8d2cd130 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
7cdba479 |
16 | /* $Id$ */ |
8d2cd130 |
17 | |
18 | #include "AliPythia.h" |
7cdba479 |
19 | #include "AliPythiaRndm.h" |
0f482ae4 |
20 | #include "../FASTSIM/AliFastGlauber.h" |
21 | #include "../FASTSIM/AliQuenchingWeights.h" |
22 | #include "TVector3.h" |
8d2cd130 |
23 | |
24 | ClassImp(AliPythia) |
25 | |
26 | #ifndef WIN32 |
27 | # define pyclus pyclus_ |
28 | # define pycell pycell_ |
452af8c7 |
29 | # define pyshow pyshow_ |
30 | # define pyrobo pyrobo_ |
992f2843 |
31 | # define pyquen pyquen_ |
16a82508 |
32 | # define pyevnw pyevnw_ |
8d2cd130 |
33 | # define type_of_call |
34 | #else |
35 | # define pyclus PYCLUS |
36 | # define pycell PYCELL |
452af8c7 |
37 | # define pyrobo PYROBO |
992f2843 |
38 | # define pyquen PYQUEN |
16a82508 |
39 | # define pyevnw PYEVNW |
8d2cd130 |
40 | # define type_of_call _stdcall |
41 | #endif |
42 | |
43 | extern "C" void type_of_call pyclus(Int_t & ); |
44 | extern "C" void type_of_call pycell(Int_t & ); |
452af8c7 |
45 | extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); |
46 | extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); |
992f2843 |
47 | extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &); |
0a2cfc0a |
48 | extern "C" void type_of_call pyevnw(){;} |
8d2cd130 |
49 | |
50 | //_____________________________________________________________________________ |
51 | |
52 | AliPythia* AliPythia::fgAliPythia=NULL; |
53 | |
54 | AliPythia::AliPythia() |
55 | { |
56 | // Default Constructor |
57 | // |
58 | // Set random number |
7cdba479 |
59 | if (!AliPythiaRndm::GetPythiaRandom()) |
60 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
0f482ae4 |
61 | fGlauber = 0; |
62 | fQuenchingWeights = 0; |
8d2cd130 |
63 | } |
64 | |
65 | void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) |
66 | { |
67 | // Initialise the process to generate |
7cdba479 |
68 | if (!AliPythiaRndm::GetPythiaRandom()) |
69 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
70 | |
71 | fProcess = process; |
72 | fEcms = energy; |
73 | fStrucFunc = strucfunc; |
1d5b1b20 |
74 | //...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-. |
75 | SetMDCY(Pycomp(111) ,1,0); |
76 | SetMDCY(Pycomp(310) ,1,0); |
77 | SetMDCY(Pycomp(3122),1,0); |
78 | SetMDCY(Pycomp(3112),1,0); |
79 | SetMDCY(Pycomp(3212),1,0); |
80 | SetMDCY(Pycomp(3222),1,0); |
81 | SetMDCY(Pycomp(3312),1,0); |
82 | SetMDCY(Pycomp(3322),1,0); |
83 | SetMDCY(Pycomp(3334),1,0); |
1c50ec12 |
84 | // Select structure function |
8d2cd130 |
85 | SetMSTP(52,2); |
86 | SetMSTP(51,strucfunc); |
1c50ec12 |
87 | // Particles produced in string fragmentation point directly to either of the two endpoints |
88 | // of the string (depending in the side they were generated from). |
89 | SetMSTU(16,2); |
90 | |
8d2cd130 |
91 | // |
92 | // Pythia initialisation for selected processes// |
93 | // |
94 | // Make MSEL clean |
95 | // |
96 | for (Int_t i=1; i<= 200; i++) { |
97 | SetMSUB(i,0); |
98 | } |
99 | // select charm production |
100 | switch (process) |
101 | { |
65f2626c |
102 | case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes |
103 | // Multiple interactions on. |
104 | SetMSTP(81,1); |
105 | // Double Gaussian matter distribution. |
106 | SetMSTP(82,4); |
107 | SetPARP(83,0.5); |
108 | SetPARP(84,0.4); |
109 | // pT0. |
110 | SetPARP(82,2.0); |
111 | // Reference energy for pT0 and energy rescaling pace. |
112 | SetPARP(89,1800); |
113 | SetPARP(90,0.25); |
114 | // String drawing almost completely minimizes string length. |
115 | SetPARP(85,0.9); |
116 | SetPARP(86,0.95); |
117 | // ISR and FSR activity. |
118 | SetPARP(67,4); |
119 | SetPARP(71,4); |
120 | // Lambda_FSR scale. |
121 | SetPARJ(81,0.29); |
122 | break; |
123 | case kPyOldUEQ2ordered2: |
124 | // Old underlying events with Q2 ordered QCD processes |
125 | // Multiple interactions on. |
126 | SetMSTP(81,1); |
127 | // Double Gaussian matter distribution. |
128 | SetMSTP(82,4); |
129 | SetPARP(83,0.5); |
130 | SetPARP(84,0.4); |
131 | // pT0. |
132 | SetPARP(82,2.0); |
133 | // Reference energy for pT0 and energy rescaling pace. |
134 | SetPARP(89,1800); |
135 | SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered |
136 | // String drawing almost completely minimizes string length. |
137 | SetPARP(85,0.9); |
138 | SetPARP(86,0.95); |
139 | // ISR and FSR activity. |
140 | SetPARP(67,4); |
141 | SetPARP(71,4); |
142 | // Lambda_FSR scale. |
143 | SetPARJ(81,0.29); |
144 | break; |
145 | case kPyOldPopcorn: |
146 | // Old production mechanism: Old Popcorn |
147 | SetMSEL(1); |
148 | SetMSTJ(12,3); |
149 | // (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon |
150 | SetMSTP(88,2); |
151 | // (D=1)see can be used to form baryons (BARYON JUNCTION) |
152 | SetMSTJ(1,1); |
e0e89f40 |
153 | AtlasTuning(); |
65f2626c |
154 | break; |
8d2cd130 |
155 | case kPyCharm: |
156 | SetMSEL(4); |
8d2cd130 |
157 | // heavy quark masses |
158 | |
159 | SetPMAS(4,1,1.2); |
8d2cd130 |
160 | // |
161 | // primordial pT |
162 | SetMSTP(91,1); |
163 | SetPARP(91,1.); |
164 | SetPARP(93,5.); |
165 | // |
166 | break; |
167 | case kPyBeauty: |
