8d2cd130 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
7cdba479 |
16 | /* $Id$ */ |
8d2cd130 |
17 | |
18 | #include "AliPythia.h" |
7cdba479 |
19 | #include "AliPythiaRndm.h" |
0f482ae4 |
20 | #include "../FASTSIM/AliFastGlauber.h" |
21 | #include "../FASTSIM/AliQuenchingWeights.h" |
22 | #include "TVector3.h" |
8d2cd130 |
23 | |
24 | ClassImp(AliPythia) |
25 | |
26 | #ifndef WIN32 |
27 | # define pyclus pyclus_ |
28 | # define pycell pycell_ |
452af8c7 |
29 | # define pyshow pyshow_ |
30 | # define pyrobo pyrobo_ |
992f2843 |
31 | # define pyquen pyquen_ |
8d2cd130 |
32 | # define type_of_call |
33 | #else |
34 | # define pyclus PYCLUS |
35 | # define pycell PYCELL |
452af8c7 |
36 | # define pyrobo PYROBO |
992f2843 |
37 | # define pyquen PYQUEN |
8d2cd130 |
38 | # define type_of_call _stdcall |
39 | #endif |
40 | |
41 | extern "C" void type_of_call pyclus(Int_t & ); |
42 | extern "C" void type_of_call pycell(Int_t & ); |
452af8c7 |
43 | extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); |
44 | extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); |
992f2843 |
45 | extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &); |
8d2cd130 |
46 | |
47 | //_____________________________________________________________________________ |
48 | |
49 | AliPythia* AliPythia::fgAliPythia=NULL; |
50 | |
51 | AliPythia::AliPythia() |
52 | { |
53 | // Default Constructor |
54 | // |
55 | // Set random number |
7cdba479 |
56 | if (!AliPythiaRndm::GetPythiaRandom()) |
57 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
0f482ae4 |
58 | fGlauber = 0; |
59 | fQuenchingWeights = 0; |
8d2cd130 |
60 | } |
61 | |
62 | void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) |
63 | { |
64 | // Initialise the process to generate |
7cdba479 |
65 | if (!AliPythiaRndm::GetPythiaRandom()) |
66 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
67 | |
68 | fProcess = process; |
69 | fEcms = energy; |
70 | fStrucFunc = strucfunc; |
1d5b1b20 |
71 | //...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-. |
72 | SetMDCY(Pycomp(111) ,1,0); |
73 | SetMDCY(Pycomp(310) ,1,0); |
74 | SetMDCY(Pycomp(3122),1,0); |
75 | SetMDCY(Pycomp(3112),1,0); |
76 | SetMDCY(Pycomp(3212),1,0); |
77 | SetMDCY(Pycomp(3222),1,0); |
78 | SetMDCY(Pycomp(3312),1,0); |
79 | SetMDCY(Pycomp(3322),1,0); |
80 | SetMDCY(Pycomp(3334),1,0); |
81 | // select structure function |
8d2cd130 |
82 | SetMSTP(52,2); |
83 | SetMSTP(51,strucfunc); |
84 | // |
85 | // Pythia initialisation for selected processes// |
86 | // |
87 | // Make MSEL clean |
88 | // |
89 | for (Int_t i=1; i<= 200; i++) { |
90 | SetMSUB(i,0); |
91 | } |
92 | // select charm production |
93 | switch (process) |
94 | { |
65f2626c |
95 | case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes |
96 | // Multiple interactions on. |
97 | SetMSTP(81,1); |
98 | // Double Gaussian matter distribution. |
99 | SetMSTP(82,4); |
100 | SetPARP(83,0.5); |
101 | SetPARP(84,0.4); |
102 | // pT0. |
103 | SetPARP(82,2.0); |
104 | // Reference energy for pT0 and energy rescaling pace. |
105 | SetPARP(89,1800); |
106 | SetPARP(90,0.25); |
107 | // String drawing almost completely minimizes string length. |
108 | SetPARP(85,0.9); |
109 | SetPARP(86,0.95); |
110 | // ISR and FSR activity. |
111 | SetPARP(67,4); |
112 | SetPARP(71,4); |
113 | // Lambda_FSR scale. |
114 | SetPARJ(81,0.29); |
115 | break; |
116 | case kPyOldUEQ2ordered2: |
117 | // Old underlying events with Q2 ordered QCD processes |
118 | // Multiple interactions on. |
119 | SetMSTP(81,1); |
120 | // Double Gaussian matter distribution. |
121 | SetMSTP(82,4); |
122 | SetPARP(83,0.5); |
123 | SetPARP(84,0.4); |
124 | // pT0. |
125 | SetPARP(82,2.0); |
126 | // Reference energy for pT0 and energy rescaling pace. |
127 | SetPARP(89,1800); |
128 | SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered |
129 | // String drawing almost completely minimizes string length. |
130 | SetPARP(85,0.9); |
131 | SetPARP(86,0.95); |
132 | // ISR and FSR activity. |
133 | SetPARP(67,4); |
134 | SetPARP(71,4); |
135 | // Lambda_FSR scale. |
136 | SetPARJ(81,0.29); |
137 | break; |
138 | case kPyOldPopcorn: |
139 | // Old production mechanism: Old Popcorn |
140 | SetMSEL(1); |
141 | SetMSTJ(12,3); |
142 | // (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon |
143 | SetMSTP(88,2); |
144 | // (D=1)see can be used to form baryons (BARYON JUNCTION) |
145 | SetMSTJ(1,1); |
