Pi0 identification with PID was wrongly done, changes in GetEllipseParameters
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
8d2cd130 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
7cdba479 16/* $Id$ */
8d2cd130 17
18#include "AliPythia.h"
7cdba479 19#include "AliPythiaRndm.h"
0f482ae4 20#include "../FASTSIM/AliFastGlauber.h"
21#include "../FASTSIM/AliQuenchingWeights.h"
22#include "TVector3.h"
8d2cd130 23
24ClassImp(AliPythia)
25
26#ifndef WIN32
27# define pyclus pyclus_
28# define pycell pycell_
452af8c7 29# define pyshow pyshow_
30# define pyrobo pyrobo_
8d2cd130 31# define type_of_call
32#else
33# define pyclus PYCLUS
34# define pycell PYCELL
452af8c7 35# define pyrobo PYROBO
8d2cd130 36# define type_of_call _stdcall
37#endif
38
39extern "C" void type_of_call pyclus(Int_t & );
40extern "C" void type_of_call pycell(Int_t & );
452af8c7 41extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
42extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
8d2cd130 43
44//_____________________________________________________________________________
45
46AliPythia* AliPythia::fgAliPythia=NULL;
47
48AliPythia::AliPythia()
49{
50// Default Constructor
51//
52// Set random number
7cdba479 53 if (!AliPythiaRndm::GetPythiaRandom())
54 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 55 fGlauber = 0;
56 fQuenchingWeights = 0;
8d2cd130 57}
58
59void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
60{
61// Initialise the process to generate
7cdba479 62 if (!AliPythiaRndm::GetPythiaRandom())
63 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 64
65 fProcess = process;
66 fEcms = energy;
67 fStrucFunc = strucfunc;
68// don't decay p0
69 SetMDCY(Pycomp(111),1,0);
70// select structure function
71 SetMSTP(52,2);
72 SetMSTP(51,strucfunc);
73//
74// Pythia initialisation for selected processes//
75//
76// Make MSEL clean
77//
78 for (Int_t i=1; i<= 200; i++) {
79 SetMSUB(i,0);
80 }
81// select charm production
82 switch (process)
83 {
84 case kPyCharm:
85 SetMSEL(4);
86//
87// heavy quark masses
88
89 SetPMAS(4,1,1.2);
90 SetMSTU(16,2);
91//
92// primordial pT
93 SetMSTP(91,1);
94 SetPARP(91,1.);
95 SetPARP(93,5.);
96//
97 break;
98 case kPyBeauty:
99 SetMSEL(5);
100 SetPMAS(5,1,4.75);
101 SetMSTU(16,2);
102 break;
103 case kPyJpsi:
104 SetMSEL(0);
105// gg->J/Psi g
106 SetMSUB(86,1);
107 break;
108 case kPyJpsiChi:
109 SetMSEL(0);
110// gg->J/Psi g
111 SetMSUB(86,1);
112// gg-> chi_0c g
113 SetMSUB(87,1);
114// gg-> chi_1c g
115 SetMSUB(88,1);
116// gg-> chi_2c g
117 SetMSUB(89,1);
118 break;
119 case kPyCharmUnforced:
120 SetMSEL(0);
121// gq->qg
122 SetMSUB(28,1);
123// gg->qq
124 SetMSUB(53,1);
125// gg->gg
126 SetMSUB(68,1);
127 break;
128 case kPyBeautyUnforced:
129 SetMSEL(0);
130// gq->qg
131 SetMSUB(28,1);
132// gg->qq
133 SetMSUB(53,1);
134// gg->gg
135 SetMSUB(68,1);
136 break;
137 case kPyMb:
138// Minimum Bias pp-Collisions
139//
140//
141// select Pythia min. bias model
142 SetMSEL(0);
511db649 143 SetMSUB(92,1); // single diffraction AB-->XB
144 SetMSUB(93,1); // single diffraction AB-->AX
145 SetMSUB(94,1); // double diffraction
146 SetMSUB(95,1); // low pt production
147
148//
149// ATLAS Tuning
150//
c01c4118 151
152 SetMSTP(51, kCTEQ5L); // CTEQ5L pdf
511db649 153 SetMSTP(81,1); // Multiple Interactions ON
154 SetMSTP(82,4); // Double Gaussian Model
155
156 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
157 SetPARP(89,1000.); // [GeV] Ref. energy
158 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
159 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
160 SetPARP(84,0.5); // Core radius
161 SetPARP(85,0.33); // Regulates gluon prod. mechanism
162 SetPARP(86,0.66); // Regulates gluon prod. mechanism
163 SetPARP(67,1); // Regulates Initial State Radiation
164 break;
8d2cd130 165 case kPyMbNonDiffr:
166// Minimum Bias pp-Collisions
167//
168//
169// select Pythia min. bias model
170 SetMSEL(0);
511db649 171 SetMSUB(95,1); // low pt production
0f482ae4 172
173//
174// ATLAS Tuning
175//
