8d2cd130 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
7cdba479 |
16 | /* $Id$ */ |
8d2cd130 |
17 | |
18 | #include "AliPythia.h" |
7cdba479 |
19 | #include "AliPythiaRndm.h" |
0f482ae4 |
20 | #include "../FASTSIM/AliFastGlauber.h" |
21 | #include "../FASTSIM/AliQuenchingWeights.h" |
22 | #include "TVector3.h" |
8d2cd130 |
23 | |
24 | ClassImp(AliPythia) |
25 | |
26 | #ifndef WIN32 |
27 | # define pyclus pyclus_ |
28 | # define pycell pycell_ |
452af8c7 |
29 | # define pyshow pyshow_ |
30 | # define pyrobo pyrobo_ |
992f2843 |
31 | # define pyquen pyquen_ |
16a82508 |
32 | # define pyevnw pyevnw_ |
8d2cd130 |
33 | # define type_of_call |
34 | #else |
35 | # define pyclus PYCLUS |
36 | # define pycell PYCELL |
452af8c7 |
37 | # define pyrobo PYROBO |
992f2843 |
38 | # define pyquen PYQUEN |
16a82508 |
39 | # define pyevnw PYEVNW |
8d2cd130 |
40 | # define type_of_call _stdcall |
41 | #endif |
42 | |
43 | extern "C" void type_of_call pyclus(Int_t & ); |
44 | extern "C" void type_of_call pycell(Int_t & ); |
452af8c7 |
45 | extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); |
46 | extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); |
992f2843 |
47 | extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &); |
0a2cfc0a |
48 | extern "C" void type_of_call pyevnw(){;} |
8d2cd130 |
49 | |
50 | //_____________________________________________________________________________ |
51 | |
52 | AliPythia* AliPythia::fgAliPythia=NULL; |
53 | |
54 | AliPythia::AliPythia() |
55 | { |
56 | // Default Constructor |
57 | // |
58 | // Set random number |
7cdba479 |
59 | if (!AliPythiaRndm::GetPythiaRandom()) |
60 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
0f482ae4 |
61 | fGlauber = 0; |
62 | fQuenchingWeights = 0; |
8d2cd130 |
63 | } |
64 | |
65 | void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) |
66 | { |
67 | // Initialise the process to generate |
7cdba479 |
68 | if (!AliPythiaRndm::GetPythiaRandom()) |
69 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
70 | |
71 | fProcess = process; |
72 | fEcms = energy; |
73 | fStrucFunc = strucfunc; |
1d5b1b20 |
74 | //...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-. |
75 | SetMDCY(Pycomp(111) ,1,0); |
76 | SetMDCY(Pycomp(310) ,1,0); |
77 | SetMDCY(Pycomp(3122),1,0); |
78 | SetMDCY(Pycomp(3112),1,0); |
79 | SetMDCY(Pycomp(3212),1,0); |
80 | SetMDCY(Pycomp(3222),1,0); |
81 | SetMDCY(Pycomp(3312),1,0); |
82 | SetMDCY(Pycomp(3322),1,0); |
83 | SetMDCY(Pycomp(3334),1,0); |
84 | // select structure function |
8d2cd130 |
85 | SetMSTP(52,2); |
86 | SetMSTP(51,strucfunc); |
87 | // |
88 | // Pythia initialisation for selected processes// |
89 | // |
90 | // Make MSEL clean |
91 | // |
92 | for (Int_t i=1; i<= 200; i++) { |
93 | SetMSUB(i,0); |
94 | } |
95 | // select charm production |
96 | switch (process) |
97 | { |
65f2626c |
98 | case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes |
99 | // Multiple interactions on. |
100 | SetMSTP(81,1); |
101 | // Double Gaussian matter distribution. |
102 | SetMSTP(82,4); |
103 | SetPARP(83,0.5); |
104 | SetPARP(84,0.4); |
105 | // pT0. |
106 | SetPARP(82,2.0); |
107 | // Reference energy for pT0 and energy rescaling pace. |
108 | SetPARP(89,1800); |
109 | SetPARP(90,0.25); |
110 | // String drawing almost completely minimizes string length. |
111 | SetPARP(85,0.9); |
112 | SetPARP(86,0.95); |
113 | // ISR and FSR activity. |
114 | SetPARP(67,4); |
115 | SetPARP(71,4); |
116 | // Lambda_FSR scale. |
117 | SetPARJ(81,0.29); |
118 | break; |
119 | case kPyOldUEQ2ordered2: |
120 | // Old underlying events with Q2 ordered QCD processes |
121 | // Multiple interactions on. |
122 | SetMSTP(81,1); |
123 | // Double Gaussian matter distribution. |
124 | SetMSTP(82,4); |
125 | SetPARP(83,0.5); |
126 | SetPARP(84,0.4); |
127 | // pT0. |
128 | SetPARP(82,2.0); |
129 | // Reference energy for pT0 and energy rescaling pace. |
130 | SetPARP(89,1800); |
131 | SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered |
132 | // String drawing almost completely minimizes string length. |
133 | SetPARP(85,0.9); |
134 | SetPARP(86,0.95); |
135 | // ISR and FSR activity. |
136 | SetPARP(67,4); |
137 | SetPARP(71,4); |
138 | // Lambda_FSR scale. |
139 | SetPARJ(81,0.29); |
140 | break; |
141 | case kPyOldPopcorn: |
142 | // Old production mechanism: Old Popcorn |
143 | SetMSEL(1); |
144 | SetMSTJ(12,3); |
145 | // (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon |
146 | SetMSTP(88,2); |
147 | // (D=1)see can be used to form baryons (BARYON JUNCTION) |
148 | SetMSTJ(1,1); |
149 | SetMSTP(51,kCTEQ5L);// CTEQ 5L ! CTEQ5L pdf |
150 | SetMSTP(81,1); // Multiple Interactions ON |
151 | SetMSTP(82,4); // Double Gaussian Model |
152 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
153 | SetPARP(89,1000.); // [GeV] Ref. energy |
154 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
155 | SetPARP(83,0.5); // Core density in proton matter dist. (def.value) |
156 | SetPARP(84,0.5); // Core radius |
157 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
158 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
159 | SetPARP(67,1); // Regulate gluon prod. mechanism |
160 | break; |
8d2cd130 |
161 | case kPyCharm: |
162 | SetMSEL(4); |
8d2cd130 |
163 | // heavy quark masses |
164 | |
165 | SetPMAS(4,1,1.2); |
166 | SetMSTU(16,2); |
167 | // |
168 | // primordial pT |
169 | SetMSTP(91,1); |
170 | SetPARP(91,1.); |
171 | SetPARP(93,5.); |
172 | // |
173 | break; |
174 | case kPyBeauty: |
175 | SetMSEL(5); |