168 | SetMSEL(5); |
169 | SetPMAS(5,1,4.75); |
8d2cd130 |
170 | break; |
171 | case kPyJpsi: |
172 | SetMSEL(0); |
173 | // gg->J/Psi g |
174 | SetMSUB(86,1); |
175 | break; |
176 | case kPyJpsiChi: |
177 | SetMSEL(0); |
178 | // gg->J/Psi g |
179 | SetMSUB(86,1); |
180 | // gg-> chi_0c g |
181 | SetMSUB(87,1); |
182 | // gg-> chi_1c g |
183 | SetMSUB(88,1); |
184 | // gg-> chi_2c g |
185 | SetMSUB(89,1); |
186 | break; |
187 | case kPyCharmUnforced: |
188 | SetMSEL(0); |
189 | // gq->qg |
190 | SetMSUB(28,1); |
191 | // gg->qq |
192 | SetMSUB(53,1); |
193 | // gg->gg |
194 | SetMSUB(68,1); |
195 | break; |
196 | case kPyBeautyUnforced: |
197 | SetMSEL(0); |
198 | // gq->qg |
199 | SetMSUB(28,1); |
200 | // gg->qq |
201 | SetMSUB(53,1); |
202 | // gg->gg |
203 | SetMSUB(68,1); |
204 | break; |
205 | case kPyMb: |
206 | // Minimum Bias pp-Collisions |
207 | // |
208 | // |
209 | // select Pythia min. bias model |
210 | SetMSEL(0); |
511db649 |
211 | SetMSUB(92,1); // single diffraction AB-->XB |
212 | SetMSUB(93,1); // single diffraction AB-->AX |
213 | SetMSUB(94,1); // double diffraction |
214 | SetMSUB(95,1); // low pt production |
215 | |
e0e89f40 |
216 | AtlasTuning(); |
511db649 |
217 | break; |
8d2cd130 |
218 | case kPyMbNonDiffr: |
219 | // Minimum Bias pp-Collisions |
220 | // |
221 | // |
222 | // select Pythia min. bias model |
223 | SetMSEL(0); |
511db649 |
224 | SetMSUB(95,1); // low pt production |
0f482ae4 |
225 | |
d7de4a67 |
226 | AtlasTuning(); |
227 | break; |
228 | case kPyMbMSEL1: |
229 | ConfigHeavyFlavor(); |
230 | // Intrinsic <kT^2> |
231 | SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons |
232 | SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2 |
233 | SetPARP(93,5.); // Upper cut-off |
234 | // Set Q-quark mass |
235 | SetPMAS(4,1,1.2); // Charm quark mass |
236 | SetPMAS(5,1,4.78); // Beauty quark mass |
237 | SetPARP(71,4.); // Defaut value |
238 | // Atlas Tuning |
e0e89f40 |
239 | AtlasTuning(); |
8d2cd130 |
240 | break; |
241 | case kPyJets: |
242 | // |
243 | // QCD Jets |
244 | // |
245 | SetMSEL(1); |
65f2626c |
246 | // Pythia Tune A (CDF) |
247 | // |
248 | SetPARP(67,4.); // Regulates Initial State Radiation |
249 | SetMSTP(82,4); // Double Gaussian Model |
250 | SetPARP(82,2.0); // [GeV] PT_min at Ref. energy |
251 | SetPARP(84,0.4); // Core radius |
252 | SetPARP(85,0.90) ; // Regulates gluon prod. mechanism |
253 | SetPARP(86,0.95); // Regulates gluon prod. mechanism |
254 | SetPARP(89,1800.); // [GeV] Ref. energy |
255 | SetPARP(90,0.25); // 2*epsilon (exponent in power law) |
256 | break; |
8d2cd130 |
257 | case kPyDirectGamma: |
258 | SetMSEL(10); |
259 | break; |
adf4d898 |
260 | case kPyCharmPbPbMNR: |
261 | case kPyD0PbPbMNR: |
90d7b703 |
262 | case kPyDPlusPbPbMNR: |
e0e89f40 |
263 | case kPyDPlusStrangePbPbMNR: |
90d7b703 |
264 | // Tuning of Pythia parameters aimed to get a resonable agreement |
265 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
266 | // c-cbar single inclusive and double differential distributions. |
267 | // This parameter settings are meant to work with Pb-Pb collisions |
268 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
269 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
270 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
3dc3ec94 |
271 | ConfigHeavyFlavor(); |
90d7b703 |
272 | // Intrinsic <kT> |
273 | SetMSTP(91,1); |
274 | SetPARP(91,1.304); |
275 | SetPARP(93,6.52); |
90d7b703 |
276 | // Set c-quark mass |
277 | SetPMAS(4,1,1.2); |
8d2cd130 |
278 | break; |
adf4d898 |
279 | case kPyCharmpPbMNR: |
280 | case kPyD0pPbMNR: |
90d7b703 |
281 | case kPyDPluspPbMNR: |
e0e89f40 |
282 | case kPyDPlusStrangepPbMNR: |
90d7b703 |
283 | // Tuning of Pythia parameters aimed to get a resonable agreement |
284 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
285 | // c-cbar single inclusive and double differential distributions. |
286 | // This parameter settings are meant to work with p-Pb collisions |
287 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
288 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
289 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
3dc3ec94 |
290 | ConfigHeavyFlavor(); |
90d7b703 |
291 | // Intrinsic <kT> |
3dc3ec94 |
292 | SetMSTP(91,1); |
293 | SetPARP(91,1.16); |
294 | SetPARP(93,5.8); |
295 | |
90d7b703 |
296 | // Set c-quark mass |
3dc3ec94 |
297 | SetPMAS(4,1,1.2); |
adf4d898 |
298 | break; |
299 | case kPyCharmppMNR: |
300 | case kPyD0ppMNR: |
90d7b703 |
301 | case kPyDPlusppMNR: |
e0e89f40 |
302 | case kPyDPlusStrangeppMNR: |
90d7b703 |
303 | // Tuning of Pythia parameters aimed to get a resonable agreement |
304 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
305 | // c-cbar single inclusive and double differential distributions. |
306 | // This parameter settings are meant to work with pp collisions |
307 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
308 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
309 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
3dc3ec94 |
310 | ConfigHeavyFlavor(); |
90d7b703 |
311 | // Intrinsic <kT^2> |
3dc3ec94 |
312 | SetMSTP(91,1); |
313 | SetPARP(91,1.); |
