law) |
281 | break; |
8d2cd130 |
282 | case kPyDirectGamma: |
283 | SetMSEL(10); |
284 | break; |
adf4d898 |
285 | case kPyCharmPbPbMNR: |
286 | case kPyD0PbPbMNR: |
90d7b703 |
287 | case kPyDPlusPbPbMNR: |
288 | // Tuning of Pythia parameters aimed to get a resonable agreement |
289 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
290 | // c-cbar single inclusive and double differential distributions. |
291 | // This parameter settings are meant to work with Pb-Pb collisions |
292 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
293 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
294 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
3dc3ec94 |
295 | ConfigHeavyFlavor(); |
90d7b703 |
296 | // Intrinsic <kT> |
297 | SetMSTP(91,1); |
298 | SetPARP(91,1.304); |
299 | SetPARP(93,6.52); |
90d7b703 |
300 | // Set c-quark mass |
301 | SetPMAS(4,1,1.2); |
8d2cd130 |
302 | break; |
adf4d898 |
303 | case kPyCharmpPbMNR: |
304 | case kPyD0pPbMNR: |
90d7b703 |
305 | case kPyDPluspPbMNR: |
306 | // Tuning of Pythia parameters aimed to get a resonable agreement |
307 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
308 | // c-cbar single inclusive and double differential distributions. |
309 | // This parameter settings are meant to work with p-Pb collisions |
310 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
311 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
312 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
3dc3ec94 |
313 | ConfigHeavyFlavor(); |
90d7b703 |
314 | // Intrinsic <kT> |
3dc3ec94 |
315 | SetMSTP(91,1); |
316 | SetPARP(91,1.16); |
317 | SetPARP(93,5.8); |
318 | |
90d7b703 |
319 | // Set c-quark mass |
3dc3ec94 |
320 | SetPMAS(4,1,1.2); |
adf4d898 |
321 | break; |
322 | case kPyCharmppMNR: |
323 | case kPyD0ppMNR: |
90d7b703 |
324 | case kPyDPlusppMNR: |
325 | // Tuning of Pythia parameters aimed to get a resonable agreement |
326 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
327 | // c-cbar single inclusive and double differential distributions. |
328 | // This parameter settings are meant to work with pp collisions |
329 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
330 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
331 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
3dc3ec94 |
332 | ConfigHeavyFlavor(); |
90d7b703 |
333 | // Intrinsic <kT^2> |
3dc3ec94 |
334 | SetMSTP(91,1); |
335 | SetPARP(91,1.); |
336 | SetPARP(93,5.); |
337 | |
90d7b703 |
338 | // Set c-quark mass |
3dc3ec94 |
339 | SetPMAS(4,1,1.2); |
adf4d898 |
340 | break; |
341 | case kPyBeautyPbPbMNR: |
8d2cd130 |
342 | // Tuning of Pythia parameters aimed to get a resonable agreement |
343 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
344 | // b-bbar single inclusive and double differential distributions. |
345 | // This parameter settings are meant to work with Pb-Pb collisions |
346 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
347 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
348 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
3dc3ec94 |
349 | ConfigHeavyFlavor(); |
8d2cd130 |
350 | // QCD scales |
3dc3ec94 |
351 | SetPARP(67,1.0); |
352 | SetPARP(71,1.0); |
adf4d898 |
353 | // Intrinsic <kT> |
3dc3ec94 |
354 | SetMSTP(91,1); |
355 | SetPARP(91,2.035); |
356 | SetPARP(93,10.17); |
8d2cd130 |
357 | // Set b-quark mass |
3dc3ec94 |
358 | SetPMAS(5,1,4.75); |
adf4d898 |
359 | break; |
360 | case kPyBeautypPbMNR: |
361 | // Tuning of Pythia parameters aimed to get a resonable agreement |
362 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
363 | // b-bbar single inclusive and double differential distributions. |
364 | // This parameter settings are meant to work with p-Pb collisions |
365 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