176 | SetPMAS(5,1,4.75); |
177 | SetMSTU(16,2); |
178 | break; |
179 | case kPyJpsi: |
180 | SetMSEL(0); |
181 | // gg->J/Psi g |
182 | SetMSUB(86,1); |
183 | break; |
184 | case kPyJpsiChi: |
185 | SetMSEL(0); |
186 | // gg->J/Psi g |
187 | SetMSUB(86,1); |
188 | // gg-> chi_0c g |
189 | SetMSUB(87,1); |
190 | // gg-> chi_1c g |
191 | SetMSUB(88,1); |
192 | // gg-> chi_2c g |
193 | SetMSUB(89,1); |
194 | break; |
195 | case kPyCharmUnforced: |
196 | SetMSEL(0); |
197 | // gq->qg |
198 | SetMSUB(28,1); |
199 | // gg->qq |
200 | SetMSUB(53,1); |
201 | // gg->gg |
202 | SetMSUB(68,1); |
203 | break; |
204 | case kPyBeautyUnforced: |
205 | SetMSEL(0); |
206 | // gq->qg |
207 | SetMSUB(28,1); |
208 | // gg->qq |
209 | SetMSUB(53,1); |
210 | // gg->gg |
211 | SetMSUB(68,1); |
212 | break; |
213 | case kPyMb: |
214 | // Minimum Bias pp-Collisions |
215 | // |
216 | // |
217 | // select Pythia min. bias model |
218 | SetMSEL(0); |
511db649 |
219 | SetMSUB(92,1); // single diffraction AB-->XB |
220 | SetMSUB(93,1); // single diffraction AB-->AX |
221 | SetMSUB(94,1); // double diffraction |
222 | SetMSUB(95,1); // low pt production |
223 | |
224 | // |
225 | // ATLAS Tuning |
226 | // |
c01c4118 |
227 | |
228 | SetMSTP(51, kCTEQ5L); // CTEQ5L pdf |
511db649 |
229 | SetMSTP(81,1); // Multiple Interactions ON |
230 | SetMSTP(82,4); // Double Gaussian Model |
231 | |
232 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
233 | SetPARP(89,1000.); // [GeV] Ref. energy |
234 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
235 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
236 | SetPARP(84,0.5); // Core radius |
237 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
238 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
239 | SetPARP(67,1); // Regulates Initial State Radiation |
240 | break; |
8d2cd130 |
241 | case kPyMbNonDiffr: |
242 | // Minimum Bias pp-Collisions |
243 | // |
244 | // |
245 | // select Pythia min. bias model |
246 | SetMSEL(0); |
511db649 |
247 | SetMSUB(95,1); // low pt production |
0f482ae4 |
248 | |
249 | // |
250 | // ATLAS Tuning |
251 | // |
511db649 |
252 | |
d682afd1 |
253 | SetMSTP(51,kCTEQ5L); // CTEQ5L pdf |
511db649 |
254 | SetMSTP(81,1); // Multiple Interactions ON |
255 | SetMSTP(82,4); // Double Gaussian Model |
256 | |
257 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
258 | SetPARP(89,1000.); // [GeV] Ref. energy |
259 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
260 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
261 | SetPARP(84,0.5); // Core radius |
262 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
263 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
264 | SetPARP(67,1); // Regulates Initial State Radiation |
8d2cd130 |
265 | break; |
266 | case kPyJets: |
267 | // |
268 | // QCD Jets |
269 | // |
270 | SetMSEL(1); |
65f2626c |
271 | // Pythia Tune A (CDF) |
272 | // |
273 | SetPARP(67,4.); // Regulates Initial State Radiation |
274 | SetMSTP(82,4); // Double Gaussian Model |
275 | SetPARP(82,2.0); // [GeV] PT_min at Ref. energy |
276 | SetPARP(84,0.4); // Core radius |
277 | SetPARP(85,0.90) ; // Regulates gluon prod. mechanism |
278 | SetPARP(86,0.95); // Regulates gluon prod. mechanism |
279 | SetPARP(89,1800.); // [GeV] Ref. energy |
280 | SetPARP(90,0.25); // 2*epsilon (exponent in power law) |
281 | break; |
8d2cd130 |
282 | case kPyDirectGamma: |
283 | SetMSEL(10); |
284 | break; |
adf4d898 |
285 | case kPyCharmPbPbMNR: |
286 | case kPyD0PbPbMNR: |
8d2cd130 |
287 | // Tuning of Pythia parameters aimed to get a resonable agreement |
288 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
289 | // c-cbar single inclusive and double differential distributions. |
290 | // This parameter settings are meant to work with Pb-Pb collisions |
adf4d898 |
291 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
8d2cd130 |
292 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
293 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
294 | |
295 | // All QCD processes |
296 | SetMSEL(1); |
297 | |
298 | // No multiple interactions |
299 | SetMSTP(81,0); |
300 | SetPARP(81,0.0); |
301 | SetPARP(82,0.0); |
302 | |
303 | // Initial/final parton shower on (Pythia default) |
304 | SetMSTP(61,1); |
305 | SetMSTP(71,1); |
306 | |
307 | // 2nd order alpha_s |
308 | SetMSTP(2,2); |
309 | |
310 | // QCD scales |
311 | SetMSTP(32,2); |
312 | SetPARP(34,1.0); |
313 | |
adf4d898 |
314 | // Intrinsic <kT> |
8d2cd130 |
315 | SetMSTP(91,1); |
316 | SetPARP(91,1.304); |
317 | SetPARP(93,6.52); |
318 | |
319 | // Set c-quark mass |
320 | SetPMAS(4,1,1.2); |
321 | |
90d7b703 |
322 | break; |
323 | case kPyDPlusPbPbMNR: |
324 | // Tuning of Pythia parameters aimed to get a resonable agreement |
325 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
326 | // c-cbar single inclusive and double differential distributions. |
327 | // This parameter settings are meant to work with Pb-Pb collisions |
328 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
329 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
330 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
331 | |
332 | // All QCD processes |
333 | SetMSEL(1); |
334 | |
335 | // No multiple interactions |
336 | SetMSTP(81,0); |
337 | SetPARP(81,0.0); |
338 | SetPARP(82,0.0); |
339 | |
340 | // Initial/final parton shower on (Pythia default) |
341 | SetMSTP(61,1); |
342 | SetMSTP(71,1); |
343 | |
344 | // 2nd order alpha_s |
345 | SetMSTP(2,2); |
346 | |
347 | // QCD scales |
348 | SetMSTP(32,2); |