314 | SetPARP(93,5.); |
315 | |
90d7b703 |
316 | // Set c-quark mass |
3dc3ec94 |
317 | SetPMAS(4,1,1.2); |
adf4d898 |
318 | break; |
e0e89f40 |
319 | case kPyCharmppMNRwmi: |
320 | // Tuning of Pythia parameters aimed to get a resonable agreement |
321 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
322 | // c-cbar single inclusive and double differential distributions. |
323 | // This parameter settings are meant to work with pp collisions |
324 | // and with kCTEQ5L PDFs. |
325 | // Added multiple interactions according to ATLAS tune settings. |
326 | // To get a "reasonable" agreement with MNR results, events have to be |
327 | // generated with the minimum ptHard (AliGenPythia::SetPtHard) |
328 | // set to 2.76 GeV. |
329 | // To get a "perfect" agreement with MNR results, events have to be |
330 | // generated in four ptHard bins with the following relative |
331 | // normalizations: |
332 | // 2.76-3 GeV: 25% |
333 | // 3-4 GeV: 40% |
334 | // 4-8 GeV: 29% |
335 | // >8 GeV: 6% |
336 | ConfigHeavyFlavor(); |
337 | // Intrinsic <kT^2> |
338 | SetMSTP(91,1); |
339 | SetPARP(91,1.); |
340 | SetPARP(93,5.); |
341 | |
342 | // Set c-quark mass |
343 | SetPMAS(4,1,1.2); |
344 | AtlasTuning(); |
345 | break; |
adf4d898 |
346 | case kPyBeautyPbPbMNR: |
8d2cd130 |
347 | // Tuning of Pythia parameters aimed to get a resonable agreement |
348 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
349 | // b-bbar single inclusive and double differential distributions. |
350 | // This parameter settings are meant to work with Pb-Pb collisions |
351 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
352 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
353 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
3dc3ec94 |
354 | ConfigHeavyFlavor(); |
8d2cd130 |
355 | // QCD scales |
3dc3ec94 |
356 | SetPARP(67,1.0); |
357 | SetPARP(71,1.0); |
adf4d898 |
358 | // Intrinsic <kT> |
3dc3ec94 |
359 | SetMSTP(91,1); |
360 | SetPARP(91,2.035); |
361 | SetPARP(93,10.17); |
8d2cd130 |
362 | // Set b-quark mass |
3dc3ec94 |
363 | SetPMAS(5,1,4.75); |
adf4d898 |
364 | break; |
365 | case kPyBeautypPbMNR: |
366 | // Tuning of Pythia parameters aimed to get a resonable agreement |
367 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
368 | // b-bbar single inclusive and double differential distributions. |
369 | // This parameter settings are meant to work with p-Pb collisions |
370 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
371 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
372 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
3dc3ec94 |
373 | ConfigHeavyFlavor(); |
adf4d898 |
374 | // QCD scales |
3dc3ec94 |
375 | SetPARP(67,1.0); |
376 | SetPARP(71,1.0); |
adf4d898 |
377 | // Intrinsic <kT> |
3dc3ec94 |
378 | SetMSTP(91,1); |
379 | SetPARP(91,1.60); |
380 | SetPARP(93,8.00); |
adf4d898 |
381 | // Set b-quark mass |
3dc3ec94 |
382 | SetPMAS(5,1,4.75); |
adf4d898 |
383 | break; |
384 | case kPyBeautyppMNR: |
385 | // Tuning of Pythia parameters aimed to get a resonable agreement |
386 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
387 | // b-bbar single inclusive and double differential distributions. |
388 | // This parameter settings are meant to work with pp collisions |
389 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
390 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
391 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
3dc3ec94 |
392 | ConfigHeavyFlavor(); |
adf4d898 |
393 | // QCD scales |
3dc3ec94 |
394 | SetPARP(67,1.0); |
395 | SetPARP(71,1.0); |
396 | |
397 | // Intrinsic <kT> |
398 | SetMSTP(91,1); |
399 | SetPARP(91,1.); |
400 | SetPARP(93,5.); |
401 | |
402 | // Set b-quark mass |
403 | SetPMAS(5,1,4.75); |
8d2cd130 |
404 | break; |
e0e89f40 |
405 | case kPyBeautyppMNRwmi: |
406 | // Tuning of Pythia parameters aimed to get a resonable agreement |
407 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
408 | // b-bbar single inclusive and double differential distributions. |
409 | // This parameter settings are meant to work with pp collisions |
410 | // and with kCTEQ5L PDFs. |
411 | // Added multiple interactions according to ATLAS tune settings. |
412 | // To get a "reasonable" agreement with MNR results, events have to be |
413 | // generated with the minimum ptHard (AliGenPythia::SetPtHard) |
414 | // set to 2.76 GeV. |
415 | // To get a "perfect" agreement with MNR results, events have to be |
416 | // generated in four ptHard bins with the following relative |
417 | // normalizations: |
418 | // 2.76-4 GeV: 5% |
419 | // 4-6 GeV: 31% |
420 | // 6-8 GeV: 28% |
421 | // >8 GeV: 36% |
422 | ConfigHeavyFlavor(); |
423 | // QCD scales |
424 | SetPARP(67,1.0); |
425 | SetPARP(71,1.0); |
426 | |
427 | // Intrinsic <kT> |
428 | SetMSTP(91,1); |
429 | SetPARP(91,1.); |
430 | SetPARP(93,5.); |
431 | |
432 | // Set b-quark mass |
433 | SetPMAS(5,1,4.75); |
434 | |
435 | AtlasTuning(); |
436 | break; |
589380c6 |
437 | case kPyW: |
438 | |
439 | //Inclusive production of W+/- |
440 | SetMSEL(0); |
441 | //f fbar -> W+ |
442 | SetMSUB(2,1); |
443 | // //f fbar -> g W+ |
444 | // SetMSUB(16,1); |