366 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
367 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
3dc3ec94 |
368 | ConfigHeavyFlavor(); |
adf4d898 |
369 | // QCD scales |
3dc3ec94 |
370 | SetPARP(67,1.0); |
371 | SetPARP(71,1.0); |
adf4d898 |
372 | // Intrinsic <kT> |
3dc3ec94 |
373 | SetMSTP(91,1); |
374 | SetPARP(91,1.60); |
375 | SetPARP(93,8.00); |
adf4d898 |
376 | // Set b-quark mass |
3dc3ec94 |
377 | SetPMAS(5,1,4.75); |
adf4d898 |
378 | break; |
379 | case kPyBeautyppMNR: |
380 | // Tuning of Pythia parameters aimed to get a resonable agreement |
381 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
382 | // b-bbar single inclusive and double differential distributions. |
383 | // This parameter settings are meant to work with pp collisions |
384 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
385 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
386 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
3dc3ec94 |
387 | ConfigHeavyFlavor(); |
adf4d898 |
388 | // QCD scales |
3dc3ec94 |
389 | SetPARP(67,1.0); |
390 | SetPARP(71,1.0); |
391 | |
392 | // Intrinsic <kT> |
393 | SetMSTP(91,1); |
394 | SetPARP(91,1.); |
395 | SetPARP(93,5.); |
396 | |
397 | // Set b-quark mass |
398 | SetPMAS(5,1,4.75); |
8d2cd130 |
399 | break; |
589380c6 |
400 | |
401 | case kPyW: |
402 | |
403 | //Inclusive production of W+/- |
404 | SetMSEL(0); |
405 | //f fbar -> W+ |
406 | SetMSUB(2,1); |
407 | // //f fbar -> g W+ |
408 | // SetMSUB(16,1); |
409 | // //f fbar -> gamma W+ |
410 | // SetMSUB(20,1); |
411 | // //f g -> f W+ |
412 | // SetMSUB(31,1); |
413 | // //f gamma -> f W+ |
414 | // SetMSUB(36,1); |
415 | |
416 | // Initial/final parton shower on (Pythia default) |
417 | // With parton showers on we are generating "W inclusive process" |
418 | SetMSTP(61,1); //Initial QCD & QED showers on |
419 | SetMSTP(71,1); //Final QCD & QED showers on |
420 | |
421 | break; |
0f6ee828 |
422 | |
423 | case kPyZ: |
424 | |
425 | //Inclusive production of Z |
426 | SetMSEL(0); |
427 | //f fbar -> Z/gamma |
428 | SetMSUB(1,1); |
429 | |
430 | // // f fbar -> g Z/gamma |
431 | // SetMSUB(15,1); |
432 | // // f fbar -> gamma Z/gamma |
433 | // SetMSUB(19,1); |
434 | // // f g -> f Z/gamma |
435 | // SetMSUB(30,1); |
436 | // // f gamma -> f Z/gamma |
437 | // SetMSUB(35,1); |
438 | |
439 | //only Z included, not gamma |
440 | SetMSTP(43,2); |
441 | |
442 | // Initial/final parton shower on (Pythia default) |
443 | // With parton showers on we are generating "Z inclusive process" |
444 | SetMSTP(61,1); //Initial QCD & QED showers on |
445 | SetMSTP(71,1); //Final QCD & QED showers on |
446 | |
447 | break; |
448 | |
8d2cd130 |
449 | } |
450 | // |
451 | // Initialize PYTHIA |
452 | SetMSTP(41,1); // all resonance decays switched on |
453 | |
454 | Initialize("CMS","p","p",fEcms); |
455 | |
456 | } |
457 | |
458 | Int_t AliPythia::CheckedLuComp(Int_t kf) |
459 | { |
460 | // Check Lund particle code (for debugging) |
461 | Int_t kc=Pycomp(kf); |
462 | printf("\n Lucomp kf,kc %d %d",kf,kc); |
463 | return kc; |
464 | } |
465 | |
466 | void AliPythia::SetNuclei(Int_t a1, Int_t a2) |
467 | { |
468 | // Treat protons as inside nuclei with mass numbers a1 and a2 |
469 | // The MSTP array in the PYPARS common block is used to enable and |
470 | // select the nuclear structure functions. |
471 | // MSTP(52) : (D=1) choice of proton and nuclear structure-function library |
472 | // =1: internal PYTHIA acording to MSTP(51) |
473 | // =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET |
474 | // If the following mass number both not equal zero, nuclear corrections of the stf are used. |
475 | // MSTP(192) : Mass number of nucleus side 1 |
476 | // MSTP(193) : Mass number of nucleus side 2 |
477 | SetMSTP(52,2); |
478 | SetMSTP(192, a1); |