349 | SetPARP(34,1.0); |
350 | |
351 | // Intrinsic <kT> |
352 | SetMSTP(91,1); |
353 | SetPARP(91,1.304); |
354 | SetPARP(93,6.52); |
355 | |
356 | // Set c-quark mass |
357 | SetPMAS(4,1,1.2); |
358 | |
8d2cd130 |
359 | break; |
adf4d898 |
360 | case kPyCharmpPbMNR: |
361 | case kPyD0pPbMNR: |
362 | // Tuning of Pythia parameters aimed to get a resonable agreement |
363 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
364 | // c-cbar single inclusive and double differential distributions. |
365 | // This parameter settings are meant to work with p-Pb collisions |
366 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
367 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
368 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
369 | |
370 | // All QCD processes |
371 | SetMSEL(1); |
372 | |
373 | // No multiple interactions |
374 | SetMSTP(81,0); |
375 | SetPARP(81,0.0); |
376 | SetPARP(82,0.0); |
377 | |
378 | // Initial/final parton shower on (Pythia default) |
379 | SetMSTP(61,1); |
380 | SetMSTP(71,1); |
381 | |
382 | // 2nd order alpha_s |
383 | SetMSTP(2,2); |
384 | |
385 | // QCD scales |
386 | SetMSTP(32,2); |
387 | SetPARP(34,1.0); |
388 | |
389 | // Intrinsic <kT> |
390 | SetMSTP(91,1); |
391 | SetPARP(91,1.16); |
392 | SetPARP(93,5.8); |
393 | |
394 | // Set c-quark mass |
395 | SetPMAS(4,1,1.2); |
396 | |
90d7b703 |
397 | break; |
398 | case kPyDPluspPbMNR: |
399 | // Tuning of Pythia parameters aimed to get a resonable agreement |
400 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
401 | // c-cbar single inclusive and double differential distributions. |
402 | // This parameter settings are meant to work with p-Pb collisions |
403 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
404 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
405 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
406 | |
407 | // All QCD processes |
408 | SetMSEL(1); |
409 | |
410 | // No multiple interactions |
411 | SetMSTP(81,0); |
412 | SetPARP(81,0.0); |
413 | SetPARP(82,0.0); |
414 | |
415 | // Initial/final parton shower on (Pythia default) |
416 | SetMSTP(61,1); |
417 | SetMSTP(71,1); |
418 | |
419 | // 2nd order alpha_s |
420 | SetMSTP(2,2); |
421 | |
422 | // QCD scales |
423 | SetMSTP(32,2); |
424 | SetPARP(34,1.0); |
425 | |
426 | // Intrinsic <kT> |
427 | SetMSTP(91,1); |
428 | SetPARP(91,1.16); |
429 | SetPARP(93,5.8); |
430 | |
431 | // Set c-quark mass |
432 | SetPMAS(4,1,1.2); |
433 | |
adf4d898 |
434 | break; |
435 | case kPyCharmppMNR: |
436 | case kPyD0ppMNR: |
437 | // Tuning of Pythia parameters aimed to get a resonable agreement |
438 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
439 | // c-cbar single inclusive and double differential distributions. |
440 | // This parameter settings are meant to work with pp collisions |
441 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
442 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
443 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
444 | |
445 | // All QCD processes |
446 | SetMSEL(1); |
447 | |
448 | // No multiple interactions |
449 | SetMSTP(81,0); |
450 | SetPARP(81,0.0); |
451 | SetPARP(82,0.0); |
452 | |
453 | // Initial/final parton shower on (Pythia default) |
454 | SetMSTP(61,1); |
455 | SetMSTP(71,1); |
456 | |
457 | // 2nd order alpha_s |
458 | SetMSTP(2,2); |
459 | |
460 | // QCD scales |
461 | SetMSTP(32,2); |
462 | SetPARP(34,1.0); |
463 | |
464 | // Intrinsic <kT^2> |
465 | SetMSTP(91,1); |
466 | SetPARP(91,1.); |
467 | SetPARP(93,5.); |
468 | |
469 | // Set c-quark mass |
470 | SetPMAS(4,1,1.2); |
471 | |
90d7b703 |
472 | break; |
473 | case kPyDPlusppMNR: |
474 | // Tuning of Pythia parameters aimed to get a resonable agreement |
475 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
476 | // c-cbar single inclusive and double differential distributions. |
477 | // This parameter settings are meant to work with pp collisions |
478 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
479 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
480 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
481 | |
482 | // All QCD processes |
483 | SetMSEL(1); |
484 | |
485 | // No multiple interactions |
486 | SetMSTP(81,0); |
487 | SetPARP(81,0.0); |
488 | SetPARP(82,0.0); |
489 | |
490 | // Initial/final parton shower on (Pythia default) |
491 | SetMSTP(61,1); |
492 | SetMSTP(71,1); |
493 | |
494 | // 2nd order alpha_s |
495 | SetMSTP(2,2); |
496 | |
497 | // QCD scales |
498 | SetMSTP(32,2); |
499 | SetPARP(34,1.0); |
500 | |
501 | // Intrinsic <kT^2> |
502 | SetMSTP(91,1); |
503 | SetPARP(91,1.); |
504 | SetPARP(93,5.); |
505 | |
506 | // Set c-quark mass |
507 | SetPMAS(4,1,1.2); |
508 | |
adf4d898 |
509 | break; |
510 | case kPyBeautyPbPbMNR: |
8d2cd130 |
511 | // Tuning of Pythia parameters aimed to get a resonable agreement |
512 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
513 | // b-bbar single inclusive and double differential distributions. |
514 | // This parameter settings are meant to work with Pb-Pb collisions |
515 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
516 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
517 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
518 | |
519 | // All QCD processes |
520 | SetMSEL(1); |
521 | |
522 | // No multiple interactions |
523 | SetMSTP(81,0); |
524 | SetPARP(81,0.0); |
525 | SetPARP(82,0.0); |
526 | |
527 | // Initial/final parton shower on (Pythia default) |
528 | SetMSTP(61,1); |
529 | SetMSTP(71,1); |
530 | |