445 | // //f fbar -> gamma W+ |
446 | // SetMSUB(20,1); |
447 | // //f g -> f W+ |
448 | // SetMSUB(31,1); |
449 | // //f gamma -> f W+ |
450 | // SetMSUB(36,1); |
451 | |
452 | // Initial/final parton shower on (Pythia default) |
453 | // With parton showers on we are generating "W inclusive process" |
454 | SetMSTP(61,1); //Initial QCD & QED showers on |
455 | SetMSTP(71,1); //Final QCD & QED showers on |
456 | |
457 | break; |
0f6ee828 |
458 | |
459 | case kPyZ: |
460 | |
461 | //Inclusive production of Z |
462 | SetMSEL(0); |
463 | //f fbar -> Z/gamma |
464 | SetMSUB(1,1); |
465 | |
466 | // // f fbar -> g Z/gamma |
467 | // SetMSUB(15,1); |
468 | // // f fbar -> gamma Z/gamma |
469 | // SetMSUB(19,1); |
470 | // // f g -> f Z/gamma |
471 | // SetMSUB(30,1); |
472 | // // f gamma -> f Z/gamma |
473 | // SetMSUB(35,1); |
474 | |
475 | //only Z included, not gamma |
476 | SetMSTP(43,2); |
477 | |
478 | // Initial/final parton shower on (Pythia default) |
479 | // With parton showers on we are generating "Z inclusive process" |
480 | SetMSTP(61,1); //Initial QCD & QED showers on |
481 | SetMSTP(71,1); //Final QCD & QED showers on |
482 | |
483 | break; |
484 | |
8d2cd130 |
485 | } |
486 | // |
487 | // Initialize PYTHIA |
488 | SetMSTP(41,1); // all resonance decays switched on |
489 | |
490 | Initialize("CMS","p","p",fEcms); |
491 | |
492 | } |
493 | |
494 | Int_t AliPythia::CheckedLuComp(Int_t kf) |
495 | { |
496 | // Check Lund particle code (for debugging) |
497 | Int_t kc=Pycomp(kf); |
498 | printf("\n Lucomp kf,kc %d %d",kf,kc); |
499 | return kc; |
500 | } |
501 | |
502 | void AliPythia::SetNuclei(Int_t a1, Int_t a2) |
503 | { |
504 | // Treat protons as inside nuclei with mass numbers a1 and a2 |
505 | // The MSTP array in the PYPARS common block is used to enable and |
506 | // select the nuclear structure functions. |
507 | // MSTP(52) : (D=1) choice of proton and nuclear structure-function library |
508 | // =1: internal PYTHIA acording to MSTP(51) |
509 | // =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET |
510 | // If the following mass number both not equal zero, nuclear corrections of the stf are used. |
511 | // MSTP(192) : Mass number of nucleus side 1 |
512 | // MSTP(193) : Mass number of nucleus side 2 |
513 | SetMSTP(52,2); |
514 | SetMSTP(192, a1); |
515 | SetMSTP(193, a2); |
516 | } |
517 | |
518 | |
519 | AliPythia* AliPythia::Instance() |
520 | { |
521 | // Set random number generator |
522 | if (fgAliPythia) { |
523 | return fgAliPythia; |
524 | } else { |
525 | fgAliPythia = new AliPythia(); |
526 | return fgAliPythia; |
527 | } |
528 | } |
529 | |
530 | void AliPythia::PrintParticles() |
531 | { |
532 | // Print list of particl properties |
533 | Int_t np = 0; |
c31f1d37 |
534 | char* name = new char[16]; |
8d2cd130 |
535 | for (Int_t kf=0; kf<1000000; kf++) { |
536 | for (Int_t c = 1; c > -2; c-=2) { |
8d2cd130 |
537 | Int_t kc = Pycomp(c*kf); |
538 | if (kc) { |
539 | Float_t mass = GetPMAS(kc,1); |
540 | Float_t width = GetPMAS(kc,2); |
541 | Float_t tau = GetPMAS(kc,4); |
c31f1d37 |
542 | |
8d2cd130 |
543 | Pyname(kf,name); |
544 | |
545 | np++; |
546 | |
547 | printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e", |
548 | c*kf, name, mass, width, tau); |
549 | } |
550 | } |
551 | } |
552 | printf("\n Number of particles %d \n \n", np); |
553 | } |
554 | |
555 | void AliPythia::ResetDecayTable() |
556 | { |
557 | // Set default values for pythia decay switches |
558 | Int_t i; |
559 | for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]); |
560 | for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]); |
561 | } |
562 | |
563 | void AliPythia::SetDecayTable() |
564 | { |
565 | // Set default values for pythia decay switches |
566 | // |
567 | Int_t i; |
568 | for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1); |
569 | for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1); |
570 | } |
571 | |
572 | void AliPythia::Pyclus(Int_t& njet) |
573 | { |
574 | // Call Pythia clustering algorithm |
575 | // |
576 | pyclus(njet); |
577 | } |
578 | |
579 | void AliPythia::Pycell(Int_t& njet) |
580 | { |
581 | // Call Pythia jet reconstruction algorithm |
582 | // |
583 | pycell(njet); |
584 | } |
585 | |
452af8c7 |
586 | void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax) |
587 | { |
588 | // Call Pythia jet reconstruction algorithm |
589 | // |
452af8c7 |
590 | pyshow(ip1, ip2, qmax); |
591 | } |
592 | |
593 | void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez) |
594 | { |
595 | pyrobo(imi, ima, the, phi, bex, bey, bez); |
596 | } |
597 | |
598 | |
599 | |
86b6ad68 |
600 | void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod) |
0f482ae4 |
601 | { |
602 | // Initializes |
603 | // (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann |
604 | // (2) The nuclear geometry using the Glauber Model |
605 | // |
606 | |
607 | |
608 | fGlauber = new AliFastGlauber(); |
609 | fGlauber->Init(2); |
610 | fGlauber->SetCentralityClass(cMin, cMax); |
611 | |
612 | fQuenchingWeights = new AliQuenchingWeights(); |
613 | fQuenchingWeights->InitMult(); |
86b6ad68 |
614 | fQuenchingWeights->SetK(k); |