146 | SetMSTP(51,kCTEQ5L);// CTEQ 5L ! CTEQ5L pdf |
147 | SetMSTP(81,1); // Multiple Interactions ON |
148 | SetMSTP(82,4); // Double Gaussian Model |
149 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
150 | SetPARP(89,1000.); // [GeV] Ref. energy |
151 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
152 | SetPARP(83,0.5); // Core density in proton matter dist. (def.value) |
153 | SetPARP(84,0.5); // Core radius |
154 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
155 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
156 | SetPARP(67,1); // Regulate gluon prod. mechanism |
157 | break; |
8d2cd130 |
158 | case kPyCharm: |
159 | SetMSEL(4); |
8d2cd130 |
160 | // heavy quark masses |
161 | |
162 | SetPMAS(4,1,1.2); |
163 | SetMSTU(16,2); |
164 | // |
165 | // primordial pT |
166 | SetMSTP(91,1); |
167 | SetPARP(91,1.); |
168 | SetPARP(93,5.); |
169 | // |
170 | break; |
171 | case kPyBeauty: |
172 | SetMSEL(5); |
173 | SetPMAS(5,1,4.75); |
174 | SetMSTU(16,2); |
175 | break; |
176 | case kPyJpsi: |
177 | SetMSEL(0); |
178 | // gg->J/Psi g |
179 | SetMSUB(86,1); |
180 | break; |
181 | case kPyJpsiChi: |
182 | SetMSEL(0); |
183 | // gg->J/Psi g |
184 | SetMSUB(86,1); |
185 | // gg-> chi_0c g |
186 | SetMSUB(87,1); |
187 | // gg-> chi_1c g |
188 | SetMSUB(88,1); |
189 | // gg-> chi_2c g |
190 | SetMSUB(89,1); |
191 | break; |
192 | case kPyCharmUnforced: |
193 | SetMSEL(0); |
194 | // gq->qg |
195 | SetMSUB(28,1); |
196 | // gg->qq |
197 | SetMSUB(53,1); |
198 | // gg->gg |
199 | SetMSUB(68,1); |
200 | break; |
201 | case kPyBeautyUnforced: |
202 | SetMSEL(0); |
203 | // gq->qg |
204 | SetMSUB(28,1); |
205 | // gg->qq |
206 | SetMSUB(53,1); |
207 | // gg->gg |
208 | SetMSUB(68,1); |
209 | break; |
210 | case kPyMb: |
211 | // Minimum Bias pp-Collisions |
212 | // |
213 | // |
214 | // select Pythia min. bias model |
215 | SetMSEL(0); |
511db649 |
216 | SetMSUB(92,1); // single diffraction AB-->XB |
217 | SetMSUB(93,1); // single diffraction AB-->AX |
218 | SetMSUB(94,1); // double diffraction |
219 | SetMSUB(95,1); // low pt production |
220 | |
221 | // |
222 | // ATLAS Tuning |
223 | // |
c01c4118 |
224 | |
225 | SetMSTP(51, kCTEQ5L); // CTEQ5L pdf |
511db649 |
226 | SetMSTP(81,1); // Multiple Interactions ON |
227 | SetMSTP(82,4); // Double Gaussian Model |
228 | |
229 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
230 | SetPARP(89,1000.); // [GeV] Ref. energy |
231 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
232 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
233 | SetPARP(84,0.5); // Core radius |
234 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
235 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
236 | SetPARP(67,1); // Regulates Initial State Radiation |
237 | break; |
8d2cd130 |
238 | case kPyMbNonDiffr: |
239 | // Minimum Bias pp-Collisions |
240 | // |
241 | // |
242 | // select Pythia min. bias model |
243 | SetMSEL(0); |
511db649 |
244 | SetMSUB(95,1); // low pt production |
0f482ae4 |
245 | |
246 | // |
247 | // ATLAS Tuning |
248 | // |
511db649 |
249 | |
d682afd1 |
250 | SetMSTP(51,kCTEQ5L); // CTEQ5L pdf |
511db649 |
251 | SetMSTP(81,1); // Multiple Interactions ON |
252 | SetMSTP(82,4); // Double Gaussian Model |
253 | |
254 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
255 | SetPARP(89,1000.); // [GeV] Ref. energy |
256 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
257 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
258 | SetPARP(84,0.5); // Core radius |
259 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
260 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
261 | SetPARP(67,1); // Regulates Initial State Radiation |
8d2cd130 |
262 | break; |
263 | case kPyJets: |
264 | // |
265 | // QCD Jets |
266 | // |
267 | SetMSEL(1); |
65f2626c |
268 | // Pythia Tune A (CDF) |
269 | // |
270 | SetPARP(67,4.); // Regulates Initial State Radiation |
271 | SetMSTP(82,4); // Double Gaussian Model |
272 | SetPARP(82,2.0); // [GeV] PT_min at Ref. energy |
273 | SetPARP(84,0.4); // Core radius |
274 | SetPARP(85,0.90) ; // Regulates gluon prod. mechanism |
275 | SetPARP(86,0.95); // Regulates gluon prod. mechanism |
276 | SetPARP(89,1800.); // [GeV] Ref. energy |
277 | SetPARP(90,0.25); // 2*epsilon (exponent in power law) |
278 | break; |
8d2cd130 |
279 | case kPyDirectGamma: |
280 | SetMSEL(10); |
281 | break; |
adf4d898 |