531 | // 2nd order alpha_s |
532 | SetMSTP(2,2); |
533 | |
534 | // QCD scales |
535 | SetMSTP(32,2); |
536 | SetPARP(34,1.0); |
537 | SetPARP(67,1.0); |
538 | SetPARP(71,1.0); |
539 | |
adf4d898 |
540 | // Intrinsic <kT> |
8d2cd130 |
541 | SetMSTP(91,1); |
542 | SetPARP(91,2.035); |
543 | SetPARP(93,10.17); |
544 | |
545 | // Set b-quark mass |
546 | SetPMAS(5,1,4.75); |
547 | |
adf4d898 |
548 | break; |
549 | case kPyBeautypPbMNR: |
550 | // Tuning of Pythia parameters aimed to get a resonable agreement |
551 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
552 | // b-bbar single inclusive and double differential distributions. |
553 | // This parameter settings are meant to work with p-Pb collisions |
554 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
555 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
556 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
557 | |
558 | // All QCD processes |
559 | SetMSEL(1); |
560 | |
561 | // No multiple interactions |
562 | SetMSTP(81,0); |
563 | SetPARP(81,0.0); |
564 | SetPARP(82,0.0); |
565 | |
566 | // Initial/final parton shower on (Pythia default) |
567 | SetMSTP(61,1); |
568 | SetMSTP(71,1); |
569 | |
570 | // 2nd order alpha_s |
571 | SetMSTP(2,2); |
572 | |
573 | // QCD scales |
574 | SetMSTP(32,2); |
575 | SetPARP(34,1.0); |
576 | SetPARP(67,1.0); |
577 | SetPARP(71,1.0); |
578 | |
579 | // Intrinsic <kT> |
580 | SetMSTP(91,1); |
581 | SetPARP(91,1.60); |
582 | SetPARP(93,8.00); |
583 | |
584 | // Set b-quark mass |
585 | SetPMAS(5,1,4.75); |
586 | |
587 | break; |
588 | case kPyBeautyppMNR: |
589 | // Tuning of Pythia parameters aimed to get a resonable agreement |
590 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
591 | // b-bbar single inclusive and double differential distributions. |
592 | // This parameter settings are meant to work with pp collisions |
593 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
594 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
595 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
596 | |
597 | // All QCD processes |
598 | SetMSEL(1); |
599 | |
600 | // No multiple interactions |
601 | SetMSTP(81,0); |
602 | SetPARP(81,0.0); |
603 | SetPARP(82,0.0); |
604 | |
605 | // Initial/final parton shower on (Pythia default) |
606 | SetMSTP(61,1); |
607 | SetMSTP(71,1); |
608 | |
609 | // 2nd order alpha_s |
610 | SetMSTP(2,2); |
611 | |
612 | // QCD scales |
613 | SetMSTP(32,2); |
614 | SetPARP(34,1.0); |
615 | SetPARP(67,1.0); |
616 | SetPARP(71,1.0); |
617 | |
618 | // Intrinsic <kT> |
619 | SetMSTP(91,1); |
620 | SetPARP(91,1.); |
621 | SetPARP(93,5.); |
622 | |
623 | // Set b-quark mass |
624 | SetPMAS(5,1,4.75); |
625 | |
8d2cd130 |
626 | break; |
589380c6 |
627 | |
628 | case kPyW: |
629 | |
630 | //Inclusive production of W+/- |
631 | SetMSEL(0); |
632 | //f fbar -> W+ |
633 | SetMSUB(2,1); |
634 | // //f fbar -> g W+ |
635 | // SetMSUB(16,1); |
636 | // //f fbar -> gamma W+ |
637 | // SetMSUB(20,1); |
638 | // //f g -> f W+ |
639 | // SetMSUB(31,1); |
640 | // //f gamma -> f W+ |
641 | // SetMSUB(36,1); |
642 | |
643 | // Initial/final parton shower on (Pythia default) |
644 | // With parton showers on we are generating "W inclusive process" |
645 | SetMSTP(61,1); //Initial QCD & QED showers on |
646 | SetMSTP(71,1); //Final QCD & QED showers on |
647 | |
648 | break; |
0f6ee828 |
649 | |
650 | case kPyZ: |
651 | |
652 | //Inclusive production of Z |
653 | SetMSEL(0); |
654 | //f fbar -> Z/gamma |
655 | SetMSUB(1,1); |
656 | |
657 | // // f fbar -> g Z/gamma |
658 | // SetMSUB(15,1); |
659 | // // f fbar -> gamma Z/gamma |
660 | // SetMSUB(19,1); |
661 | // // f g -> f Z/gamma |
662 | // SetMSUB(30,1); |
663 | // // f gamma -> f Z/gamma |
664 | // SetMSUB(35,1); |
665 | |
666 | //only Z included, not gamma |
667 | SetMSTP(43,2); |
668 | |
669 | // Initial/final parton shower on (Pythia default) |
670 | // With parton showers on we are generating "Z inclusive process" |
671 | SetMSTP(61,1); //Initial QCD & QED showers on |
672 | SetMSTP(71,1); //Final QCD & QED showers on |
673 | |
674 | break; |
675 | |
8d2cd130 |
676 | } |
677 | // |
678 | // Initialize PYTHIA |
679 | SetMSTP(41,1); // all resonance decays switched on |
680 | |
681 | Initialize("CMS","p","p",fEcms); |
682 | |
683 | } |
684 | |
685 | Int_t AliPythia::CheckedLuComp(Int_t kf) |
686 | { |
687 | // Check Lund particle code (for debugging) |
688 | Int_t kc=Pycomp(kf); |
689 | printf("\n Lucomp kf,kc %d %d",kf,kc); |
690 | return kc; |
691 | } |
692 | |
693 | void AliPythia::SetNuclei(Int_t a1, Int_t a2) |
694 | { |
695 | // Treat protons as inside nuclei with mass numbers a1 and a2 |
696 | // The MSTP array in the PYPARS common block is used to enable and |
697 | // select the nuclear structure functions. |
698 | // MSTP(52) : (D=1) choice of proton and nuclear structure-function library |
699 | // =1: internal PYTHIA acording to MSTP(51) |
700 | // =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET |
701 | // If the following mass number both not equal zero, nuclear corrections of the stf are used. |
702 | // MSTP(192) : Mass number of nucleus side 1 |
703 | // MSTP(193) : Mass number of nucleus side 2 |
704 | SetMSTP(52,2); |
705 | SetMSTP(192, a1); |
706 | SetMSTP(193, a2); |
707 | } |
708 | |
709 | |
710 | AliPythia* AliPythia::Instance() |
711 | { |
712 | // Set random number generator |
713 | if (fgAliPythia) { |
714 | return fgAliPythia; |
715 | } else { |
716 | fgAliPythia = new AliPythia(); |
717 | return fgAliPythia; |
718 | } |