0f482ae4 |
615 | fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod)); |
0f482ae4 |
616 | } |
617 | |
618 | |
452af8c7 |
619 | void AliPythia::Quench() |
620 | { |
621 | // |
622 | // |
623 | // Simple Jet Quenching routine: |
624 | // ============================= |
625 | // The jet formed by all final state partons radiated by the parton created |
0f482ae4 |
626 | // in the hard collisions is quenched by a factor (1-z) using light cone variables in |
627 | // the initial parton reference frame: |
452af8c7 |
628 | // (E + p_z)new = (1-z) (E + p_z)old |
629 | // |
0f482ae4 |
630 | // |
631 | // |
632 | // |
452af8c7 |
633 | // The lost momentum is first balanced by one gluon with virtuality > 0. |
634 | // Subsequently the gluon splits to yield two gluons with E = p. |
635 | // |
0f482ae4 |
636 | // |
637 | // |
4e383037 |
638 | static Float_t eMean = 0.; |
639 | static Int_t icall = 0; |
0f482ae4 |
640 | |
c2c598a3 |
641 | Double_t p0[4][5]; |
642 | Double_t p1[4][5]; |
643 | Double_t p2[4][5]; |
644 | Int_t klast[4] = {-1, -1, -1, -1}; |
452af8c7 |
645 | |
646 | Int_t numpart = fPyjets->N; |
86b6ad68 |
647 | Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.; |
c2c598a3 |
648 | Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4]; |
649 | Bool_t quenched[4]; |
b280c4cc |
650 | Double_t wjtKick[4]; |
c2c598a3 |
651 | Int_t nGluon[4]; |
86b6ad68 |
652 | Int_t qPdg[4]; |
0f482ae4 |
653 | Int_t imo, kst, pdg; |
b280c4cc |
654 | |
511db649 |
655 | // |
c2c598a3 |
656 | // Sore information about Primary partons |
657 | // |
658 | // j = |
659 | // 0, 1 partons from hard scattering |
660 | // 2, 3 partons from initial state radiation |
661 | // |
662 | for (Int_t i = 2; i <= 7; i++) { |
663 | Int_t j = 0; |
664 | // Skip gluons that participate in hard scattering |
665 | if (i == 4 || i == 5) continue; |
666 | // Gluons from hard Scattering |
667 | if (i == 6 || i == 7) { |
668 | j = i - 6; |
669 | pxq[j] = fPyjets->P[0][i]; |
670 | pyq[j] = fPyjets->P[1][i]; |
671 | pzq[j] = fPyjets->P[2][i]; |
672 | eq[j] = fPyjets->P[3][i]; |
673 | mq[j] = fPyjets->P[4][i]; |
674 | } else { |
675 | // Gluons from initial state radiation |
676 | // |
677 | // Obtain 4-momentum vector from difference between original parton and parton after gluon |
678 | // radiation. Energy is calculated independently because initial state radition does not |
679 | // conserve strictly momentum and energy for each partonic system independently. |
680 | // |
681 | // Not very clean. Should be improved ! |
682 | // |
683 | // |
684 | j = i; |
685 | pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2]; |
686 | pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2]; |
687 | pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2]; |
688 | mq[j] = fPyjets->P[4][i]; |
689 | eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]); |
690 | } |
691 | // |
692 | // Calculate some kinematic variables |
511db649 |
693 | // |
4e383037 |
694 | yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14)); |
0f482ae4 |
695 | pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]); |
696 | phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]); |
697 | ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]); |
698 | thetaq[j] = TMath::ATan2(ptq[j], pzq[j]); |
86b6ad68 |
699 | qPdg[j] = fPyjets->K[1][i]; |
700 | } |
701 | |
702 | Double_t int0[4]; |
703 | Double_t int1[4]; |
86b6ad68 |
704 | |
b280c4cc |
705 | fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.); |
706 | |
86b6ad68 |
707 | for (Int_t j = 0; j < 4; j++) { |
c2c598a3 |
708 | // |
709 | // Quench only central jets and with E > 10. |
710 | // |
86b6ad68 |
711 | |
712 | |
713 | Int_t itype = (qPdg[j] == 21) ? 2 : 1; |
714 | Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]); |
715 | |
c2c598a3 |
716 | if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) { |
b280c4cc |
717 | fZQuench[j] = 0.; |
0f482ae4 |
718 | } else { |
c2c598a3 |
719 | if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) { |
4e383037 |
720 | icall ++; |
721 | eMean += eloss; |
722 | } |
0f482ae4 |
723 | // |
724 | // Extra pt |
86b6ad68 |
725 | Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]); |
726 | wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j])); |
0f482ae4 |
727 | // |
728 | // Fractional energy loss |
b280c4cc |
729 | fZQuench[j] = eloss / eq[j]; |
0f482ae4 |
730 | // |
731 | // Avoid complete loss |
732 | // |
b280c4cc |
733 | if (fZQuench[j] == 1.) fZQuench[j] = 0.95; |
0f482ae4 |
734 | // |
735 | // Some debug printing |
86b6ad68 |
736 | |
737 | |
bf9bb016 |
738 | // printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n", |
739 | // j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]); |
4e383037 |
740 | |
b280c4cc |
741 | // fZQuench[j] = 0.8; |
742 | // while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2); |
0f482ae4 |
743 | } |
4e383037 |
744 | |
b280c4cc |
745 | quenched[j] = (fZQuench[j] > 0.01); |
4e383037 |
746 | } // primary partons |
c2c598a3 |
747 | |
b280c4cc |
748 | |
749 | |
6e90ad26 |
750 | Double_t pNew[1000][4]; |
751 | Int_t kNew[1000]; |
752 | Int_t icount = 0; |
b280c4cc |