479 | SetMSTP(193, a2); |
480 | } |
481 | |
482 | |
483 | AliPythia* AliPythia::Instance() |
484 | { |
485 | // Set random number generator |
486 | if (fgAliPythia) { |
487 | return fgAliPythia; |
488 | } else { |
489 | fgAliPythia = new AliPythia(); |
490 | return fgAliPythia; |
491 | } |
492 | } |
493 | |
494 | void AliPythia::PrintParticles() |
495 | { |
496 | // Print list of particl properties |
497 | Int_t np = 0; |
c31f1d37 |
498 | char* name = new char[16]; |
8d2cd130 |
499 | for (Int_t kf=0; kf<1000000; kf++) { |
500 | for (Int_t c = 1; c > -2; c-=2) { |
8d2cd130 |
501 | Int_t kc = Pycomp(c*kf); |
502 | if (kc) { |
503 | Float_t mass = GetPMAS(kc,1); |
504 | Float_t width = GetPMAS(kc,2); |
505 | Float_t tau = GetPMAS(kc,4); |
c31f1d37 |
506 | |
8d2cd130 |
507 | Pyname(kf,name); |
508 | |
509 | np++; |
510 | |
511 | printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e", |
512 | c*kf, name, mass, width, tau); |
513 | } |
514 | } |
515 | } |
516 | printf("\n Number of particles %d \n \n", np); |
517 | } |
518 | |
519 | void AliPythia::ResetDecayTable() |
520 | { |
521 | // Set default values for pythia decay switches |
522 | Int_t i; |
523 | for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]); |
524 | for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]); |
525 | } |
526 | |
527 | void AliPythia::SetDecayTable() |
528 | { |
529 | // Set default values for pythia decay switches |
530 | // |
531 | Int_t i; |
532 | for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1); |
533 | for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1); |
534 | } |
535 | |
536 | void AliPythia::Pyclus(Int_t& njet) |
537 | { |
538 | // Call Pythia clustering algorithm |
539 | // |
540 | pyclus(njet); |
541 | } |
542 | |
543 | void AliPythia::Pycell(Int_t& njet) |
544 | { |
545 | // Call Pythia jet reconstruction algorithm |
546 | // |
547 | pycell(njet); |
548 | } |
549 | |
452af8c7 |
550 | void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax) |
551 | { |
552 | // Call Pythia jet reconstruction algorithm |
553 | // |
452af8c7 |
554 | pyshow(ip1, ip2, qmax); |
555 | } |
556 | |
557 | void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez) |
558 | { |
559 | pyrobo(imi, ima, the, phi, bex, bey, bez); |
560 | } |
561 | |
562 | |
563 | |
86b6ad68 |
564 | void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod) |
0f482ae4 |
565 | { |
566 | // Initializes |
567 | // (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann |
568 | // (2) The nuclear geometry using the Glauber Model |
569 | // |
570 | |
571 | |
572 | fGlauber = new AliFastGlauber(); |
573 | fGlauber->Init(2); |
574 | fGlauber->SetCentralityClass(cMin, cMax); |
575 | |
576 | fQuenchingWeights = new AliQuenchingWeights(); |
577 | fQuenchingWeights->InitMult(); |
86b6ad68 |
578 | fQuenchingWeights->SetK(k); |
0f482ae4 |
579 | fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod)); |
0f482ae4 |
580 | } |
581 | |
582 | |
452af8c7 |
583 | void AliPythia::Quench() |
584 | { |
585 | // |
586 | // |
587 | // Simple Jet Quenching routine: |
588 | // ============================= |
589 | // The jet formed by all final state partons radiated by the parton created |
0f482ae4 |
590 | // in the hard collisions is quenched by a factor (1-z) using light cone variables in |
591 | // the initial parton reference frame: |
452af8c7 |
592 | // (E + p_z)new = (1-z) (E + p_z)old |
593 | // |
0f482ae4 |
594 | // |
595 | // |
596 | // |
452af8c7 |
597 | // The lost momentum is first balanced by one gluon with virtuality > 0. |
598 | // Subsequently the gluon splits to yield two gluons with E = p. |
599 | // |
0f482ae4 |
600 | // |
601 | // |
4e383037 |
602 | static Float_t eMean = 0.; |
603 | static Int_t icall = 0; |
0f482ae4 |
604 | |
c2c598a3 |