511db649 176
0f482ae4 177 SetMSTP(51,7); // CTEQ5L pdf
511db649 178 SetMSTP(81,1); // Multiple Interactions ON
179 SetMSTP(82,4); // Double Gaussian Model
180
181 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
182 SetPARP(89,1000.); // [GeV] Ref. energy
183 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
184 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
185 SetPARP(84,0.5); // Core radius
186 SetPARP(85,0.33); // Regulates gluon prod. mechanism
187 SetPARP(86,0.66); // Regulates gluon prod. mechanism
188 SetPARP(67,1); // Regulates Initial State Radiation
8d2cd130 189 break;
190 case kPyJets:
191//
192// QCD Jets
193//
194 SetMSEL(1);
195 break;
196 case kPyDirectGamma:
197 SetMSEL(10);
198 break;
adf4d898 199 case kPyCharmPbPbMNR:
200 case kPyD0PbPbMNR:
8d2cd130 201 // Tuning of Pythia parameters aimed to get a resonable agreement
202 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
203 // c-cbar single inclusive and double differential distributions.
204 // This parameter settings are meant to work with Pb-Pb collisions
adf4d898 205 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
8d2cd130 206 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
207 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
208
209 // All QCD processes
210 SetMSEL(1);
211
212 // No multiple interactions
213 SetMSTP(81,0);
214 SetPARP(81,0.0);
215 SetPARP(82,0.0);
216
217 // Initial/final parton shower on (Pythia default)
218 SetMSTP(61,1);
219 SetMSTP(71,1);
220
221 // 2nd order alpha_s
222 SetMSTP(2,2);
223
224 // QCD scales
225 SetMSTP(32,2);
226 SetPARP(34,1.0);
227
adf4d898 228 // Intrinsic <kT>
8d2cd130 229 SetMSTP(91,1);
230 SetPARP(91,1.304);
231 SetPARP(93,6.52);
232
233 // Set c-quark mass
234 SetPMAS(4,1,1.2);
235
90d7b703 236 break;
237 case kPyDPlusPbPbMNR:
238 // Tuning of Pythia parameters aimed to get a resonable agreement
239 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
240 // c-cbar single inclusive and double differential distributions.
241 // This parameter settings are meant to work with Pb-Pb collisions
242 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
243 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
244 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
245
246 // All QCD processes
247 SetMSEL(1);
248
249 // No multiple interactions
250 SetMSTP(81,0);
251 SetPARP(81,0.0);
252 SetPARP(82,0.0);
253
254 // Initial/final parton shower on (Pythia default)
255 SetMSTP(61,1);
256 SetMSTP(71,1);
257
258 // 2nd order alpha_s
259 SetMSTP(2,2);
260
261 // QCD scales
262 SetMSTP(32,2);
263 SetPARP(34,1.0);
264
265 // Intrinsic <kT>
266 SetMSTP(91,1);
267 SetPARP(91,1.304);
268 SetPARP(93,6.52);
269
270 // Set c-quark mass
271 SetPMAS(4,1,1.2);
272
8d2cd130 273 break;
adf4d898 274 case kPyCharmpPbMNR:
275 case kPyD0pPbMNR:
276 // Tuning of Pythia parameters aimed to get a resonable agreement
277 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
278 // c-cbar single inclusive and double differential distributions.
279 // This parameter settings are meant to work with p-Pb collisions
280 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
281 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
282 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
283
284 // All QCD processes
285 SetMSEL(1);
286
287 // No multiple interactions
288 SetMSTP(81,0);
289 SetPARP(81,0.0);
290 SetPARP(82,0.0);
291
292 // Initial/final parton shower on (Pythia default)
293 SetMSTP(61,1);
294 SetMSTP(71,1);
295
296 // 2nd order alpha_s
297 SetMSTP(2,2);
298
299 // QCD scales
300 SetMSTP(32,2);
301 SetPARP(34,1.0);
302
303 // Intrinsic <kT>
304 SetMSTP(91,1);
305 SetPARP(91,1.16);
306 SetPARP(93,5.8);
307
308 // Set c-quark mass
309 SetPMAS(4,1,1.2);
310
90d7b703 311 break;
312 case kPyDPluspPbMNR:
313 // Tuning of Pythia parameters aimed to get a resonable agreement
314 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
315 // c-cbar single inclusive and double differential distributions.