282 | case kPyCharmPbPbMNR: |
283 | case kPyD0PbPbMNR: |
8d2cd130 |
284 | // Tuning of Pythia parameters aimed to get a resonable agreement |
285 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
286 | // c-cbar single inclusive and double differential distributions. |
287 | // This parameter settings are meant to work with Pb-Pb collisions |
adf4d898 |
288 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
8d2cd130 |
289 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
290 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
291 | |
292 | // All QCD processes |
293 | SetMSEL(1); |
294 | |
295 | // No multiple interactions |
296 | SetMSTP(81,0); |
297 | SetPARP(81,0.0); |
298 | SetPARP(82,0.0); |
299 | |
300 | // Initial/final parton shower on (Pythia default) |
301 | SetMSTP(61,1); |
302 | SetMSTP(71,1); |
303 | |
304 | // 2nd order alpha_s |
305 | SetMSTP(2,2); |
306 | |
307 | // QCD scales |
308 | SetMSTP(32,2); |
309 | SetPARP(34,1.0); |
310 | |
adf4d898 |
311 | // Intrinsic <kT> |
8d2cd130 |
312 | SetMSTP(91,1); |
313 | SetPARP(91,1.304); |
314 | SetPARP(93,6.52); |
315 | |
316 | // Set c-quark mass |
317 | SetPMAS(4,1,1.2); |
318 | |
90d7b703 |
319 | break; |
320 | case kPyDPlusPbPbMNR: |
321 | // Tuning of Pythia parameters aimed to get a resonable agreement |
322 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
323 | // c-cbar single inclusive and double differential distributions. |
324 | // This parameter settings are meant to work with Pb-Pb collisions |
325 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
326 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
327 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
328 | |
329 | // All QCD processes |
330 | SetMSEL(1); |
331 | |
332 | // No multiple interactions |
333 | SetMSTP(81,0); |
334 | SetPARP(81,0.0); |
335 | SetPARP(82,0.0); |
336 | |
337 | // Initial/final parton shower on (Pythia default) |
338 | SetMSTP(61,1); |
339 | SetMSTP(71,1); |
340 | |
341 | // 2nd order alpha_s |
342 | SetMSTP(2,2); |
343 | |
344 | // QCD scales |
345 | SetMSTP(32,2); |
346 | SetPARP(34,1.0); |
347 | |
348 | // Intrinsic <kT> |
349 | SetMSTP(91,1); |
350 | SetPARP(91,1.304); |
351 | SetPARP(93,6.52); |
352 | |
353 | // Set c-quark mass |
354 | SetPMAS(4,1,1.2); |
355 | |
8d2cd130 |
356 | break; |
adf4d898 |
357 | case kPyCharmpPbMNR: |
358 | case kPyD0pPbMNR: |
359 | // Tuning of Pythia parameters aimed to get a resonable agreement |
360 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
361 | // c-cbar single inclusive and double differential distributions. |
362 | // This parameter settings are meant to work with p-Pb collisions |
363 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
364 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
365 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
366 | |
367 | // All QCD processes |
368 | SetMSEL(1); |
369 | |
370 | // No multiple interactions |
371 | SetMSTP(81,0); |
372 | SetPARP(81,0.0); |
373 | SetPARP(82,0.0); |
374 | |
375 | // Initial/final parton shower on (Pythia default) |
376 | SetMSTP(61,1); |
377 | SetMSTP(71,1); |
378 | |
379 | // 2nd order alpha_s |
380 | SetMSTP(2,2); |
381 | |
382 | // QCD scales |
383 | SetMSTP(32,2); |
384 | SetPARP(34,1.0); |
385 | |
386 | // Intrinsic <kT> |
387 | SetMSTP(91,1); |
388 | SetPARP(91,1.16); |
389 | SetPARP(93,5.8); |
390 | |
391 | // Set c-quark mass |
392 | SetPMAS(4,1,1.2); |
393 | |
90d7b703 |
394 | break; |
395 | case kPyDPluspPbMNR: |
396 | // Tuning of Pythia parameters aimed to get a resonable agreement |
397 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
398 | // c-cbar single inclusive and double differential distributions. |
399 | // This parameter settings are meant to work with p-Pb collisions |
400 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
401 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
402 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
403 | |
404 | // All QCD processes |
405 | SetMSEL(1); |
406 | |
407 | // No multiple interactions |
408 | SetMSTP(81,0); |
409 | SetPARP(81,0.0); |
410 | SetPARP(82,0.0); |
411 | |
412 | // Initial/final parton shower on (Pythia default) |
413 | SetMSTP(61,1); |
414 | SetMSTP(71,1); |
415 | |
416 | // 2nd order alpha_s |
417 | SetMSTP(2,2); |
418 | |
419 | // QCD scales |
420 | SetMSTP(32,2); |
421 | SetPARP(34,1.0); |
422 | |
423 | // Intrinsic <kT> |
424 | SetMSTP(91,1); |