719 | } |
720 | |
721 | void AliPythia::PrintParticles() |
722 | { |
723 | // Print list of particl properties |
724 | Int_t np = 0; |
c31f1d37 |
725 | char* name = new char[16]; |
8d2cd130 |
726 | for (Int_t kf=0; kf<1000000; kf++) { |
727 | for (Int_t c = 1; c > -2; c-=2) { |
8d2cd130 |
728 | Int_t kc = Pycomp(c*kf); |
729 | if (kc) { |
730 | Float_t mass = GetPMAS(kc,1); |
731 | Float_t width = GetPMAS(kc,2); |
732 | Float_t tau = GetPMAS(kc,4); |
c31f1d37 |
733 | |
8d2cd130 |
734 | Pyname(kf,name); |
735 | |
736 | np++; |
737 | |
738 | printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e", |
739 | c*kf, name, mass, width, tau); |
740 | } |
741 | } |
742 | } |
743 | printf("\n Number of particles %d \n \n", np); |
744 | } |
745 | |
746 | void AliPythia::ResetDecayTable() |
747 | { |
748 | // Set default values for pythia decay switches |
749 | Int_t i; |
750 | for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]); |
751 | for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]); |
752 | } |
753 | |
754 | void AliPythia::SetDecayTable() |
755 | { |
756 | // Set default values for pythia decay switches |
757 | // |
758 | Int_t i; |
759 | for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1); |
760 | for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1); |
761 | } |
762 | |
763 | void AliPythia::Pyclus(Int_t& njet) |
764 | { |
765 | // Call Pythia clustering algorithm |
766 | // |
767 | pyclus(njet); |
768 | } |
769 | |
770 | void AliPythia::Pycell(Int_t& njet) |
771 | { |
772 | // Call Pythia jet reconstruction algorithm |
773 | // |
774 | pycell(njet); |
775 | } |
776 | |
452af8c7 |
777 | void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax) |
778 | { |
779 | // Call Pythia jet reconstruction algorithm |
780 | // |
452af8c7 |
781 | pyshow(ip1, ip2, qmax); |
782 | } |
783 | |
784 | void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez) |
785 | { |
786 | pyrobo(imi, ima, the, phi, bex, bey, bez); |
787 | } |
788 | |
789 | |
790 | |
86b6ad68 |
791 | void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod) |
0f482ae4 |
792 | { |
793 | // Initializes |
794 | // (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann |
795 | // (2) The nuclear geometry using the Glauber Model |
796 | // |
797 | |
798 | |
799 | fGlauber = new AliFastGlauber(); |
800 | fGlauber->Init(2); |
801 | fGlauber->SetCentralityClass(cMin, cMax); |
802 | |
803 | fQuenchingWeights = new AliQuenchingWeights(); |
804 | fQuenchingWeights->InitMult(); |
86b6ad68 |
805 | fQuenchingWeights->SetK(k); |
0f482ae4 |
806 | fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod)); |
0f482ae4 |
807 | } |
808 | |
809 | |
452af8c7 |
810 | void AliPythia::Quench() |
811 | { |
812 | // |
813 | // |
814 | // Simple Jet Quenching routine: |
815 | // ============================= |
816 | // The jet formed by all final state partons radiated by the parton created |
0f482ae4 |
817 | // in the hard collisions is quenched by a factor (1-z) using light cone variables in |
818 | // the initial parton reference frame: |
452af8c7 |
819 | // (E + p_z)new = (1-z) (E + p_z)old |
820 | // |
0f482ae4 |
821 | // |
822 | // |
823 | // |
452af8c7 |
824 | // The lost momentum is first balanced by one gluon with virtuality > 0. |
825 | // Subsequently the gluon splits to yield two gluons with E = p. |
826 | // |
0f482ae4 |
827 | // |
828 | // |
4e383037 |
829 | static Float_t eMean = 0.; |
830 | static Int_t icall = 0; |
0f482ae4 |
831 | |
c2c598a3 |
832 | Double_t p0[4][5]; |
833 | Double_t p1[4][5]; |
834 | Double_t p2[4][5]; |
835 | Int_t klast[4] = {-1, -1, -1, -1}; |
452af8c7 |
836 | |
837 | Int_t numpart = fPyjets->N; |
86b6ad68 |
838 | Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.; |
c2c598a3 |
839 | Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4]; |
840 | Bool_t quenched[4]; |
b280c4cc |
841 | Double_t wjtKick[4]; |
c2c598a3 |
842 | Int_t nGluon[4]; |
86b6ad68 |
843 | Int_t qPdg[4]; |
0f482ae4 |
844 | Int_t imo, kst, pdg; |
b280c4cc |
845 | |
511db649 |
846 | // |
c2c598a3 |
847 | // Sore information about Primary partons |
848 | // |
849 | // j = |
850 | // 0, 1 partons from hard scattering |
851 | // 2, 3 partons from initial state radiation |
852 | // |
853 | for (Int_t i = 2; i <= 7; i++) { |
854 | Int_t j = 0; |
855 | // Skip gluons that participate in hard scattering |
856 | if (i == 4 || i == 5) continue; |
857 | // Gluons from hard Scattering |
858 | if (i == 6 || i == 7) { |
859 | j = i - 6; |
860 | pxq[j] = fPyjets->P[0][i]; |
861 | pyq[j] = fPyjets->P[1][i]; |
862 | pzq[j] = fPyjets->P[2][i]; |
863 | eq[j] = fPyjets->P[3][i]; |
864 | mq[j] = fPyjets->P[4][i]; |
865 | } else { |
866 | // Gluons from initial state radiation |
867 | // |
868 | // Obtain 4-momentum vector from difference between original parton and parton after gluon |
869 | // radiation. Energy is calculated independently because initial state radition does not |
870 | // conserve strictly momentum and energy for each partonic system independently. |
871 | // |
872 | // Not very clean. Should be improved ! |
873 | // |
874 | // |
875 | j = i; |
876 | pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2]; |
877 | pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2]; |
878 | pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2]; |
879 | mq[j] = fPyjets->P[4][i]; |
880 | eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]); |
881 | } |
882 | // |
883 | // Calculate some kinematic variables |
511db649 |
884 | // |
4e383037 |