605 | Double_t p0[4][5]; |
606 | Double_t p1[4][5]; |
607 | Double_t p2[4][5]; |
608 | Int_t klast[4] = {-1, -1, -1, -1}; |
452af8c7 |
609 | |
610 | Int_t numpart = fPyjets->N; |
86b6ad68 |
611 | Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.; |
c2c598a3 |
612 | Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4]; |
613 | Bool_t quenched[4]; |
b280c4cc |
614 | Double_t wjtKick[4]; |
c2c598a3 |
615 | Int_t nGluon[4]; |
86b6ad68 |
616 | Int_t qPdg[4]; |
0f482ae4 |
617 | Int_t imo, kst, pdg; |
b280c4cc |
618 | |
511db649 |
619 | // |
c2c598a3 |
620 | // Sore information about Primary partons |
621 | // |
622 | // j = |
623 | // 0, 1 partons from hard scattering |
624 | // 2, 3 partons from initial state radiation |
625 | // |
626 | for (Int_t i = 2; i <= 7; i++) { |
627 | Int_t j = 0; |
628 | // Skip gluons that participate in hard scattering |
629 | if (i == 4 || i == 5) continue; |
630 | // Gluons from hard Scattering |
631 | if (i == 6 || i == 7) { |
632 | j = i - 6; |
633 | pxq[j] = fPyjets->P[0][i]; |
634 | pyq[j] = fPyjets->P[1][i]; |
635 | pzq[j] = fPyjets->P[2][i]; |
636 | eq[j] = fPyjets->P[3][i]; |
637 | mq[j] = fPyjets->P[4][i]; |
638 | } else { |
639 | // Gluons from initial state radiation |
640 | // |
641 | // Obtain 4-momentum vector from difference between original parton and parton after gluon |
642 | // radiation. Energy is calculated independently because initial state radition does not |
643 | // conserve strictly momentum and energy for each partonic system independently. |
644 | // |
645 | // Not very clean. Should be improved ! |
646 | // |
647 | // |
648 | j = i; |
649 | pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2]; |
650 | pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2]; |
651 | pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2]; |
652 | mq[j] = fPyjets->P[4][i]; |
653 | eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]); |
654 | } |
655 | // |
656 | // Calculate some kinematic variables |
511db649 |
657 | // |
4e383037 |
658 | yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14)); |
0f482ae4 |
659 | pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]); |
660 | phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]); |
661 | ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]); |
662 | thetaq[j] = TMath::ATan2(ptq[j], pzq[j]); |
86b6ad68 |
663 | qPdg[j] = fPyjets->K[1][i]; |
664 | } |
665 | |
666 | Double_t int0[4]; |
667 | Double_t int1[4]; |
86b6ad68 |
668 | |
b280c4cc |
669 | fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.); |
670 | |
86b6ad68 |
671 | for (Int_t j = 0; j < 4; j++) { |
c2c598a3 |
672 | // |
673 | // Quench only central jets and with E > 10. |
674 | // |
86b6ad68 |
675 | |
676 | |
677 | Int_t itype = (qPdg[j] == 21) ? 2 : 1; |
678 | Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]); |
679 | |
c2c598a3 |
680 | if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) { |
b280c4cc |
681 | fZQuench[j] = 0.; |
0f482ae4 |
682 | } else { |
c2c598a3 |
683 | if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) { |
4e383037 |
684 | icall ++; |
685 | eMean += eloss; |
686 | } |
0f482ae4 |
687 | // |
688 | // Extra pt |
86b6ad68 |
689 | Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]); |
690 | wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j])); |
0f482ae4 |
691 | // |
692 | // Fractional energy loss |
b280c4cc |
693 | fZQuench[j] = eloss / eq[j]; |
0f482ae4 |
694 | // |
695 | // Avoid complete loss |
696 | // |
b280c4cc |
697 | if (fZQuench[j] == 1.) fZQuench[j] = 0.95; |
0f482ae4 |
698 | // |
699 | // Some debug printing |
86b6ad68 |
700 | |
701 | |
bf9bb016 |
702 | // printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n", |
703 | // j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]); |
4e383037 |
704 | |