425 | SetPARP(91,1.16); |
426 | SetPARP(93,5.8); |
427 | |
428 | // Set c-quark mass |
429 | SetPMAS(4,1,1.2); |
430 | |
adf4d898 |
431 | break; |
432 | case kPyCharmppMNR: |
433 | case kPyD0ppMNR: |
434 | // Tuning of Pythia parameters aimed to get a resonable agreement |
435 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
436 | // c-cbar single inclusive and double differential distributions. |
437 | // This parameter settings are meant to work with pp collisions |
438 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
439 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
440 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
441 | |
442 | // All QCD processes |
443 | SetMSEL(1); |
444 | |
445 | // No multiple interactions |
446 | SetMSTP(81,0); |
447 | SetPARP(81,0.0); |
448 | SetPARP(82,0.0); |
449 | |
450 | // Initial/final parton shower on (Pythia default) |
451 | SetMSTP(61,1); |
452 | SetMSTP(71,1); |
453 | |
454 | // 2nd order alpha_s |
455 | SetMSTP(2,2); |
456 | |
457 | // QCD scales |
458 | SetMSTP(32,2); |
459 | SetPARP(34,1.0); |
460 | |
461 | // Intrinsic <kT^2> |
462 | SetMSTP(91,1); |
463 | SetPARP(91,1.); |
464 | SetPARP(93,5.); |
465 | |
466 | // Set c-quark mass |
467 | SetPMAS(4,1,1.2); |
468 | |
90d7b703 |
469 | break; |
470 | case kPyDPlusppMNR: |
471 | // Tuning of Pythia parameters aimed to get a resonable agreement |
472 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
473 | // c-cbar single inclusive and double differential distributions. |
474 | // This parameter settings are meant to work with pp collisions |
475 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
476 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
477 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
478 | |
479 | // All QCD processes |
480 | SetMSEL(1); |
481 | |
482 | // No multiple interactions |
483 | SetMSTP(81,0); |
484 | SetPARP(81,0.0); |
485 | SetPARP(82,0.0); |
486 | |
487 | // Initial/final parton shower on (Pythia default) |
488 | SetMSTP(61,1); |
489 | SetMSTP(71,1); |
490 | |
491 | // 2nd order alpha_s |
492 | SetMSTP(2,2); |
493 | |
494 | // QCD scales |
495 | SetMSTP(32,2); |
496 | SetPARP(34,1.0); |
497 | |
498 | // Intrinsic <kT^2> |
499 | SetMSTP(91,1); |
500 | SetPARP(91,1.); |
501 | SetPARP(93,5.); |
502 | |
503 | // Set c-quark mass |
504 | SetPMAS(4,1,1.2); |
505 | |
adf4d898 |
506 | break; |
507 | case kPyBeautyPbPbMNR: |
8d2cd130 |
508 | // Tuning of Pythia parameters aimed to get a resonable agreement |
509 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
510 | // b-bbar single inclusive and double differential distributions. |
511 | // This parameter settings are meant to work with Pb-Pb collisions |
512 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
513 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
514 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
515 | |
516 | // All QCD processes |
517 | SetMSEL(1); |
518 | |
519 | // No multiple interactions |
520 | SetMSTP(81,0); |
521 | SetPARP(81,0.0); |
522 | SetPARP(82,0.0); |
523 | |
524 | // Initial/final parton shower on (Pythia default) |
525 | SetMSTP(61,1); |
526 | SetMSTP(71,1); |
527 | |
528 | // 2nd order alpha_s |
529 | SetMSTP(2,2); |
530 | |
531 | // QCD scales |
532 | SetMSTP(32,2); |
533 | SetPARP(34,1.0); |
534 | SetPARP(67,1.0); |
535 | SetPARP(71,1.0); |
536 | |
adf4d898 |
537 | // Intrinsic <kT> |
8d2cd130 |
538 | SetMSTP(91,1); |
539 | SetPARP(91,2.035); |
540 | SetPARP(93,10.17); |
541 | |
542 | // Set b-quark mass |
543 | SetPMAS(5,1,4.75); |
544 | |
adf4d898 |
545 | break; |
546 | case kPyBeautypPbMNR: |
547 | // Tuning of Pythia parameters aimed to get a resonable agreement |
548 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
549 | // b-bbar single inclusive and double differential distributions. |
550 | // This parameter settings are meant to work with p-Pb collisions |
551 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
552 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
553 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
554 | |
555 | // All QCD processes |
556 | SetMSEL(1); |
557 | |
558 | // No multiple interactions |
559 | SetMSTP(81,0); |
560 | SetPARP(81,0.0); |
561 | SetPARP(82,0.0); |
562 | |
563 | // Initial/final parton shower on (Pythia default) |
564 | SetMSTP(61,1); |
565 | SetMSTP(71,1); |
566 | |
567 | // 2nd order alpha_s |