316 // This parameter settings are meant to work with p-Pb collisions
317 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
318 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
319 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
320
321 // All QCD processes
322 SetMSEL(1);
323
324 // No multiple interactions
325 SetMSTP(81,0);
326 SetPARP(81,0.0);
327 SetPARP(82,0.0);
328
329 // Initial/final parton shower on (Pythia default)
330 SetMSTP(61,1);
331 SetMSTP(71,1);
332
333 // 2nd order alpha_s
334 SetMSTP(2,2);
335
336 // QCD scales
337 SetMSTP(32,2);
338 SetPARP(34,1.0);
339
340 // Intrinsic <kT>
341 SetMSTP(91,1);
342 SetPARP(91,1.16);
343 SetPARP(93,5.8);
344
345 // Set c-quark mass
346 SetPMAS(4,1,1.2);
347
adf4d898 348 break;
349 case kPyCharmppMNR:
350 case kPyD0ppMNR:
351 // Tuning of Pythia parameters aimed to get a resonable agreement
352 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
353 // c-cbar single inclusive and double differential distributions.
354 // This parameter settings are meant to work with pp collisions
355 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
356 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
357 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
358
359 // All QCD processes
360 SetMSEL(1);
361
362 // No multiple interactions
363 SetMSTP(81,0);
364 SetPARP(81,0.0);
365 SetPARP(82,0.0);
366
367 // Initial/final parton shower on (Pythia default)
368 SetMSTP(61,1);
369 SetMSTP(71,1);
370
371 // 2nd order alpha_s
372 SetMSTP(2,2);
373
374 // QCD scales
375 SetMSTP(32,2);
376 SetPARP(34,1.0);
377
378 // Intrinsic <kT^2>
379 SetMSTP(91,1);
380 SetPARP(91,1.);
381 SetPARP(93,5.);
382
383 // Set c-quark mass
384 SetPMAS(4,1,1.2);
385
90d7b703 386 break;
387 case kPyDPlusppMNR:
388 // Tuning of Pythia parameters aimed to get a resonable agreement
389 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
390 // c-cbar single inclusive and double differential distributions.
391 // This parameter settings are meant to work with pp collisions
392 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
393 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
394 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
395
396 // All QCD processes
397 SetMSEL(1);
398
399 // No multiple interactions
400 SetMSTP(81,0);
401 SetPARP(81,0.0);
402 SetPARP(82,0.0);
403
404 // Initial/final parton shower on (Pythia default)
405 SetMSTP(61,1);
406 SetMSTP(71,1);
407
408 // 2nd order alpha_s
409 SetMSTP(2,2);
410
411 // QCD scales
412 SetMSTP(32,2);
413 SetPARP(34,1.0);
414
415 // Intrinsic <kT^2>
416 SetMSTP(91,1);
417 SetPARP(91,1.);
418 SetPARP(93,5.);
419
420 // Set c-quark mass
421 SetPMAS(4,1,1.2);
422
adf4d898 423 break;
424 case kPyBeautyPbPbMNR:
8d2cd130 425 // Tuning of Pythia parameters aimed to get a resonable agreement
426 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
427 // b-bbar single inclusive and double differential distributions.
428 // This parameter settings are meant to work with Pb-Pb collisions
429 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
430 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
431 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
432
433 // All QCD processes
434 SetMSEL(1);
435
436 // No multiple interactions
437 SetMSTP(81,0);
438 SetPARP(81,0.0);
439 SetPARP(82,0.0);
440
441 // Initial/final parton shower on (Pythia default)
442 SetMSTP(61,1);
443 SetMSTP(71,1);
444
445 // 2nd order alpha_s
446 SetMSTP(2,2);
447
448 // QCD scales
449 SetMSTP(32,2);
450 SetPARP(34,1.0);
451 SetPARP(67,1.0);
452 SetPARP(71,1.0);
453
adf4d898 454 // Intrinsic <kT>
8d2cd130 455 SetMSTP(91,1);
456 SetPARP(91,2.035);
457 SetPARP(93,10.17);
458
459 // Set b-quark mass
460 SetPMAS(5,1,4.75);
461
adf4d898 462 break;
463 case kPyBeautypPbMNR:
464 // Tuning of Pythia parameters aimed to get a resonable agreement
465 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
466 // b-bbar single inclusive and double differential distributions.