885 | yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14)); |
0f482ae4 |
886 | pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]); |
887 | phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]); |
888 | ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]); |
889 | thetaq[j] = TMath::ATan2(ptq[j], pzq[j]); |
86b6ad68 |
890 | qPdg[j] = fPyjets->K[1][i]; |
891 | } |
892 | |
893 | Double_t int0[4]; |
894 | Double_t int1[4]; |
86b6ad68 |
895 | |
b280c4cc |
896 | fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.); |
897 | |
86b6ad68 |
898 | for (Int_t j = 0; j < 4; j++) { |
c2c598a3 |
899 | // |
900 | // Quench only central jets and with E > 10. |
901 | // |
86b6ad68 |
902 | |
903 | |
904 | Int_t itype = (qPdg[j] == 21) ? 2 : 1; |
905 | Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]); |
906 | |
c2c598a3 |
907 | if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) { |
b280c4cc |
908 | fZQuench[j] = 0.; |
0f482ae4 |
909 | } else { |
c2c598a3 |
910 | if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) { |
4e383037 |
911 | icall ++; |
912 | eMean += eloss; |
913 | } |
0f482ae4 |
914 | // |
915 | // Extra pt |
86b6ad68 |
916 | Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]); |
917 | wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j])); |
0f482ae4 |
918 | // |
919 | // Fractional energy loss |
b280c4cc |
920 | fZQuench[j] = eloss / eq[j]; |
0f482ae4 |
921 | // |
922 | // Avoid complete loss |
923 | // |
b280c4cc |
924 | if (fZQuench[j] == 1.) fZQuench[j] = 0.95; |
0f482ae4 |
925 | // |
926 | // Some debug printing |
86b6ad68 |
927 | |
928 | |
bf9bb016 |
929 | // printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n", |
930 | // j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]); |
4e383037 |
931 | |
b280c4cc |
932 | // fZQuench[j] = 0.8; |
933 | // while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2); |
0f482ae4 |
934 | } |
4e383037 |
935 | |
b280c4cc |
936 | quenched[j] = (fZQuench[j] > 0.01); |
4e383037 |
937 | } // primary partons |
c2c598a3 |
938 | |
b280c4cc |
939 | |
940 | |
6e90ad26 |
941 | Double_t pNew[1000][4]; |
942 | Int_t kNew[1000]; |
943 | Int_t icount = 0; |
b280c4cc |
944 | Double_t zquench[4]; |
945 | |
6e90ad26 |
946 | // |
4e383037 |
947 | // System Loop |
c2c598a3 |
948 | for (Int_t isys = 0; isys < 4; isys++) { |
6e90ad26 |
949 | // Skip to next system if not quenched. |
4e383037 |
950 | if (!quenched[isys]) continue; |
951 | |
b280c4cc |
952 | nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys])); |
4e383037 |
953 | if (nGluon[isys] > 6) nGluon[isys] = 6; |
b280c4cc |
954 | zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys])); |
4e383037 |
955 | wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys])); |
0f482ae4 |
956 | |
4e383037 |
957 | |
958 | |
959 | Int_t igMin = -1; |
960 | Int_t igMax = -1; |
961 | Double_t pg[4] = {0., 0., 0., 0.}; |
962 | |
963 | // |
964 | // Loop on radiation events |
965 | |
966 | for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) { |
6e90ad26 |
967 | while (1) { |
968 | icount = 0; |
969 | for (Int_t k = 0; k < 4; k++) |
970 | { |
971 | p0[isys][k] = 0.; |
972 | p1[isys][k] = 0.; |
973 | p2[isys][k] = 0.; |
974 | } |
975 | // Loop over partons |
976 | for (Int_t i = 0; i < numpart; i++) |
977 | { |
978 | imo = fPyjets->K[2][i]; |
979 | kst = fPyjets->K[0][i]; |
980 | pdg = fPyjets->K[1][i]; |
981 | |
982 | |
983 | |
0f482ae4 |
984 | // Quarks and gluons only |
6e90ad26 |
985 | if (pdg != 21 && TMath::Abs(pdg) > 6) continue; |
0f482ae4 |
986 | // Particles from hard scattering only |
c2c598a3 |
987 | |
6e90ad26 |
988 | if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1]; |
c2c598a3 |
989 | Int_t imom = imo % 1000; |
990 | if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue; |
991 | if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue; |
992 | |
6e90ad26 |
993 | |
0f482ae4 |
994 | // Skip comment lines |
6e90ad26 |
995 | if (kst != 1 && kst != 2) continue; |
0f482ae4 |
996 | // |
997 | // Parton kinematic |
6e90ad26 |
998 | px = fPyjets->P[0][i]; |
999 | py = fPyjets->P[1][i]; |
1000 | pz = fPyjets->P[2][i]; |
1001 | e = fPyjets->P[3][i]; |
1002 | m = fPyjets->P[4][i]; |
1003 | pt = TMath::Sqrt(px * px + py * py); |
1004 | p = TMath::Sqrt(px * px + py * py + pz * pz); |
1005 | phi = TMath::Pi() + TMath::ATan2(-py, -px); |
1006 | theta = TMath::ATan2(pt, pz); |
1007 | |
0f482ae4 |
1008 | // |
c2c598a3 |
1009 | // Save 4-momentum sum for balancing |
1010 | Int_t index = isys; |
6e90ad26 |
1011 | |
1012 | p0[index][0] += px; |
1013 | p0[index][1] += py; |
1014 | p0[index][2] += pz; |
1015 | p0[index][3] += e; |
6e90ad26 |
1016 | |
1017 | klast[index] = i; |
1018 | |
0f482ae4 |
1019 | // |
1020 | // Fractional energy loss |
b280c4cc |
1021 | Double_t z = zquench[index]; |
4e383037 |
1022 | |
c2c598a3 |
1023 | |
4e383037 |
1024 | // Don't fully quench radiated gluons |
1025 | // |
1026 | if (imo > 1000) { |
1027 | // This small factor makes sure that the gluons are not too close in phase space to avoid recombination |
1028 | // |
1029 | |
c2c598a3 |
1030 | z = 0.02; |
4e383037 |
1031 | } |
c2c598a3 |
1032 | // printf("z: %d %f\n", imo, z); |
1033 | |
4e383037 |
1034 | |
1035 | // |
6e90ad26 |
1036 | |
1037 | // |
1038 | // |
1039 | // Transform into frame in which initial parton is along z-axis |
1040 | // |
1041 | TVector3 v(px, py, pz); |
1042 | v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]); |
1043 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z(); |
1044 | |