753 | Double_t zquench[4]; |
754 | |
6e90ad26 |
755 | // |
4e383037 |
756 | // System Loop |
c2c598a3 |
757 | for (Int_t isys = 0; isys < 4; isys++) { |
6e90ad26 |
758 | // Skip to next system if not quenched. |
4e383037 |
759 | if (!quenched[isys]) continue; |
760 | |
b280c4cc |
761 | nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys])); |
4e383037 |
762 | if (nGluon[isys] > 6) nGluon[isys] = 6; |
b280c4cc |
763 | zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys])); |
4e383037 |
764 | wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys])); |
0f482ae4 |
765 | |
4e383037 |
766 | |
767 | |
768 | Int_t igMin = -1; |
769 | Int_t igMax = -1; |
770 | Double_t pg[4] = {0., 0., 0., 0.}; |
771 | |
772 | // |
773 | // Loop on radiation events |
774 | |
775 | for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) { |
6e90ad26 |
776 | while (1) { |
777 | icount = 0; |
778 | for (Int_t k = 0; k < 4; k++) |
779 | { |
780 | p0[isys][k] = 0.; |
781 | p1[isys][k] = 0.; |
782 | p2[isys][k] = 0.; |
783 | } |
784 | // Loop over partons |
785 | for (Int_t i = 0; i < numpart; i++) |
786 | { |
787 | imo = fPyjets->K[2][i]; |
788 | kst = fPyjets->K[0][i]; |
789 | pdg = fPyjets->K[1][i]; |
790 | |
791 | |
792 | |
0f482ae4 |
793 | // Quarks and gluons only |
6e90ad26 |
794 | if (pdg != 21 && TMath::Abs(pdg) > 6) continue; |
0f482ae4 |
795 | // Particles from hard scattering only |
c2c598a3 |
796 | |
6e90ad26 |
797 | if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1]; |
c2c598a3 |
798 | Int_t imom = imo % 1000; |
799 | if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue; |
800 | if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue; |
801 | |
6e90ad26 |
802 | |
0f482ae4 |
803 | // Skip comment lines |
6e90ad26 |
804 | if (kst != 1 && kst != 2) continue; |
0f482ae4 |
805 | // |
806 | // Parton kinematic |
6e90ad26 |
807 | px = fPyjets->P[0][i]; |
808 | py = fPyjets->P[1][i]; |
809 | pz = fPyjets->P[2][i]; |
810 | e = fPyjets->P[3][i]; |
811 | m = fPyjets->P[4][i]; |
812 | pt = TMath::Sqrt(px * px + py * py); |
813 | p = TMath::Sqrt(px * px + py * py + pz * pz); |
814 | phi = TMath::Pi() + TMath::ATan2(-py, -px); |
815 | theta = TMath::ATan2(pt, pz); |
816 | |
0f482ae4 |
817 | // |
c2c598a3 |
818 | // Save 4-momentum sum for balancing |
819 | Int_t index = isys; |
6e90ad26 |
820 | |
821 | p0[index][0] += px; |
822 | p0[index][1] += py; |
823 | p0[index][2] += pz; |
824 | p0[index][3] += e; |
6e90ad26 |
825 | |
826 | klast[index] = i; |
827 | |
0f482ae4 |
828 | // |
829 | // Fractional energy loss |
b280c4cc |
830 | Double_t z = zquench[index]; |
4e383037 |
831 | |
c2c598a3 |
832 | |
4e383037 |
833 | // Don't fully quench radiated gluons |
834 | // |
835 | if (imo > 1000) { |
836 | // This small factor makes sure that the gluons are not too close in phase space to avoid recombination |
837 | // |
838 | |
c2c598a3 |
839 | z = 0.02; |
4e383037 |
840 | } |
c2c598a3 |
841 | // printf("z: %d %f\n", imo, z); |
842 | |
4e383037 |
843 | |
844 | // |
6e90ad26 |
845 | |
846 | // |
847 | // |
848 | // Transform into frame in which initial parton is along z-axis |
849 | // |
850 | TVector3 v(px, py, pz); |
851 | v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]); |
852 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z(); |
853 | |
854 | Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys); |
855 | Double_t mt2 = jt * jt + m * m; |
856 | Double_t zmax = 1.; |
857 | // |
858 | // Kinematic limit on z |
859 | // |
4e383037 |
860 | if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt); |
6e90ad26 |
861 | // |
862 | // Change light-cone kinematics rel. to initial parton |
863 | // |
864 | Double_t eppzOld = e + pl; |
865 | Double_t empzOld = e - pl; |
866 | |
867 | Double_t eppzNew = (1. - z) * eppzOld; |
868 | Double_t empzNew = empzOld - mt2 * z / eppzOld; |
869 | Double_t eNew = 0.5 * (eppzNew + empzNew); |
870 | Double_t plNew = 0.5 * (eppzNew - empzNew); |
871 | |
872 | Double_t jtNew; |
873 | // |
874 | // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0 |
875 | Double_t mt2New = eppzNew * empzNew; |
876 | if (mt2New < 1.e-8) mt2New = 0.; |
4e383037 |
877 | if (z < zmax) { |
878 | if (m * m > mt2New) { |
879 | // |
880 | // This should not happen |
881 | // |
882 | Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew); |
883 | jtNew = 0; |
884 | } else { |
885 | jtNew = TMath::Sqrt(mt2New - m * m); |
886 | } |
6e90ad26 |
887 | } else { |
4e383037 |
888 | // If pT is to small (probably a leading massive particle) we scale only the energy |
889 | // This can cause negative masses of the radiated gluon |
890 | // Let's hope for the best ... |
891 | jtNew = jt; |
892 | eNew = TMath::Sqrt(plNew * plNew + mt2); |
893 | |
6e90ad26 |
894 | } |
6e90ad26 |
895 | // |
896 | // Calculate new px, py |
897 | // |
898 | Double_t pxNew = jtNew / jt * pxs; |
899 | Double_t pyNew = jtNew / jt * pys; |
900 | |
901 | // Double_t dpx = pxs - pxNew; |
902 | // Double_t dpy = pys - pyNew; |
903 | // Double_t dpz = pl - plNew; |
904 | // Double_t de = e - eNew; |
905 | // Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz; |
906 | // printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew); |