b280c4cc |
705 | // fZQuench[j] = 0.8; |
706 | // while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2); |
0f482ae4 |
707 | } |
4e383037 |
708 | |
b280c4cc |
709 | quenched[j] = (fZQuench[j] > 0.01); |
4e383037 |
710 | } // primary partons |
c2c598a3 |
711 | |
b280c4cc |
712 | |
713 | |
6e90ad26 |
714 | Double_t pNew[1000][4]; |
715 | Int_t kNew[1000]; |
716 | Int_t icount = 0; |
b280c4cc |
717 | Double_t zquench[4]; |
718 | |
6e90ad26 |
719 | // |
4e383037 |
720 | // System Loop |
c2c598a3 |
721 | for (Int_t isys = 0; isys < 4; isys++) { |
6e90ad26 |
722 | // Skip to next system if not quenched. |
4e383037 |
723 | if (!quenched[isys]) continue; |
724 | |
b280c4cc |
725 | nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys])); |
4e383037 |
726 | if (nGluon[isys] > 6) nGluon[isys] = 6; |
b280c4cc |
727 | zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys])); |
4e383037 |
728 | wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys])); |
0f482ae4 |
729 | |
4e383037 |
730 | |
731 | |
732 | Int_t igMin = -1; |
733 | Int_t igMax = -1; |
734 | Double_t pg[4] = {0., 0., 0., 0.}; |
735 | |
736 | // |
737 | // Loop on radiation events |
738 | |
739 | for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) { |
6e90ad26 |
740 | while (1) { |
741 | icount = 0; |
742 | for (Int_t k = 0; k < 4; k++) |
743 | { |
744 | p0[isys][k] = 0.; |
745 | p1[isys][k] = 0.; |
746 | p2[isys][k] = 0.; |
747 | } |
748 | // Loop over partons |
749 | for (Int_t i = 0; i < numpart; i++) |
750 | { |
751 | imo = fPyjets->K[2][i]; |
752 | kst = fPyjets->K[0][i]; |
753 | pdg = fPyjets->K[1][i]; |
754 | |
755 | |
756 | |
0f482ae4 |
757 | // Quarks and gluons only |
6e90ad26 |
758 | if (pdg != 21 && TMath::Abs(pdg) > 6) continue; |
0f482ae4 |
759 | // Particles from hard scattering only |
c2c598a3 |
760 | |
6e90ad26 |
761 | if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1]; |
c2c598a3 |
762 | Int_t imom = imo % 1000; |
763 | if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue; |
764 | if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue; |
765 | |
6e90ad26 |
766 | |
0f482ae4 |
767 | // Skip comment lines |
6e90ad26 |
768 | if (kst != 1 && kst != 2) continue; |
0f482ae4 |
769 | // |
770 | // Parton kinematic |
6e90ad26 |
771 | px = fPyjets->P[0][i]; |
772 | py = fPyjets->P[1][i]; |
773 | pz = fPyjets->P[2][i]; |
774 | e = fPyjets->P[3][i]; |
775 | m = fPyjets->P[4][i]; |
776 | pt = TMath::Sqrt(px * px + py * py); |
777 | p = TMath::Sqrt(px * px + py * py + pz * pz); |
778 | phi = TMath::Pi() + TMath::ATan2(-py, -px); |
779 | theta = TMath::ATan2(pt, pz); |
780 | |
0f482ae4 |
781 | // |
c2c598a3 |
782 | // Save 4-momentum sum for balancing |
783 | Int_t index = isys; |
6e90ad26 |
784 | |
785 | p0[index][0] += px; |
786 | p0[index][1] += py; |
787 | p0[index][2] += pz; |
788 | p0[index][3] += e; |
6e90ad26 |
789 | |
790 | klast[index] = i; |
791 | |
0f482ae4 |
792 | // |
793 | // Fractional energy loss |
b280c4cc |
794 | Double_t z = zquench[index]; |
4e383037 |
795 | |
c2c598a3 |
796 | |
4e383037 |
797 | // Don't fully quench radiated gluons |
798 | // |
799 | if (imo > 1000) { |
800 | // This small factor makes sure that the gluons are not too close in phase space to avoid recombination |
801 | // |
802 | |
c2c598a3 |
803 | z = 0.02; |
4e383037 |
804 | } |
c2c598a3 |
805 | // printf("z: %d %f\n", imo, z); |
806 | |
4e383037 |
807 | |
808 | // |
6e90ad26 |
809 | |
810 | // |
811 | // |
812 | // Transform into frame in which initial parton is along z-axis |
813 | // |
814 | TVector3 v(px, py, pz); |
815 | v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]); |
816 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z(); |
817 | |
818 | Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys); |
819 | Double_t mt2 = jt * jt + m * m; |