1045 | Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys); |
1046 | Double_t mt2 = jt * jt + m * m; |
1047 | Double_t zmax = 1.; |
1048 | // |
1049 | // Kinematic limit on z |
1050 | // |
4e383037 |
1051 | if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt); |
6e90ad26 |
1052 | // |
1053 | // Change light-cone kinematics rel. to initial parton |
1054 | // |
1055 | Double_t eppzOld = e + pl; |
1056 | Double_t empzOld = e - pl; |
1057 | |
1058 | Double_t eppzNew = (1. - z) * eppzOld; |
1059 | Double_t empzNew = empzOld - mt2 * z / eppzOld; |
1060 | Double_t eNew = 0.5 * (eppzNew + empzNew); |
1061 | Double_t plNew = 0.5 * (eppzNew - empzNew); |
1062 | |
1063 | Double_t jtNew; |
1064 | // |
1065 | // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0 |
1066 | Double_t mt2New = eppzNew * empzNew; |
1067 | if (mt2New < 1.e-8) mt2New = 0.; |
4e383037 |
1068 | if (z < zmax) { |
1069 | if (m * m > mt2New) { |
1070 | // |
1071 | // This should not happen |
1072 | // |
1073 | Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew); |
1074 | jtNew = 0; |
1075 | } else { |
1076 | jtNew = TMath::Sqrt(mt2New - m * m); |
1077 | } |
6e90ad26 |
1078 | } else { |
4e383037 |
1079 | // If pT is to small (probably a leading massive particle) we scale only the energy |
1080 | // This can cause negative masses of the radiated gluon |
1081 | // Let's hope for the best ... |
1082 | jtNew = jt; |
1083 | eNew = TMath::Sqrt(plNew * plNew + mt2); |
1084 | |
6e90ad26 |
1085 | } |
6e90ad26 |
1086 | // |
1087 | // Calculate new px, py |
1088 | // |
1089 | Double_t pxNew = jtNew / jt * pxs; |
1090 | Double_t pyNew = jtNew / jt * pys; |
1091 | |
1092 | // Double_t dpx = pxs - pxNew; |
1093 | // Double_t dpy = pys - pyNew; |
1094 | // Double_t dpz = pl - plNew; |
1095 | // Double_t de = e - eNew; |
1096 | // Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz; |
1097 | // printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew); |
1098 | // printf("New mass (2) %e %e \n", pxNew, pyNew); |
1099 | // |
1100 | // Rotate back |
1101 | // |
1102 | TVector3 w(pxNew, pyNew, plNew); |
1103 | w.RotateY(thetaq[index]); w.RotateZ(phiq[index]); |
1104 | pxNew = w.X(); pyNew = w.Y(); plNew = w.Z(); |
1105 | |
1106 | p1[index][0] += pxNew; |
1107 | p1[index][1] += pyNew; |
1108 | p1[index][2] += plNew; |
1109 | p1[index][3] += eNew; |
1110 | // |
1111 | // Updated 4-momentum vectors |
1112 | // |
1113 | pNew[icount][0] = pxNew; |
1114 | pNew[icount][1] = pyNew; |
1115 | pNew[icount][2] = plNew; |
1116 | pNew[icount][3] = eNew; |
1117 | kNew[icount] = i; |
1118 | icount++; |
1119 | } // parton loop |
0f482ae4 |
1120 | // |
6e90ad26 |
1121 | // Check if there was phase-space for quenching |
0f482ae4 |
1122 | // |
0f482ae4 |
1123 | |
6e90ad26 |
1124 | if (icount == 0) quenched[isys] = kFALSE; |
1125 | if (!quenched[isys]) break; |
1126 | |
1127 | for (Int_t j = 0; j < 4; j++) |
1128 | { |
1129 | p2[isys][j] = p0[isys][j] - p1[isys][j]; |
1130 | } |
1131 | p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2]; |
6e90ad26 |
1132 | if (p2[isys][4] > 0.) { |
1133 | p2[isys][4] = TMath::Sqrt(p2[isys][4]); |
1134 | break; |
1135 | } else { |
b280c4cc |
1136 | printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]); |
4e383037 |
1137 | printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]); |
6e90ad26 |
1138 | if (p2[isys][4] < -0.01) { |
4e383037 |
1139 | printf("Negative mass squared !\n"); |
1140 | // Here we have to put the gluon back to mass shell |
1141 | // This will lead to a small energy imbalance |
1142 | p2[isys][4] = 0.; |
1143 | p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]); |
1144 | break; |
6e90ad26 |
1145 | } else { |
1146 | p2[isys][4] = 0.; |
1147 | break; |
1148 | } |
1149 | } |
6e90ad26 |
1150 | /* |
6e90ad26 |
1151 | zHeavy *= 0.98; |
1152 | printf("zHeavy lowered to %f\n", zHeavy); |
1153 | if (zHeavy < 0.01) { |
1154 | printf("No success ! \n"); |
1155 | icount = 0; |
1156 | quenched[isys] = kFALSE; |
1157 | break; |
1158 | } |
4e383037 |
1159 | */ |
1160 | } // iteration on z (while) |
1161 | |
6e90ad26 |
1162 | // Update event record |
1163 | for (Int_t k = 0; k < icount; k++) { |
1164 | // printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] ); |
1165 | fPyjets->P[0][kNew[k]] = pNew[k][0]; |
1166 | fPyjets->P[1][kNew[k]] = pNew[k][1]; |
1167 | fPyjets->P[2][kNew[k]] = pNew[k][2]; |
1168 | fPyjets->P[3][kNew[k]] = pNew[k][3]; |
0f482ae4 |
1169 | } |
4e383037 |
1170 | // |
1171 | // Add the gluons |
1172 | // |
1173 | Int_t ish = 0; |
1837e95c |
1174 | Int_t iGlu; |
4e383037 |
1175 | if (!quenched[isys]) continue; |
0f482ae4 |
1176 | // |
1177 | // Last parton from shower i |
4e383037 |
1178 | Int_t in = klast[isys]; |
0f482ae4 |
1179 | // |
1180 | // Continue if no parton in shower i selected |
1181 | if (in == -1) continue; |
1182 | // |
1183 | // If this is the second initial parton and it is behind the first move pointer by previous ish |
4e383037 |
1184 | if (isys == 1 && klast[1] > klast[0]) in += ish; |
0f482ae4 |
1185 | // |
1186 | // Starting index |
452af8c7 |
1187 | |
4e383037 |
1188 | // jmin = in - 1; |
0f482ae4 |
1189 | // How many additional gluons will be generated |
1190 | ish = 1; |
4e383037 |
1191 | if (p2[isys][4] > 0.05) ish = 2; |
0f482ae4 |
1192 | // |
1193 | // Position of gluons |
4e383037 |
1194 | iGlu = numpart; |
1195 | if (iglu == 0) igMin = iGlu; |
1196 | igMax = iGlu; |
0f482ae4 |
1197 | numpart += ish; |
1198 | (fPyjets->N) += ish; |
4e383037 |
1199 | |
0f482ae4 |
1200 | if (ish == 1) { |