907 | // printf("New mass (2) %e %e \n", pxNew, pyNew); |
908 | // |
909 | // Rotate back |
910 | // |
911 | TVector3 w(pxNew, pyNew, plNew); |
912 | w.RotateY(thetaq[index]); w.RotateZ(phiq[index]); |
913 | pxNew = w.X(); pyNew = w.Y(); plNew = w.Z(); |
914 | |
915 | p1[index][0] += pxNew; |
916 | p1[index][1] += pyNew; |
917 | p1[index][2] += plNew; |
918 | p1[index][3] += eNew; |
919 | // |
920 | // Updated 4-momentum vectors |
921 | // |
922 | pNew[icount][0] = pxNew; |
923 | pNew[icount][1] = pyNew; |
924 | pNew[icount][2] = plNew; |
925 | pNew[icount][3] = eNew; |
926 | kNew[icount] = i; |
927 | icount++; |
928 | } // parton loop |
0f482ae4 |
929 | // |
6e90ad26 |
930 | // Check if there was phase-space for quenching |
0f482ae4 |
931 | // |
0f482ae4 |
932 | |
6e90ad26 |
933 | if (icount == 0) quenched[isys] = kFALSE; |
934 | if (!quenched[isys]) break; |
935 | |
936 | for (Int_t j = 0; j < 4; j++) |
937 | { |
938 | p2[isys][j] = p0[isys][j] - p1[isys][j]; |
939 | } |
940 | p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2]; |
6e90ad26 |
941 | if (p2[isys][4] > 0.) { |
942 | p2[isys][4] = TMath::Sqrt(p2[isys][4]); |
943 | break; |
944 | } else { |
b280c4cc |
945 | printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]); |
4e383037 |
946 | printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]); |
6e90ad26 |
947 | if (p2[isys][4] < -0.01) { |
4e383037 |
948 | printf("Negative mass squared !\n"); |
949 | // Here we have to put the gluon back to mass shell |
950 | // This will lead to a small energy imbalance |
951 | p2[isys][4] = 0.; |
952 | p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]); |
953 | break; |
6e90ad26 |
954 | } else { |
955 | p2[isys][4] = 0.; |
956 | break; |
957 | } |
958 | } |
6e90ad26 |
959 | /* |
6e90ad26 |
960 | zHeavy *= 0.98; |
961 | printf("zHeavy lowered to %f\n", zHeavy); |
962 | if (zHeavy < 0.01) { |
963 | printf("No success ! \n"); |
964 | icount = 0; |
965 | quenched[isys] = kFALSE; |
966 | break; |
967 | } |
4e383037 |
968 | */ |
969 | } // iteration on z (while) |
970 | |
6e90ad26 |
971 | // Update event record |
972 | for (Int_t k = 0; k < icount; k++) { |
973 | // printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] ); |
974 | fPyjets->P[0][kNew[k]] = pNew[k][0]; |
975 | fPyjets->P[1][kNew[k]] = pNew[k][1]; |
976 | fPyjets->P[2][kNew[k]] = pNew[k][2]; |
977 | fPyjets->P[3][kNew[k]] = pNew[k][3]; |
0f482ae4 |
978 | } |
4e383037 |
979 | // |
980 | // Add the gluons |
981 | // |
982 | Int_t ish = 0; |
1837e95c |
983 | Int_t iGlu; |
4e383037 |
984 | if (!quenched[isys]) continue; |
0f482ae4 |
985 | // |
986 | // Last parton from shower i |
4e383037 |
987 | Int_t in = klast[isys]; |
0f482ae4 |
988 | // |
989 | // Continue if no parton in shower i selected |
990 | if (in == -1) continue; |
991 | // |
992 | // If this is the second initial parton and it is behind the first move pointer by previous ish |
4e383037 |
993 | if (isys == 1 && klast[1] > klast[0]) in += ish; |
0f482ae4 |
994 | // |
995 | // Starting index |
452af8c7 |
996 | |
4e383037 |
997 | // jmin = in - 1; |
0f482ae4 |
998 | // How many additional gluons will be generated |
999 | ish = 1; |
4e383037 |
1000 | if (p2[isys][4] > 0.05) ish = 2; |
0f482ae4 |
1001 | // |
1002 | // Position of gluons |
4e383037 |
1003 | iGlu = numpart; |
1004 | if (iglu == 0) igMin = iGlu; |
1005 | igMax = iGlu; |
0f482ae4 |
1006 | numpart += ish; |
1007 | (fPyjets->N) += ish; |
4e383037 |
1008 | |
0f482ae4 |
1009 | if (ish == 1) { |
4e383037 |
1010 | fPyjets->P[0][iGlu] = p2[isys][0]; |
1011 | fPyjets->P[1][iGlu] = p2[isys][1]; |
1012 | fPyjets->P[2][iGlu] = p2[isys][2]; |
1013 | fPyjets->P[3][iGlu] = p2[isys][3]; |
1014 | fPyjets->P[4][iGlu] = p2[isys][4]; |
0f482ae4 |
1015 | |
4e383037 |
1016 | fPyjets->K[0][iGlu] = 1; |
1017 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1; |
0f482ae4 |
1018 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1019 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1020 | fPyjets->K[3][iGlu] = -1; |
1021 | fPyjets->K[4][iGlu] = -1; |
4e383037 |
1022 | |
1023 | pg[0] += p2[isys][0]; |
1024 | pg[1] += p2[isys][1]; |
1025 | pg[2] += p2[isys][2]; |
1026 | pg[3] += p2[isys][3]; |
0f482ae4 |
1027 | } else { |
1028 | // |
1029 | // Split gluon in rest frame. |
1030 | // |
4e383037 |
1031 | Double_t bx = p2[isys][0] / p2[isys][3]; |
1032 | Double_t by = p2[isys][1] / p2[isys][3]; |
1033 | Double_t bz = p2[isys][2] / p2[isys][3]; |
1034 | Double_t pst = p2[isys][4] / 2.; |
0f482ae4 |
1035 | // |
1036 | // Isotropic decay ???? |
1037 | Double_t cost = 2. * gRandom->Rndm() - 1.; |
1038 | Double_t sint = TMath::Sqrt(1. - cost * cost); |
1039 | Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); |
1040 | |
1041 | Double_t pz1 = pst * cost; |
1042 | Double_t pz2 = -pst * cost; |
1043 | Double_t pt1 = pst * sint; |
1044 | Double_t pt2 = -pst * sint; |
1045 | Double_t px1 = pt1 * TMath::Cos(phi); |
1046 | Double_t py1 = pt1 * TMath::Sin(phi); |
1047 | Double_t px2 = pt2 * TMath::Cos(phi); |
1048 | Double_t py2 = pt2 * TMath::Sin(phi); |
1049 | |
1050 | fPyjets->P[0][iGlu] = px1; |