820 | Double_t zmax = 1.; |
821 | // |
822 | // Kinematic limit on z |
823 | // |
4e383037 |
824 | if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt); |
6e90ad26 |
825 | // |
826 | // Change light-cone kinematics rel. to initial parton |
827 | // |
828 | Double_t eppzOld = e + pl; |
829 | Double_t empzOld = e - pl; |
830 | |
831 | Double_t eppzNew = (1. - z) * eppzOld; |
832 | Double_t empzNew = empzOld - mt2 * z / eppzOld; |
833 | Double_t eNew = 0.5 * (eppzNew + empzNew); |
834 | Double_t plNew = 0.5 * (eppzNew - empzNew); |
835 | |
836 | Double_t jtNew; |
837 | // |
838 | // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0 |
839 | Double_t mt2New = eppzNew * empzNew; |
840 | if (mt2New < 1.e-8) mt2New = 0.; |
4e383037 |
841 | if (z < zmax) { |
842 | if (m * m > mt2New) { |
843 | // |
844 | // This should not happen |
845 | // |
846 | Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew); |
847 | jtNew = 0; |
848 | } else { |
849 | jtNew = TMath::Sqrt(mt2New - m * m); |
850 | } |
6e90ad26 |
851 | } else { |
4e383037 |
852 | // If pT is to small (probably a leading massive particle) we scale only the energy |
853 | // This can cause negative masses of the radiated gluon |
854 | // Let's hope for the best ... |
855 | jtNew = jt; |
856 | eNew = TMath::Sqrt(plNew * plNew + mt2); |
857 | |
6e90ad26 |
858 | } |
6e90ad26 |
859 | // |
860 | // Calculate new px, py |
861 | // |
862 | Double_t pxNew = jtNew / jt * pxs; |
863 | Double_t pyNew = jtNew / jt * pys; |
864 | |
865 | // Double_t dpx = pxs - pxNew; |
866 | // Double_t dpy = pys - pyNew; |
867 | // Double_t dpz = pl - plNew; |
868 | // Double_t de = e - eNew; |
869 | // Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz; |
870 | // printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew); |
871 | // printf("New mass (2) %e %e \n", pxNew, pyNew); |
872 | // |
873 | // Rotate back |
874 | // |
875 | TVector3 w(pxNew, pyNew, plNew); |
876 | w.RotateY(thetaq[index]); w.RotateZ(phiq[index]); |
877 | pxNew = w.X(); pyNew = w.Y(); plNew = w.Z(); |
878 | |
879 | p1[index][0] += pxNew; |
880 | p1[index][1] += pyNew; |
881 | p1[index][2] += plNew; |
882 | p1[index][3] += eNew; |
883 | // |
884 | // Updated 4-momentum vectors |
885 | // |
886 | pNew[icount][0] = pxNew; |
887 | pNew[icount][1] = pyNew; |
888 | pNew[icount][2] = plNew; |
889 | pNew[icount][3] = eNew; |
890 | kNew[icount] = i; |
891 | icount++; |
892 | } // parton loop |
0f482ae4 |
893 | // |
6e90ad26 |
894 | // Check if there was phase-space for quenching |
0f482ae4 |
895 | // |
0f482ae4 |
896 | |
6e90ad26 |
897 | if (icount == 0) quenched[isys] = kFALSE; |
898 | if (!quenched[isys]) break; |
899 | |
900 | for (Int_t j = 0; j < 4; j++) |
901 | { |
902 | p2[isys][j] = p0[isys][j] - p1[isys][j]; |
903 | } |
904 | p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2]; |
6e90ad26 |
905 | if (p2[isys][4] > 0.) { |
906 | p2[isys][4] = TMath::Sqrt(p2[isys][4]); |
907 | break; |
908 | } else { |
b280c4cc |
909 | printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]); |
4e383037 |
910 | printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]); |
6e90ad26 |
911 | if (p2[isys][4] < -0.01) { |
4e383037 |
912 | printf("Negative mass squared !\n"); |
913 | // Here we have to put the gluon back to mass shell |
914 | // This will lead to a small energy imbalance |
915 | p2[isys][4] = 0.; |
916 | p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]); |
917 | break; |
6e90ad26 |
918 | } else { |
919 | p2[isys][4] = 0.; |
920 | break; |
921 | } |
922 | } |
6e90ad26 |
923 | /* |
6e90ad26 |
924 | zHeavy *= 0.98; |
925 | printf("zHeavy lowered to %f\n", zHeavy); |
926 | if (zHeavy < 0.01) { |
927 | printf("No success ! \n"); |
928 | icount = 0; |
929 | quenched[isys] = kFALSE; |
930 | break; |