568 | SetMSTP(2,2); |
569 | |
570 | // QCD scales |
571 | SetMSTP(32,2); |
572 | SetPARP(34,1.0); |
573 | SetPARP(67,1.0); |
574 | SetPARP(71,1.0); |
575 | |
576 | // Intrinsic <kT> |
577 | SetMSTP(91,1); |
578 | SetPARP(91,1.60); |
579 | SetPARP(93,8.00); |
580 | |
581 | // Set b-quark mass |
582 | SetPMAS(5,1,4.75); |
583 | |
584 | break; |
585 | case kPyBeautyppMNR: |
586 | // Tuning of Pythia parameters aimed to get a resonable agreement |
587 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
588 | // b-bbar single inclusive and double differential distributions. |
589 | // This parameter settings are meant to work with pp collisions |
590 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
591 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
592 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
593 | |
594 | // All QCD processes |
595 | SetMSEL(1); |
596 | |
597 | // No multiple interactions |
598 | SetMSTP(81,0); |
599 | SetPARP(81,0.0); |
600 | SetPARP(82,0.0); |
601 | |
602 | // Initial/final parton shower on (Pythia default) |
603 | SetMSTP(61,1); |
604 | SetMSTP(71,1); |
605 | |
606 | // 2nd order alpha_s |
607 | SetMSTP(2,2); |
608 | |
609 | // QCD scales |
610 | SetMSTP(32,2); |
611 | SetPARP(34,1.0); |
612 | SetPARP(67,1.0); |
613 | SetPARP(71,1.0); |
614 | |
615 | // Intrinsic <kT> |
616 | SetMSTP(91,1); |
617 | SetPARP(91,1.); |
618 | SetPARP(93,5.); |
619 | |
620 | // Set b-quark mass |
621 | SetPMAS(5,1,4.75); |
622 | |
8d2cd130 |
623 | break; |
589380c6 |
624 | |
625 | case kPyW: |
626 | |
627 | //Inclusive production of W+/- |
628 | SetMSEL(0); |
629 | //f fbar -> W+ |
630 | SetMSUB(2,1); |
631 | // //f fbar -> g W+ |
632 | // SetMSUB(16,1); |
633 | // //f fbar -> gamma W+ |
634 | // SetMSUB(20,1); |
635 | // //f g -> f W+ |
636 | // SetMSUB(31,1); |
637 | // //f gamma -> f W+ |
638 | // SetMSUB(36,1); |
639 | |
640 | // Initial/final parton shower on (Pythia default) |
641 | // With parton showers on we are generating "W inclusive process" |
642 | SetMSTP(61,1); //Initial QCD & QED showers on |
643 | SetMSTP(71,1); //Final QCD & QED showers on |
644 | |
645 | break; |
8d2cd130 |
646 | } |
647 | // |
648 | // Initialize PYTHIA |
649 | SetMSTP(41,1); // all resonance decays switched on |
650 | |
651 | Initialize("CMS","p","p",fEcms); |
652 | |
653 | } |
654 | |
655 | Int_t AliPythia::CheckedLuComp(Int_t kf) |
656 | { |
657 | // Check Lund particle code (for debugging) |
658 | Int_t kc=Pycomp(kf); |
659 | printf("\n Lucomp kf,kc %d %d",kf,kc); |
660 | return kc; |
661 | } |
662 | |
663 | void AliPythia::SetNuclei(Int_t a1, Int_t a2) |
664 | { |
665 | // Treat protons as inside nuclei with mass numbers a1 and a2 |
666 | // The MSTP array in the PYPARS common block is used to enable and |
667 | // select the nuclear structure functions. |
668 | // MSTP(52) : (D=1) choice of proton and nuclear structure-function library |
669 | // =1: internal PYTHIA acording to MSTP(51) |
670 | // =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET |
671 | // If the following mass number both not equal zero, nuclear corrections of the stf are used. |
672 | // MSTP(192) : Mass number of nucleus side 1 |
673 | // MSTP(193) : Mass number of nucleus side 2 |
674 | SetMSTP(52,2); |
675 | SetMSTP(192, a1); |
676 | SetMSTP(193, a2); |
677 | } |
678 | |
679 | |
680 | AliPythia* AliPythia::Instance() |
681 | { |
682 | // Set random number generator |
683 | if (fgAliPythia) { |
684 | return fgAliPythia; |
685 | } else { |
686 | fgAliPythia = new AliPythia(); |
687 | return fgAliPythia; |
688 | } |
689 | } |
690 | |
691 | void AliPythia::PrintParticles() |
692 | { |
693 | // Print list of particl properties |
694 | Int_t np = 0; |
c31f1d37 |
695 | char* name = new char[16]; |
8d2cd130 |
696 | for (Int_t kf=0; kf<1000000; kf++) { |
697 | for (Int_t c = 1; c > -2; c-=2) { |
8d2cd130 |
698 | Int_t kc = Pycomp(c*kf); |
699 | if (kc) { |
700 | Float_t mass = GetPMAS(kc,1); |
701 | Float_t width = GetPMAS(kc,2); |
702 | Float_t tau = GetPMAS(kc,4); |
c31f1d37 |
703 | |
8d2cd130 |
704 | Pyname(kf,name); |
705 | |
706 | np++; |
707 | |
708 | printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e", |
709 | c*kf, name, mass, width, tau); |
710 | } |
711 | } |
712 | } |
713 | printf("\n Number of particles %d \n \n", np); |
714 | } |
715 | |
716 | void AliPythia::ResetDecayTable() |
717 | { |
718 | // Set default values for pythia decay switches |