467 // This parameter settings are meant to work with p-Pb collisions
468 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
469 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
470 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
471
472 // All QCD processes
473 SetMSEL(1);
474
475 // No multiple interactions
476 SetMSTP(81,0);
477 SetPARP(81,0.0);
478 SetPARP(82,0.0);
479
480 // Initial/final parton shower on (Pythia default)
481 SetMSTP(61,1);
482 SetMSTP(71,1);
483
484 // 2nd order alpha_s
485 SetMSTP(2,2);
486
487 // QCD scales
488 SetMSTP(32,2);
489 SetPARP(34,1.0);
490 SetPARP(67,1.0);
491 SetPARP(71,1.0);
492
493 // Intrinsic <kT>
494 SetMSTP(91,1);
495 SetPARP(91,1.60);
496 SetPARP(93,8.00);
497
498 // Set b-quark mass
499 SetPMAS(5,1,4.75);
500
501 break;
502 case kPyBeautyppMNR:
503 // Tuning of Pythia parameters aimed to get a resonable agreement
504 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
505 // b-bbar single inclusive and double differential distributions.
506 // This parameter settings are meant to work with pp collisions
507 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
508 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
509 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
510
511 // All QCD processes
512 SetMSEL(1);
513
514 // No multiple interactions
515 SetMSTP(81,0);
516 SetPARP(81,0.0);
517 SetPARP(82,0.0);
518
519 // Initial/final parton shower on (Pythia default)
520 SetMSTP(61,1);
521 SetMSTP(71,1);
522
523 // 2nd order alpha_s
524 SetMSTP(2,2);
525
526 // QCD scales
527 SetMSTP(32,2);
528 SetPARP(34,1.0);
529 SetPARP(67,1.0);
530 SetPARP(71,1.0);
531
532 // Intrinsic <kT>
533 SetMSTP(91,1);
534 SetPARP(91,1.);
535 SetPARP(93,5.);
536
537 // Set b-quark mass
538 SetPMAS(5,1,4.75);
539
8d2cd130 540 break;
541 }
542//
543// Initialize PYTHIA
544 SetMSTP(41,1); // all resonance decays switched on
545
546 Initialize("CMS","p","p",fEcms);
547
548}
549
550Int_t AliPythia::CheckedLuComp(Int_t kf)
551{
552// Check Lund particle code (for debugging)
553 Int_t kc=Pycomp(kf);
554 printf("\n Lucomp kf,kc %d %d",kf,kc);
555 return kc;
556}
557
558void AliPythia::SetNuclei(Int_t a1, Int_t a2)
559{
560// Treat protons as inside nuclei with mass numbers a1 and a2
561// The MSTP array in the PYPARS common block is used to enable and
562// select the nuclear structure functions.
563// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
564// =1: internal PYTHIA acording to MSTP(51)
565// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
566// If the following mass number both not equal zero, nuclear corrections of the stf are used.
567// MSTP(192) : Mass number of nucleus side 1
568// MSTP(193) : Mass number of nucleus side 2
569 SetMSTP(52,2);
570 SetMSTP(192, a1);
571 SetMSTP(193, a2);
572}
573
574
575AliPythia* AliPythia::Instance()
576{
577// Set random number generator
578 if (fgAliPythia) {
579 return fgAliPythia;
580 } else {
581 fgAliPythia = new AliPythia();
582 return fgAliPythia;
583 }
584}
585
586void AliPythia::PrintParticles()
587{
588// Print list of particl properties
589 Int_t np = 0;
c31f1d37 590 char* name = new char[16];
8d2cd130 591 for (Int_t kf=0; kf<1000000; kf++) {
592 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 593 Int_t kc = Pycomp(c*kf);
594 if (kc) {
595 Float_t mass = GetPMAS(kc,1);
596 Float_t width = GetPMAS(kc,2);
597 Float_t tau = GetPMAS(kc,4);
c31f1d37 598
8d2cd130 599 Pyname(kf,name);
600
601 np++;
602
603 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
604 c*kf, name, mass, width, tau);
605 }
606 }
607 }
608 printf("\n Number of particles %d \n \n", np);
609}
610
611void AliPythia::ResetDecayTable()
612{
613// Set default values for pythia decay switches
614 Int_t i;
615 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
616 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
617}
618
619void AliPythia::SetDecayTable()
620{
621// Set default values for pythia decay switches
622//
623 Int_t i;
624 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
625 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
626}
627
628void AliPythia::Pyclus(Int_t& njet)
629{
630// Call Pythia clustering algorithm
631//
632 pyclus(njet);
633}
634
635void AliPythia::Pycell(Int_t& njet)
636{