931 | } |
4e383037 |
932 | */ |
933 | } // iteration on z (while) |
934 | |
6e90ad26 |
935 | // Update event record |
936 | for (Int_t k = 0; k < icount; k++) { |
937 | // printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] ); |
938 | fPyjets->P[0][kNew[k]] = pNew[k][0]; |
939 | fPyjets->P[1][kNew[k]] = pNew[k][1]; |
940 | fPyjets->P[2][kNew[k]] = pNew[k][2]; |
941 | fPyjets->P[3][kNew[k]] = pNew[k][3]; |
0f482ae4 |
942 | } |
4e383037 |
943 | // |
944 | // Add the gluons |
945 | // |
946 | Int_t ish = 0; |
1837e95c |
947 | Int_t iGlu; |
4e383037 |
948 | if (!quenched[isys]) continue; |
0f482ae4 |
949 | // |
950 | // Last parton from shower i |
4e383037 |
951 | Int_t in = klast[isys]; |
0f482ae4 |
952 | // |
953 | // Continue if no parton in shower i selected |
954 | if (in == -1) continue; |
955 | // |
956 | // If this is the second initial parton and it is behind the first move pointer by previous ish |
4e383037 |
957 | if (isys == 1 && klast[1] > klast[0]) in += ish; |
0f482ae4 |
958 | // |
959 | // Starting index |
452af8c7 |
960 | |
4e383037 |
961 | // jmin = in - 1; |
0f482ae4 |
962 | // How many additional gluons will be generated |
963 | ish = 1; |
4e383037 |
964 | if (p2[isys][4] > 0.05) ish = 2; |
0f482ae4 |
965 | // |
966 | // Position of gluons |
4e383037 |
967 | iGlu = numpart; |
968 | if (iglu == 0) igMin = iGlu; |
969 | igMax = iGlu; |
0f482ae4 |
970 | numpart += ish; |
971 | (fPyjets->N) += ish; |
4e383037 |
972 | |
0f482ae4 |
973 | if (ish == 1) { |
4e383037 |
974 | fPyjets->P[0][iGlu] = p2[isys][0]; |
975 | fPyjets->P[1][iGlu] = p2[isys][1]; |
976 | fPyjets->P[2][iGlu] = p2[isys][2]; |
977 | fPyjets->P[3][iGlu] = p2[isys][3]; |
978 | fPyjets->P[4][iGlu] = p2[isys][4]; |
0f482ae4 |
979 | |
4e383037 |
980 | fPyjets->K[0][iGlu] = 1; |
981 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1; |
0f482ae4 |
982 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
983 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
984 | fPyjets->K[3][iGlu] = -1; |
985 | fPyjets->K[4][iGlu] = -1; |
4e383037 |
986 | |
987 | pg[0] += p2[isys][0]; |
988 | pg[1] += p2[isys][1]; |
989 | pg[2] += p2[isys][2]; |
990 | pg[3] += p2[isys][3]; |
0f482ae4 |
991 | } else { |
992 | // |
993 | // Split gluon in rest frame. |
994 | // |
4e383037 |
995 | Double_t bx = p2[isys][0] / p2[isys][3]; |
996 | Double_t by = p2[isys][1] / p2[isys][3]; |
997 | Double_t bz = p2[isys][2] / p2[isys][3]; |
998 | Double_t pst = p2[isys][4] / 2.; |
0f482ae4 |
999 | // |
1000 | // Isotropic decay ???? |
1001 | Double_t cost = 2. * gRandom->Rndm() - 1.; |
1002 | Double_t sint = TMath::Sqrt(1. - cost * cost); |
1003 | Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); |
1004 | |
1005 | Double_t pz1 = pst * cost; |
1006 | Double_t pz2 = -pst * cost; |
1007 | Double_t pt1 = pst * sint; |
1008 | Double_t pt2 = -pst * sint; |
1009 | Double_t px1 = pt1 * TMath::Cos(phi); |
1010 | Double_t py1 = pt1 * TMath::Sin(phi); |
1011 | Double_t px2 = pt2 * TMath::Cos(phi); |
1012 | Double_t py2 = pt2 * TMath::Sin(phi); |
1013 | |
1014 | fPyjets->P[0][iGlu] = px1; |
1015 | fPyjets->P[1][iGlu] = py1; |
1016 | fPyjets->P[2][iGlu] = pz1; |
1017 | fPyjets->P[3][iGlu] = pst; |
1018 | fPyjets->P[4][iGlu] = 0.; |
1019 | |
4e383037 |
1020 | fPyjets->K[0][iGlu] = 1 ; |
0f482ae4 |
1021 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1022 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1023 | fPyjets->K[3][iGlu] = -1; |
1024 | fPyjets->K[4][iGlu] = -1; |
1025 | |
1026 | fPyjets->P[0][iGlu+1] = px2; |
1027 | fPyjets->P[1][iGlu+1] = py2; |
1028 | fPyjets->P[2][iGlu+1] = pz2; |
1029 | fPyjets->P[3][iGlu+1] = pst; |
1030 | fPyjets->P[4][iGlu+1] = 0.; |
1031 | |
4e383037 |
1032 | fPyjets->K[0][iGlu+1] = 1; |
1033 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1; |