719 | Int_t i; |
720 | for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]); |
721 | for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]); |
722 | } |
723 | |
724 | void AliPythia::SetDecayTable() |
725 | { |
726 | // Set default values for pythia decay switches |
727 | // |
728 | Int_t i; |
729 | for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1); |
730 | for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1); |
731 | } |
732 | |
733 | void AliPythia::Pyclus(Int_t& njet) |
734 | { |
735 | // Call Pythia clustering algorithm |
736 | // |
737 | pyclus(njet); |
738 | } |
739 | |
740 | void AliPythia::Pycell(Int_t& njet) |
741 | { |
742 | // Call Pythia jet reconstruction algorithm |
743 | // |
744 | pycell(njet); |
745 | } |
746 | |
452af8c7 |
747 | void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax) |
748 | { |
749 | // Call Pythia jet reconstruction algorithm |
750 | // |
452af8c7 |
751 | pyshow(ip1, ip2, qmax); |
752 | } |
753 | |
754 | void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez) |
755 | { |
756 | pyrobo(imi, ima, the, phi, bex, bey, bez); |
757 | } |
758 | |
759 | |
760 | |
86b6ad68 |
761 | void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod) |
0f482ae4 |
762 | { |
763 | // Initializes |
764 | // (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann |
765 | // (2) The nuclear geometry using the Glauber Model |
766 | // |
767 | |
768 | |
769 | fGlauber = new AliFastGlauber(); |
770 | fGlauber->Init(2); |
771 | fGlauber->SetCentralityClass(cMin, cMax); |
772 | |
773 | fQuenchingWeights = new AliQuenchingWeights(); |
774 | fQuenchingWeights->InitMult(); |
86b6ad68 |
775 | fQuenchingWeights->SetK(k); |
0f482ae4 |
776 | fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod)); |
0f482ae4 |
777 | } |
778 | |
779 | |
452af8c7 |
780 | void AliPythia::Quench() |
781 | { |
782 | // |
783 | // |
784 | // Simple Jet Quenching routine: |
785 | // ============================= |
786 | // The jet formed by all final state partons radiated by the parton created |
0f482ae4 |
787 | // in the hard collisions is quenched by a factor (1-z) using light cone variables in |
788 | // the initial parton reference frame: |
452af8c7 |
789 | // (E + p_z)new = (1-z) (E + p_z)old |
790 | // |
0f482ae4 |
791 | // |
792 | // |
793 | // |
452af8c7 |
794 | // The lost momentum is first balanced by one gluon with virtuality > 0. |
795 | // Subsequently the gluon splits to yield two gluons with E = p. |
796 | // |
0f482ae4 |
797 | // |
798 | // |
4e383037 |
799 | static Float_t eMean = 0.; |
800 | static Int_t icall = 0; |
0f482ae4 |
801 | |
c2c598a3 |
802 | Double_t p0[4][5]; |
803 | Double_t p1[4][5]; |
804 | Double_t p2[4][5]; |
805 | Int_t klast[4] = {-1, -1, -1, -1}; |
452af8c7 |
806 | |
807 | Int_t numpart = fPyjets->N; |
86b6ad68 |
808 | Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.; |
c2c598a3 |
809 | Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4]; |
810 | Bool_t quenched[4]; |
b280c4cc |
811 | Double_t wjtKick[4]; |
c2c598a3 |
812 | Int_t nGluon[4]; |
86b6ad68 |
813 | Int_t qPdg[4]; |
0f482ae4 |
814 | Int_t imo, kst, pdg; |
b280c4cc |
815 | |
511db649 |
816 | // |
c2c598a3 |
817 | // Sore information about Primary partons |
818 | // |
819 | // j = |
820 | // 0, 1 partons from hard scattering |
821 | // 2, 3 partons from initial state radiation |
822 | // |
823 | for (Int_t i = 2; i <= 7; i++) { |
824 | Int_t j = 0; |
825 | // Skip gluons that participate in hard scattering |
826 | if (i == 4 || i == 5) continue; |
827 | // Gluons from hard Scattering |
828 | if (i == 6 || i == 7) { |
829 | j = i - 6; |
830 | pxq[j] = fPyjets->P[0][i]; |
831 | pyq[j] = fPyjets->P[1][i]; |
832 | pzq[j] = fPyjets->P[2][i]; |
833 | eq[j] = fPyjets->P[3][i]; |
834 | mq[j] = fPyjets->P[4][i]; |
835 | } else { |
836 | // Gluons from initial state radiation |
837 | // |
838 | // Obtain 4-momentum vector from difference between original parton and parton after gluon |
839 | // radiation. Energy is calculated independently because initial state radition does not |
840 | // conserve strictly momentum and energy for each partonic system independently. |
841 | // |
842 | // Not very clean. Should be improved ! |
843 | // |
844 | // |
845 | j = i; |
846 | pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2]; |
847 | pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2]; |