637// Call Pythia jet reconstruction algorithm
638//
639 pycell(njet);
640}
641
452af8c7 642void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
643{
644// Call Pythia jet reconstruction algorithm
645//
452af8c7 646 pyshow(ip1, ip2, qmax);
647}
648
649void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
650{
651 pyrobo(imi, ima, the, phi, bex, bey, bez);
652}
653
654
655
0f482ae4 656void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t qTransport, Float_t maxLength, Int_t iECMethod)
657{
658// Initializes
659// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
660// (2) The nuclear geometry using the Glauber Model
661//
662
663
664 fGlauber = new AliFastGlauber();
665 fGlauber->Init(2);
666 fGlauber->SetCentralityClass(cMin, cMax);
667
668 fQuenchingWeights = new AliQuenchingWeights();
669 fQuenchingWeights->InitMult();
670 fQuenchingWeights->SetQTransport(qTransport);
671 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
672 fQuenchingWeights->SetLengthMax(Int_t(maxLength));
673 fQuenchingWeights->SampleEnergyLoss();
674
675}
676
677
452af8c7 678void AliPythia::Quench()
679{
680//
681//
682// Simple Jet Quenching routine:
683// =============================
684// The jet formed by all final state partons radiated by the parton created
0f482ae4 685// in the hard collisions is quenched by a factor (1-z) using light cone variables in
686// the initial parton reference frame:
452af8c7 687// (E + p_z)new = (1-z) (E + p_z)old
688//
0f482ae4 689//
690//
691//
452af8c7 692// The lost momentum is first balanced by one gluon with virtuality > 0.
693// Subsequently the gluon splits to yield two gluons with E = p.
694//
0f482ae4 695//
696//
4e383037 697 static Float_t eMean = 0.;
698 static Int_t icall = 0;
0f482ae4 699
700 Double_t p0[2][5];
701 Double_t p1[2][5];
702 Double_t p2[2][5];
452af8c7 703 Int_t klast[2] = {-1, -1};
452af8c7 704
705 Int_t numpart = fPyjets->N;
0f482ae4 706 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0.;
707 Double_t pxq[2], pyq[2], pzq[2], eq[2], yq[2], mq[2], pq[2], phiq[2], thetaq[2], ptq[2];
708 Bool_t quenched[2];
709 Double_t phi;
710 Double_t zInitial[2], wjtKick[2];
4e383037 711 Int_t nGluon[2];
712
0f482ae4 713 Int_t imo, kst, pdg;
511db649 714//
0f482ae4 715// Primary partons
511db649 716//
4e383037 717
718
0f482ae4 719
720 for (Int_t i = 6; i <= 7; i++) {
721 Int_t j = i - 6;
452af8c7 722
0f482ae4 723 pxq[j] = fPyjets->P[0][i];
724 pyq[j] = fPyjets->P[1][i];
725 pzq[j] = fPyjets->P[2][i];
726 eq[j] = fPyjets->P[3][i];
727 mq[j] = fPyjets->P[4][i];
4e383037 728 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 729 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
730 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
731 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
732 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
733 phi = phiq[j];
734
735 // Quench only central jets
736 if (TMath::Abs(yq[j]) > 2.5) {
737 zInitial[j] = 0.;
738 } else {
739 pdg = fPyjets->K[1][i];
740
741 // Get length in nucleus
742 Double_t l;
743 fGlauber->GetLengthsForPythia(1, &phi, &l, -1.);
744 //
745 // Energy loss for given length and parton typr
746 Int_t itype = (pdg == 21) ? 2 : 1;
4e383037 747
0f482ae4 748 Double_t eloss = fQuenchingWeights->GetELossRandom(itype, l, eq[j]);
4e383037 749 if (eq[j] > 80. && TMath::Abs(yq[j]) < 0.5) {
750 icall ++;
751 eMean += eloss;
752 }
753
0f482ae4 754 //
755 // Extra pt
4e383037 756
0f482ae4 757 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->GetQTransport());
758 //
759 // Fractional energy loss
760 zInitial[j] = eloss / eq[j];
761 //
762 // Avoid complete loss
763 //
764 if (zInitial[j] == 1.) zInitial[j] = 0.95;
765 //
766 // Some debug printing
4e383037 767 printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
768 j, itype, eq[j], phi, l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
769
770 zInitial[j] = 1.;
771 while (zInitial[j] >= 0.95) zInitial[j] = gRandom->Exp(0.2);
0f482ae4 772 }
4e383037 773
0f482ae4 774 quenched[j] = (zInitial[j] > 0.01);
4e383037 775 } // primary partons
0f482ae4 776
6e90ad26 777 Double_t pNew[1000][4];
778 Int_t kNew[1000];
779 Int_t icount = 0;
780//
4e383037 781// System Loop
782 for (Int_t isys = 0; isys < 2; isys++) {
6e90ad26 783// Skip to next system if not quenched.