0f482ae4 |
1034 | fPyjets->K[1][iGlu+1] = 21; |
4e383037 |
1035 | fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1036 | fPyjets->K[3][iGlu+1] = -1; |
1037 | fPyjets->K[4][iGlu+1] = -1; |
1038 | SetMSTU(1,0); |
1039 | SetMSTU(2,0); |
1040 | // |
1041 | // Boost back |
1042 | // |
1043 | Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz); |
1044 | } |
4e383037 |
1045 | /* |
1046 | for (Int_t ig = iGlu; ig < iGlu+ish; ig++) { |
1047 | Double_t px, py, pz; |
1048 | px = fPyjets->P[0][ig]; |
1049 | py = fPyjets->P[1][ig]; |
1050 | pz = fPyjets->P[2][ig]; |
1051 | TVector3 v(px, py, pz); |
1052 | v.RotateZ(-phiq[isys]); |
1053 | v.RotateY(-thetaq[isys]); |
1054 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z(); |
1055 | Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1056 | Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r)); |
1057 | if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.); |
1058 | Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1059 | pxs += jtKick * TMath::Cos(phiKick); |
1060 | pys += jtKick * TMath::Sin(phiKick); |
1061 | TVector3 w(pxs, pys, pzs); |
1062 | w.RotateY(thetaq[isys]); |
1063 | w.RotateZ(phiq[isys]); |
1064 | fPyjets->P[0][ig] = w.X(); |
1065 | fPyjets->P[1][ig] = w.Y(); |
1066 | fPyjets->P[2][ig] = w.Z(); |
1067 | fPyjets->P[2][ig] = w.Mag(); |
1068 | } |
1069 | */ |
1070 | } // kGluon |
1071 | |
6e90ad26 |
1072 | |
4e383037 |
1073 | // Check energy conservation |
0f482ae4 |
1074 | Double_t pxs = 0.; |
1075 | Double_t pys = 0.; |
1076 | Double_t pzs = 0.; |
1077 | Double_t es = 14000.; |
1078 | |
1079 | for (Int_t i = 0; i < numpart; i++) |
1080 | { |
1081 | kst = fPyjets->K[0][i]; |
1082 | if (kst != 1 && kst != 2) continue; |
1083 | pxs += fPyjets->P[0][i]; |
1084 | pys += fPyjets->P[1][i]; |
1085 | pzs += fPyjets->P[2][i]; |
1086 | es -= fPyjets->P[3][i]; |
1087 | } |
1088 | if (TMath::Abs(pxs) > 1.e-2 || |
1089 | TMath::Abs(pys) > 1.e-2 || |
1090 | TMath::Abs(pzs) > 1.e-1) { |
1091 | printf("%e %e %e %e\n", pxs, pys, pzs, es); |
4e383037 |
1092 | // Fatal("Quench()", "4-Momentum non-conservation"); |
452af8c7 |
1093 | } |
4e383037 |
1094 | |
1095 | } // end quenching loop (systems) |
6e90ad26 |
1096 | // Clean-up |
0f482ae4 |
1097 | for (Int_t i = 0; i < numpart; i++) |
1098 | { |
4e383037 |
1099 | imo = fPyjets->K[2][i]; |
1100 | if (imo > 1000) { |
1101 | fPyjets->K[2][i] = fPyjets->K[2][i] % 1000; |
1102 | } |
0f482ae4 |
1103 | } |
4e383037 |
1104 | // this->Pylist(1); |
0f482ae4 |
1105 | } // end quench |
90d7b703 |
1106 | |
992f2843 |
1107 | |
1108 | void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b) |
1109 | { |
1110 | // Igor Lokthine's quenching routine |
1111 | pyquen(a, ibf, b); |
1112 | } |
b280c4cc |
1113 | |
16a82508 |
1114 | void AliPythia::Pyevnw() |
1115 | { |
1116 | // New multiple interaction scenario |
1117 | pyevnw(); |
1118 | } |
1119 | |
b280c4cc |
1120 | void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4]) |
1121 | { |
1122 | // Return event specific quenching parameters |
1123 | xp = fXJet; |
1124 | yp = fYJet; |
1125 | for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i]; |
1126 | |
1127 | } |
1128 | |
3dc3ec94 |
1129 | void AliPythia::ConfigHeavyFlavor() |
1130 | { |
1131 | // |
1132 | // Default configuration for Heavy Flavor production |
1133 | // |
1134 | // All QCD processes |
1135 | // |
1136 | SetMSEL(1); |
1137 | |
1138 | // No multiple interactions |
1139 | SetMSTP(81,0); |
1140 | SetPARP(81,0.0); |
1141 | SetPARP(82,0.0); |
1142 | |
1143 | // Initial/final parton shower on (Pythia default) |
1144 | SetMSTP(61,1); |
1145 | SetMSTP(71,1); |
1146 | |
1147 | // 2nd order alpha_s |
1148 | SetMSTP(2,2); |
1149 | |
1150 | // QCD scales |
1151 | SetMSTP(32,2); |
1152 | SetPARP(34,1.0); |
1153 | } |