848 | pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2]; |
849 | mq[j] = fPyjets->P[4][i]; |
850 | eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]); |
851 | } |
852 | // |
853 | // Calculate some kinematic variables |
511db649 |
854 | // |
4e383037 |
855 | yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14)); |
0f482ae4 |
856 | pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]); |
857 | phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]); |
858 | ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]); |
859 | thetaq[j] = TMath::ATan2(ptq[j], pzq[j]); |
86b6ad68 |
860 | qPdg[j] = fPyjets->K[1][i]; |
861 | } |
862 | |
863 | Double_t int0[4]; |
864 | Double_t int1[4]; |
86b6ad68 |
865 | |
b280c4cc |
866 | fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.); |
867 | |
86b6ad68 |
868 | for (Int_t j = 0; j < 4; j++) { |
c2c598a3 |
869 | // |
870 | // Quench only central jets and with E > 10. |
871 | // |
86b6ad68 |
872 | |
873 | |
874 | Int_t itype = (qPdg[j] == 21) ? 2 : 1; |
875 | Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]); |
876 | |
c2c598a3 |
877 | if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) { |
b280c4cc |
878 | fZQuench[j] = 0.; |
0f482ae4 |
879 | } else { |
c2c598a3 |
880 | if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) { |
4e383037 |
881 | icall ++; |
882 | eMean += eloss; |
883 | } |
0f482ae4 |
884 | // |
885 | // Extra pt |
86b6ad68 |
886 | Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]); |
887 | wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j])); |
0f482ae4 |
888 | // |
889 | // Fractional energy loss |
b280c4cc |
890 | fZQuench[j] = eloss / eq[j]; |
0f482ae4 |
891 | // |
892 | // Avoid complete loss |
893 | // |
b280c4cc |
894 | if (fZQuench[j] == 1.) fZQuench[j] = 0.95; |
0f482ae4 |
895 | // |
896 | // Some debug printing |
86b6ad68 |
897 | |
898 | |
bf9bb016 |
899 | // printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n", |
900 | // j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]); |
4e383037 |
901 | |
b280c4cc |
902 | // fZQuench[j] = 0.8; |
903 | // while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2); |
0f482ae4 |
904 | } |
4e383037 |
905 | |
b280c4cc |
906 | quenched[j] = (fZQuench[j] > 0.01); |
4e383037 |
907 | } // primary partons |
c2c598a3 |
908 | |
b280c4cc |
909 | |
910 | |
6e90ad26 |
911 | Double_t pNew[1000][4]; |
912 | Int_t kNew[1000]; |
913 | Int_t icount = 0; |
b280c4cc |
914 | Double_t zquench[4]; |
915 | |
6e90ad26 |
916 | // |
4e383037 |
917 | // System Loop |
c2c598a3 |
918 | for (Int_t isys = 0; isys < 4; isys++) { |
6e90ad26 |
919 | // Skip to next system if not quenched. |
4e383037 |
920 | if (!quenched[isys]) continue; |
921 | |
b280c4cc |
922 | nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys])); |
4e383037 |
923 | if (nGluon[isys] > 6) nGluon[isys] = 6; |
b280c4cc |
924 | zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys])); |
4e383037 |
925 | wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys])); |
0f482ae4 |
926 | |
4e383037 |
927 | |
928 | |
929 | Int_t igMin = -1; |
930 | Int_t igMax = -1; |
931 | Double_t pg[4] = {0., 0., 0., 0.}; |
932 | |
933 | // |
934 | // Loop on radiation events |
935 | |
936 | for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) { |
6e90ad26 |
937 | while (1) { |
938 | icount = 0; |
939 | for (Int_t k = 0; k < 4; k++) |
940 | { |
941 | p0[isys][k] = 0.; |
942 | p1[isys][k] = 0.; |
943 | p2[isys][k] = 0.; |
944 | } |
945 | // Loop over partons |
946 | for (Int_t i = 0; i < numpart; i++) |
947 | { |
948 | imo = fPyjets->K[2][i]; |
949 | kst = fPyjets->K[0][i]; |
950 | pdg = fPyjets->K[1][i]; |
951 | |
952 | |
953 | |
0f482ae4 |
954 | // Quarks and gluons only |
6e90ad26 |
955 | if (pdg != 21 && TMath::Abs(pdg) > 6) continue; |
0f482ae4 |
956 | // Particles from hard scattering only |
c2c598a3 |
957 | |
6e90ad26 |
958 | if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1]; |
c2c598a3 |
959 | Int_t imom = imo % 1000; |
960 | if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue; |
961 | if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue; |
962 | |
6e90ad26 |
963 | |
0f482ae4 |
964 | // Skip comment lines |
6e90ad26 |
965 | if (kst != 1 && kst != 2) continue; |
0f482ae4 |
966 | // |
967 | // Parton kinematic |
6e90ad26 |
968 | px = fPyjets->P[0][i]; |
969 | py = fPyjets->P[1][i]; |
970 | pz = fPyjets->P[2][i]; |
971 | e = fPyjets->P[3][i]; |