4e383037 784 if (!quenched[isys]) continue;
785
786 nGluon[isys] = 1 + Int_t(zInitial[isys] / (1. - zInitial[isys]));
787 if (nGluon[isys] > 6) nGluon[isys] = 6;
788 zInitial[isys] = 1. - TMath::Power(1. - zInitial[isys], 1./Double_t(nGluon[isys]));
789 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 790
4e383037 791
792
793 Int_t igMin = -1;
794 Int_t igMax = -1;
795 Double_t pg[4] = {0., 0., 0., 0.};
796
797//
798// Loop on radiation events
799
800 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 801 Double_t zHeavy = zInitial[isys];
6e90ad26 802//
4e383037 803
6e90ad26 804 while (1) {
805 icount = 0;
806 for (Int_t k = 0; k < 4; k++)
807 {
808 p0[isys][k] = 0.;
809 p1[isys][k] = 0.;
810 p2[isys][k] = 0.;
811 }
812// Loop over partons
813 for (Int_t i = 0; i < numpart; i++)
814 {
815 imo = fPyjets->K[2][i];
816 kst = fPyjets->K[0][i];
817 pdg = fPyjets->K[1][i];
818
819
820
0f482ae4 821// Quarks and gluons only
6e90ad26 822 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 823// Particles from hard scattering only
6e90ad26 824 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
4e383037 825 if (imo != (isys + 7) && (imo % 1000) != (isys + 7)) continue;
6e90ad26 826
0f482ae4 827// Skip comment lines
6e90ad26 828 if (kst != 1 && kst != 2) continue;
0f482ae4 829//
830// Parton kinematic
6e90ad26 831 px = fPyjets->P[0][i];
832 py = fPyjets->P[1][i];
833 pz = fPyjets->P[2][i];
834 e = fPyjets->P[3][i];
835 m = fPyjets->P[4][i];
836 pt = TMath::Sqrt(px * px + py * py);
837 p = TMath::Sqrt(px * px + py * py + pz * pz);
838 phi = TMath::Pi() + TMath::ATan2(-py, -px);
839 theta = TMath::ATan2(pt, pz);
840
0f482ae4 841//
842// Save 4-momentum sum for balancing
6e90ad26 843 Int_t index = imo - 7;
4e383037 844 if (index >= 1000) index = imo % 1000 - 7;
6e90ad26 845
846 p0[index][0] += px;
847 p0[index][1] += py;
848 p0[index][2] += pz;
849 p0[index][3] += e;
6e90ad26 850
851 klast[index] = i;
852
0f482ae4 853//
854// Fractional energy loss
6e90ad26 855 Double_t z = zInitial[index];
4e383037 856
857// Don't fully quench radiated gluons
858//
859 if (imo > 1000) {
860// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
861//
862
863 z = 0.05;
864 }
865
866//
867
6e90ad26 868 if (m > 0.) z = zHeavy;
869
870 //
871 //
872 // Transform into frame in which initial parton is along z-axis
873 //
874 TVector3 v(px, py, pz);
875 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
876 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
877
878 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
879 Double_t mt2 = jt * jt + m * m;
880 Double_t zmax = 1.;
881 //
882 // Kinematic limit on z
883 //
4e383037 884 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 885 //
886 // Change light-cone kinematics rel. to initial parton
887 //
888 Double_t eppzOld = e + pl;
889 Double_t empzOld = e - pl;
890
891 Double_t eppzNew = (1. - z) * eppzOld;
892 Double_t empzNew = empzOld - mt2 * z / eppzOld;
893 Double_t eNew = 0.5 * (eppzNew + empzNew);
894 Double_t plNew = 0.5 * (eppzNew - empzNew);
895
896 Double_t jtNew;
897 //
898 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
899 Double_t mt2New = eppzNew * empzNew;
900 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 901 if (z < zmax) {
902 if (m * m > mt2New) {
903 //
904 // This should not happen
905 //
906 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
907 jtNew = 0;
908 } else {
909 jtNew = TMath::Sqrt(mt2New - m * m);
910 }
6e90ad26 911 } else {
4e383037 912 // If pT is to small (probably a leading massive particle) we scale only the energy
913 // This can cause negative masses of the radiated gluon
914 // Let's hope for the best ...