1051 | fPyjets->P[1][iGlu] = py1; |
1052 | fPyjets->P[2][iGlu] = pz1; |
1053 | fPyjets->P[3][iGlu] = pst; |
1054 | fPyjets->P[4][iGlu] = 0.; |
1055 | |
4e383037 |
1056 | fPyjets->K[0][iGlu] = 1 ; |
0f482ae4 |
1057 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1058 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1059 | fPyjets->K[3][iGlu] = -1; |
1060 | fPyjets->K[4][iGlu] = -1; |
1061 | |
1062 | fPyjets->P[0][iGlu+1] = px2; |
1063 | fPyjets->P[1][iGlu+1] = py2; |
1064 | fPyjets->P[2][iGlu+1] = pz2; |
1065 | fPyjets->P[3][iGlu+1] = pst; |
1066 | fPyjets->P[4][iGlu+1] = 0.; |
1067 | |
4e383037 |
1068 | fPyjets->K[0][iGlu+1] = 1; |
1069 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1; |
0f482ae4 |
1070 | fPyjets->K[1][iGlu+1] = 21; |
4e383037 |
1071 | fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1072 | fPyjets->K[3][iGlu+1] = -1; |
1073 | fPyjets->K[4][iGlu+1] = -1; |
1074 | SetMSTU(1,0); |
1075 | SetMSTU(2,0); |
1076 | // |
1077 | // Boost back |
1078 | // |
1079 | Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz); |
1080 | } |
4e383037 |
1081 | /* |
1082 | for (Int_t ig = iGlu; ig < iGlu+ish; ig++) { |
1083 | Double_t px, py, pz; |
1084 | px = fPyjets->P[0][ig]; |
1085 | py = fPyjets->P[1][ig]; |
1086 | pz = fPyjets->P[2][ig]; |
1087 | TVector3 v(px, py, pz); |
1088 | v.RotateZ(-phiq[isys]); |
1089 | v.RotateY(-thetaq[isys]); |
1090 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z(); |
1091 | Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1092 | Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r)); |
1093 | if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.); |
1094 | Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1095 | pxs += jtKick * TMath::Cos(phiKick); |
1096 | pys += jtKick * TMath::Sin(phiKick); |
1097 | TVector3 w(pxs, pys, pzs); |
1098 | w.RotateY(thetaq[isys]); |
1099 | w.RotateZ(phiq[isys]); |
1100 | fPyjets->P[0][ig] = w.X(); |
1101 | fPyjets->P[1][ig] = w.Y(); |
1102 | fPyjets->P[2][ig] = w.Z(); |
1103 | fPyjets->P[2][ig] = w.Mag(); |
1104 | } |
1105 | */ |
1106 | } // kGluon |
1107 | |
6e90ad26 |
1108 | |
4e383037 |
1109 | // Check energy conservation |
0f482ae4 |
1110 | Double_t pxs = 0.; |
1111 | Double_t pys = 0.; |
1112 | Double_t pzs = 0.; |
1113 | Double_t es = 14000.; |
1114 | |
1115 | for (Int_t i = 0; i < numpart; i++) |
1116 | { |
1117 | kst = fPyjets->K[0][i]; |
1118 | if (kst != 1 && kst != 2) continue; |
1119 | pxs += fPyjets->P[0][i]; |
1120 | pys += fPyjets->P[1][i]; |
1121 | pzs += fPyjets->P[2][i]; |
1122 | es -= fPyjets->P[3][i]; |
1123 | } |
1124 | if (TMath::Abs(pxs) > 1.e-2 || |
1125 | TMath::Abs(pys) > 1.e-2 || |
1126 | TMath::Abs(pzs) > 1.e-1) { |
1127 | printf("%e %e %e %e\n", pxs, pys, pzs, es); |
4e383037 |
1128 | // Fatal("Quench()", "4-Momentum non-conservation"); |
452af8c7 |
1129 | } |
4e383037 |
1130 | |
1131 | } // end quenching loop (systems) |
6e90ad26 |
1132 | // Clean-up |
0f482ae4 |
1133 | for (Int_t i = 0; i < numpart; i++) |
1134 | { |
4e383037 |
1135 | imo = fPyjets->K[2][i]; |
1136 | if (imo > 1000) { |
1137 | fPyjets->K[2][i] = fPyjets->K[2][i] % 1000; |
1138 | } |
0f482ae4 |
1139 | } |
4e383037 |
1140 | // this->Pylist(1); |
0f482ae4 |
1141 | } // end quench |
90d7b703 |
1142 | |
992f2843 |
1143 | |
1144 | void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b) |
1145 | { |
1146 | // Igor Lokthine's quenching routine |
1147 | pyquen(a, ibf, b); |
1148 | } |
b280c4cc |
1149 | |
16a82508 |
1150 | void AliPythia::Pyevnw() |
1151 | { |
1152 | // New multiple interaction scenario |
1153 | pyevnw(); |
1154 | } |
1155 | |
b280c4cc |
1156 | void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4]) |
1157 | { |
1158 | // Return event specific quenching parameters |
1159 | xp = fXJet; |
1160 | yp = fYJet; |
1161 | for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i]; |
1162 | |
1163 | } |
1164 | |
3dc3ec94 |
1165 | void AliPythia::ConfigHeavyFlavor() |
1166 | { |
1167 | // |
1168 | // Default configuration for Heavy Flavor production |
1169 | // |
1170 | // All QCD processes |
1171 | // |
1172 | SetMSEL(1); |
1173 | |
1174 | // No multiple interactions |
1175 | SetMSTP(81,0); |
3dc3ec94 |
1176 | // Initial/final parton shower on (Pythia default) |
1177 | SetMSTP(61,1); |
1178 | SetMSTP(71,1); |
1179 | |
1180 | // 2nd order alpha_s |
1181 | SetMSTP(2,2); |
1182 | |
1183 | // QCD scales |
1184 | SetMSTP(32,2); |
1185 | SetPARP(34,1.0); |
1186 | } |
e0e89f40 |
1187 | |
1188 | void AliPythia::AtlasTuning() |
1189 | { |
1190 | // |
1191 | // Configuration for the ATLAS tuning |
1192 | SetMSTP(51, kCTEQ5L); // CTEQ5L pdf |
1193 | SetMSTP(81,1); // Multiple Interactions ON |
1194 | SetMSTP(82,4); // Double Gaussian Model |
1195 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
1196 | SetPARP(89,1000.); // [GeV] Ref. energy |
1197 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
1198 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
1199 | SetPARP(84,0.5); // Core radius |
1200 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
1201 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
1202 | SetPARP(67,1); // Regulates Initial State Radiation |
1203 | } |