4e383037 |
1201 | fPyjets->P[0][iGlu] = p2[isys][0]; |
1202 | fPyjets->P[1][iGlu] = p2[isys][1]; |
1203 | fPyjets->P[2][iGlu] = p2[isys][2]; |
1204 | fPyjets->P[3][iGlu] = p2[isys][3]; |
1205 | fPyjets->P[4][iGlu] = p2[isys][4]; |
0f482ae4 |
1206 | |
4e383037 |
1207 | fPyjets->K[0][iGlu] = 1; |
1208 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1; |
0f482ae4 |
1209 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1210 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1211 | fPyjets->K[3][iGlu] = -1; |
1212 | fPyjets->K[4][iGlu] = -1; |
4e383037 |
1213 | |
1214 | pg[0] += p2[isys][0]; |
1215 | pg[1] += p2[isys][1]; |
1216 | pg[2] += p2[isys][2]; |
1217 | pg[3] += p2[isys][3]; |
0f482ae4 |
1218 | } else { |
1219 | // |
1220 | // Split gluon in rest frame. |
1221 | // |
4e383037 |
1222 | Double_t bx = p2[isys][0] / p2[isys][3]; |
1223 | Double_t by = p2[isys][1] / p2[isys][3]; |
1224 | Double_t bz = p2[isys][2] / p2[isys][3]; |
1225 | Double_t pst = p2[isys][4] / 2.; |
0f482ae4 |
1226 | // |
1227 | // Isotropic decay ???? |
1228 | Double_t cost = 2. * gRandom->Rndm() - 1.; |
1229 | Double_t sint = TMath::Sqrt(1. - cost * cost); |
1230 | Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); |
1231 | |
1232 | Double_t pz1 = pst * cost; |
1233 | Double_t pz2 = -pst * cost; |
1234 | Double_t pt1 = pst * sint; |
1235 | Double_t pt2 = -pst * sint; |
1236 | Double_t px1 = pt1 * TMath::Cos(phi); |
1237 | Double_t py1 = pt1 * TMath::Sin(phi); |
1238 | Double_t px2 = pt2 * TMath::Cos(phi); |
1239 | Double_t py2 = pt2 * TMath::Sin(phi); |
1240 | |
1241 | fPyjets->P[0][iGlu] = px1; |
1242 | fPyjets->P[1][iGlu] = py1; |
1243 | fPyjets->P[2][iGlu] = pz1; |
1244 | fPyjets->P[3][iGlu] = pst; |
1245 | fPyjets->P[4][iGlu] = 0.; |
1246 | |
4e383037 |
1247 | fPyjets->K[0][iGlu] = 1 ; |
0f482ae4 |
1248 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1249 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1250 | fPyjets->K[3][iGlu] = -1; |
1251 | fPyjets->K[4][iGlu] = -1; |
1252 | |
1253 | fPyjets->P[0][iGlu+1] = px2; |
1254 | fPyjets->P[1][iGlu+1] = py2; |
1255 | fPyjets->P[2][iGlu+1] = pz2; |
1256 | fPyjets->P[3][iGlu+1] = pst; |
1257 | fPyjets->P[4][iGlu+1] = 0.; |
1258 | |
4e383037 |
1259 | fPyjets->K[0][iGlu+1] = 1; |
1260 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1; |
0f482ae4 |
1261 | fPyjets->K[1][iGlu+1] = 21; |
4e383037 |
1262 | fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1263 | fPyjets->K[3][iGlu+1] = -1; |
1264 | fPyjets->K[4][iGlu+1] = -1; |
1265 | SetMSTU(1,0); |
1266 | SetMSTU(2,0); |
1267 | // |
1268 | // Boost back |
1269 | // |
1270 | Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz); |
1271 | } |
4e383037 |
1272 | /* |
1273 | for (Int_t ig = iGlu; ig < iGlu+ish; ig++) { |
1274 | Double_t px, py, pz; |
1275 | px = fPyjets->P[0][ig]; |
1276 | py = fPyjets->P[1][ig]; |
1277 | pz = fPyjets->P[2][ig]; |
1278 | TVector3 v(px, py, pz); |
1279 | v.RotateZ(-phiq[isys]); |
1280 | v.RotateY(-thetaq[isys]); |
1281 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z(); |
1282 | Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1283 | Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r)); |
1284 | if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.); |
1285 | Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1286 | pxs += jtKick * TMath::Cos(phiKick); |
1287 | pys += jtKick * TMath::Sin(phiKick); |
1288 | TVector3 w(pxs, pys, pzs); |
1289 | w.RotateY(thetaq[isys]); |
1290 | w.RotateZ(phiq[isys]); |
1291 | fPyjets->P[0][ig] = w.X(); |
1292 | fPyjets->P[1][ig] = w.Y(); |
1293 | fPyjets->P[2][ig] = w.Z(); |
1294 | fPyjets->P[2][ig] = w.Mag(); |
1295 | } |
1296 | */ |
1297 | } // kGluon |
1298 | |
6e90ad26 |
1299 | |
4e383037 |
1300 | // Check energy conservation |
0f482ae4 |
1301 | Double_t pxs = 0.; |
1302 | Double_t pys = 0.; |
1303 | Double_t pzs = 0.; |
1304 | Double_t es = 14000.; |
1305 | |
1306 | for (Int_t i = 0; i < numpart; i++) |
1307 | { |
1308 | kst = fPyjets->K[0][i]; |
1309 | if (kst != 1 && kst != 2) continue; |
1310 | pxs += fPyjets->P[0][i]; |
1311 | pys += fPyjets->P[1][i]; |
1312 | pzs += fPyjets->P[2][i]; |
1313 | es -= fPyjets->P[3][i]; |
1314 | } |
1315 | if (TMath::Abs(pxs) > 1.e-2 || |
1316 | TMath::Abs(pys) > 1.e-2 || |
1317 | TMath::Abs(pzs) > 1.e-1) { |
1318 | printf("%e %e %e %e\n", pxs, pys, pzs, es); |
4e383037 |
1319 | // Fatal("Quench()", "4-Momentum non-conservation"); |
452af8c7 |
1320 | } |
4e383037 |
1321 | |
1322 | } // end quenching loop (systems) |
6e90ad26 |
1323 | // Clean-up |
0f482ae4 |
1324 | for (Int_t i = 0; i < numpart; i++) |
1325 | { |
4e383037 |
1326 | imo = fPyjets->K[2][i]; |
1327 | if (imo > 1000) { |
1328 | fPyjets->K[2][i] = fPyjets->K[2][i] % 1000; |
1329 | } |
0f482ae4 |
1330 | } |
4e383037 |
1331 | // this->Pylist(1); |
0f482ae4 |
1332 | } // end quench |
90d7b703 |
1333 | |
992f2843 |
1334 | |
1335 | void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b) |
1336 | { |
1337 | // Igor Lokthine's quenching routine |
1338 | pyquen(a, ibf, b); |
1339 | } |
b280c4cc |
1340 | |
16a82508 |
1341 | void AliPythia::Pyevnw() |
1342 | { |
1343 | // New multiple interaction scenario |
1344 | pyevnw(); |
1345 | } |
1346 | |
b280c4cc |
1347 | void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4]) |
1348 | { |
1349 | // Return event specific quenching parameters |
1350 | xp = fXJet; |
1351 | yp = fYJet; |
1352 | for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i]; |
1353 | |
1354 | } |
1355 | |
65f2626c |
1356 | |