915 jtNew = jt;
916 eNew = TMath::Sqrt(plNew * plNew + mt2);
917
6e90ad26 918 }
6e90ad26 919 //
920 // Calculate new px, py
921 //
922 Double_t pxNew = jtNew / jt * pxs;
923 Double_t pyNew = jtNew / jt * pys;
924
925// Double_t dpx = pxs - pxNew;
926// Double_t dpy = pys - pyNew;
927// Double_t dpz = pl - plNew;
928// Double_t de = e - eNew;
929// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
930// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
931// printf("New mass (2) %e %e \n", pxNew, pyNew);
932 //
933 // Rotate back
934 //
935 TVector3 w(pxNew, pyNew, plNew);
936 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
937 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
938
939 p1[index][0] += pxNew;
940 p1[index][1] += pyNew;
941 p1[index][2] += plNew;
942 p1[index][3] += eNew;
943 //
944 // Updated 4-momentum vectors
945 //
946 pNew[icount][0] = pxNew;
947 pNew[icount][1] = pyNew;
948 pNew[icount][2] = plNew;
949 pNew[icount][3] = eNew;
950 kNew[icount] = i;
951 icount++;
952 } // parton loop
0f482ae4 953 //
6e90ad26 954 // Check if there was phase-space for quenching
0f482ae4 955 //
0f482ae4 956
6e90ad26 957 if (icount == 0) quenched[isys] = kFALSE;
958 if (!quenched[isys]) break;
959
960 for (Int_t j = 0; j < 4; j++)
961 {
962 p2[isys][j] = p0[isys][j] - p1[isys][j];
963 }
964 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 965 if (p2[isys][4] > 0.) {
966 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
967 break;
968 } else {
969 printf("Warning negative mass squared in system %d %f ! \n", isys, zInitial[isys]);
4e383037 970 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 971 if (p2[isys][4] < -0.01) {
4e383037 972 printf("Negative mass squared !\n");
973 // Here we have to put the gluon back to mass shell
974 // This will lead to a small energy imbalance
975 p2[isys][4] = 0.;
976 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
977 break;
6e90ad26 978 } else {
979 p2[isys][4] = 0.;
980 break;
981 }
982 }
6e90ad26 983 /*
6e90ad26 984 zHeavy *= 0.98;
985 printf("zHeavy lowered to %f\n", zHeavy);
986 if (zHeavy < 0.01) {
987 printf("No success ! \n");
988 icount = 0;
989 quenched[isys] = kFALSE;
990 break;
991 }
4e383037 992 */
993 } // iteration on z (while)
994
6e90ad26 995// Update event record
996 for (Int_t k = 0; k < icount; k++) {
997// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
998 fPyjets->P[0][kNew[k]] = pNew[k][0];
999 fPyjets->P[1][kNew[k]] = pNew[k][1];
1000 fPyjets->P[2][kNew[k]] = pNew[k][2];
1001 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1002 }
4e383037 1003 //
1004 // Add the gluons
1005 //
1006 Int_t ish = 0;
1837e95c 1007 Int_t iGlu;
4e383037 1008 if (!quenched[isys]) continue;
0f482ae4 1009//
1010// Last parton from shower i
4e383037 1011 Int_t in = klast[isys];
0f482ae4 1012//
1013// Continue if no parton in shower i selected
1014 if (in == -1) continue;
1015//
1016// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1017 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1018//
1019// Starting index
452af8c7 1020
4e383037 1021// jmin = in - 1;
0f482ae4 1022// How many additional gluons will be generated
1023 ish = 1;
4e383037 1024 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1025//
1026// Position of gluons
4e383037 1027 iGlu = numpart;
1028 if (iglu == 0) igMin = iGlu;
1029 igMax = iGlu;
0f482ae4 1030 numpart += ish;
1031 (fPyjets->N) += ish;
4e383037 1032
0f482ae4 1033 if (ish == 1) {
4e383037 1034 fPyjets->P[0][iGlu] = p2[isys][0];
1035 fPyjets->P[1][iGlu] = p2[isys][1];
1036 fPyjets->P[2][iGlu] = p2[isys][2];
1037 fPyjets->P[3][iGlu] = p2[isys][3];
1038 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1039
4e383037 1040 fPyjets->K[0][iGlu] = 1;
1041 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1042 fPyjets->K[1][iGlu] = 21;
4e383037 1043 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1044 fPyjets->K[3][iGlu] = -1;
1045 fPyjets->K[4][iGlu] = -1;
4e383037 1046
1047 pg[0] += p2[isys][0];
1048 pg[1] += p2[isys][1];
1049 pg[2] += p2[isys][2];
1050 pg[3] += p2[isys][3];
0f482ae4 1051 } else {
1052 //
1053 // Split gluon in rest frame.
1054 //
4e383037 1055 Double_t bx = p2[isys][0] / p2[isys][3];
1056 Double_t by = p2[isys][1] / p2[isys][3];
1057 Double_t bz = p2[isys][2] / p2[isys][3];
1058 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1059 //
1060 // Isotropic decay ????
1061 Double_t cost = 2. * gRandom->Rndm() - 1.;
1062 Double_t sint = TMath::Sqrt(1. - cost * cost);
1063 Double_t phi = 2. * TMath::Pi() * gRandom->Rndm();
1064
1065 Double_t pz1 = pst * cost;
1066 Double_t pz2 = -pst * cost;
1067 Double_t pt1 = pst * sint;
1068 Double_t pt2 = -pst * sint;
1069 Double_t px1 = pt1 * TMath::Cos(phi);
1070 Double_t py1 = pt1 * TMath::Sin(phi);
1071 Double_t px2 = pt2 * TMath::Cos(phi);
1072 Double_t py2 = pt2 * TMath::Sin(phi);
1073
1074 fPyjets->P[0][iGlu] = px1;
1075 fPyjets->P[1][iGlu] = py1;
1076 fPyjets->P[2][iGlu] = pz1;
1077 fPyjets->P[3][iGlu] = pst;
1078 fPyjets->P[4][iGlu] = 0.;
1079
4e383037 1080 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1081 fPyjets->K[1][iGlu] = 21;
4e383037 1082 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1083 fPyjets->K[3][iGlu] = -1;
1084 fPyjets->K[4][iGlu] = -1;
1085
1086 fPyjets->P[0][iGlu+1] = px2;
1087 fPyjets->P[1][iGlu+1] = py2;
1088 fPyjets->P[2][iGlu+1] = pz2;
1089 fPyjets->P[3][iGlu+1] = pst;
1090 fPyjets->P[4][iGlu+1] = 0.;
1091
4e383037 1092 fPyjets->K[0][iGlu+1] = 1;
1093 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1094 fPyjets->K[1][iGlu+1] = 21;
4e383037 1095 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1096 fPyjets->K[3][iGlu+1] = -1;
1097 fPyjets->K[4][iGlu+1] = -1;
1098 SetMSTU(1,0);
1099 SetMSTU(2,0);
1100 //
1101 // Boost back
1102 //
1103 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1104 }
4e383037 1105/*
1106 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1107 Double_t px, py, pz;
1108 px = fPyjets->P[0][ig];
1109 py = fPyjets->P[1][ig];
1110 pz = fPyjets->P[2][ig];
1111 TVector3 v(px, py, pz);
1112 v.RotateZ(-phiq[isys]);
1113 v.RotateY(-thetaq[isys]);
1114 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1115 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1116 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1117 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1118 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1119 pxs += jtKick * TMath::Cos(phiKick);
1120 pys += jtKick * TMath::Sin(phiKick);
1121 TVector3 w(pxs, pys, pzs);
1122 w.RotateY(thetaq[isys]);
1123 w.RotateZ(phiq[isys]);
1124 fPyjets->P[0][ig] = w.X();
1125 fPyjets->P[1][ig] = w.Y();
1126 fPyjets->P[2][ig] = w.Z();
1127 fPyjets->P[2][ig] = w.Mag();
1128 }
1129*/
1130 } // kGluon
1131
6e90ad26 1132
4e383037 1133 // Check energy conservation
0f482ae4 1134 Double_t pxs = 0.;
1135 Double_t pys = 0.;
1136 Double_t pzs = 0.;
1137 Double_t es = 14000.;
1138
1139 for (Int_t i = 0; i < numpart; i++)
1140 {
1141 kst = fPyjets->K[0][i];
1142 if (kst != 1 && kst != 2) continue;
1143 pxs += fPyjets->P[0][i];
1144 pys += fPyjets->P[1][i];
1145 pzs += fPyjets->P[2][i];
1146 es -= fPyjets->P[3][i];
1147 }
1148 if (TMath::Abs(pxs) > 1.e-2 ||
1149 TMath::Abs(pys) > 1.e-2 ||
1150 TMath::Abs(pzs) > 1.e-1) {
1151 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1152// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1153 }
4e383037 1154
1155 } // end quenching loop (systems)
6e90ad26 1156// Clean-up
0f482ae4 1157 for (Int_t i = 0; i < numpart; i++)
1158 {
4e383037 1159 imo = fPyjets->K[2][i];
1160 if (imo > 1000) {
1161 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1162 }
0f482ae4 1163 }
4e383037 1164// this->Pylist(1);
0f482ae4 1165} // end quench
90d7b703 1166