972 | m = fPyjets->P[4][i]; |
973 | pt = TMath::Sqrt(px * px + py * py); |
974 | p = TMath::Sqrt(px * px + py * py + pz * pz); |
975 | phi = TMath::Pi() + TMath::ATan2(-py, -px); |
976 | theta = TMath::ATan2(pt, pz); |
977 | |
0f482ae4 |
978 | // |
c2c598a3 |
979 | // Save 4-momentum sum for balancing |
980 | Int_t index = isys; |
6e90ad26 |
981 | |
982 | p0[index][0] += px; |
983 | p0[index][1] += py; |
984 | p0[index][2] += pz; |
985 | p0[index][3] += e; |
6e90ad26 |
986 | |
987 | klast[index] = i; |
988 | |
0f482ae4 |
989 | // |
990 | // Fractional energy loss |
b280c4cc |
991 | Double_t z = zquench[index]; |
4e383037 |
992 | |
c2c598a3 |
993 | |
4e383037 |
994 | // Don't fully quench radiated gluons |
995 | // |
996 | if (imo > 1000) { |
997 | // This small factor makes sure that the gluons are not too close in phase space to avoid recombination |
998 | // |
999 | |
c2c598a3 |
1000 | z = 0.02; |
4e383037 |
1001 | } |
c2c598a3 |
1002 | // printf("z: %d %f\n", imo, z); |
1003 | |
4e383037 |
1004 | |
1005 | // |
6e90ad26 |
1006 | |
1007 | // |
1008 | // |
1009 | // Transform into frame in which initial parton is along z-axis |
1010 | // |
1011 | TVector3 v(px, py, pz); |
1012 | v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]); |
1013 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z(); |
1014 | |
1015 | Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys); |
1016 | Double_t mt2 = jt * jt + m * m; |
1017 | Double_t zmax = 1.; |
1018 | // |
1019 | // Kinematic limit on z |
1020 | // |
4e383037 |
1021 | if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt); |
6e90ad26 |
1022 | // |
1023 | // Change light-cone kinematics rel. to initial parton |
1024 | // |
1025 | Double_t eppzOld = e + pl; |
1026 | Double_t empzOld = e - pl; |
1027 | |
1028 | Double_t eppzNew = (1. - z) * eppzOld; |
1029 | Double_t empzNew = empzOld - mt2 * z / eppzOld; |
1030 | Double_t eNew = 0.5 * (eppzNew + empzNew); |
1031 | Double_t plNew = 0.5 * (eppzNew - empzNew); |
1032 | |
1033 | Double_t jtNew; |
1034 | // |
1035 | // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0 |
1036 | Double_t mt2New = eppzNew * empzNew; |
1037 | if (mt2New < 1.e-8) mt2New = 0.; |
4e383037 |
1038 | if (z < zmax) { |
1039 | if (m * m > mt2New) { |
1040 | // |
1041 | // This should not happen |
1042 | // |
1043 | Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew); |
1044 | jtNew = 0; |
1045 | } else { |
1046 | jtNew = TMath::Sqrt(mt2New - m * m); |
1047 | } |
6e90ad26 |
1048 | } else { |
4e383037 |
1049 | // If pT is to small (probably a leading massive particle) we scale only the energy |
1050 | // This can cause negative masses of the radiated gluon |
1051 | // Let's hope for the best ... |
1052 | jtNew = jt; |
1053 | eNew = TMath::Sqrt(plNew * plNew + mt2); |
1054 | |
6e90ad26 |
1055 | } |
6e90ad26 |
1056 | // |
1057 | // Calculate new px, py |
1058 | // |
1059 | Double_t pxNew = jtNew / jt * pxs; |
1060 | Double_t pyNew = jtNew / jt * pys; |
1061 | |
1062 | // Double_t dpx = pxs - pxNew; |
1063 | // Double_t dpy = pys - pyNew; |
1064 | // Double_t dpz = pl - plNew; |
1065 | // Double_t de = e - eNew; |
1066 | // Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz; |
1067 | // printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew); |
1068 | // printf("New mass (2) %e %e \n", pxNew, pyNew); |
1069 | // |
1070 | // Rotate back |
1071 | // |
1072 | TVector3 w(pxNew, pyNew, plNew); |
1073 | w.RotateY(thetaq[index]); w.RotateZ(phiq[index]); |
1074 | pxNew = w.X(); pyNew = w.Y(); plNew = w.Z(); |
1075 | |
1076 | p1[index][0] += pxNew; |
1077 | p1[index][1] += pyNew; |
1078 | p1[index][2] += plNew; |
1079 | p1[index][3] += eNew; |
1080 | // |
1081 | // Updated 4-momentum vectors |
1082 | // |
1083 | pNew[icount][0] = pxNew; |
1084 | pNew[icount][1] = pyNew; |
1085 | pNew[icount][2] = plNew; |
1086 | pNew[icount][3] = eNew; |
1087 | kNew[icount] = i; |
1088 | icount++; |
1089 | } // parton loop |
0f482ae4 |
1090 | // |
6e90ad26 |
1091 | // Check if there was phase-space for quenching |
0f482ae4 |
1092 | // |
0f482ae4 |
1093 | |
6e90ad26 |
1094 | if (icount == 0) quenched[isys] = kFALSE; |
1095 | if (!quenched[isys]) break; |
1096 | |
1097 | for (Int_t j = 0; j < 4; j++) |
1098 | { |
1099 | p2[isys][j] = p0[isys][j] - p1[isys][j]; |
1100 | } |
1101 | p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2]; |
6e90ad26 |
1102 | if (p2[isys][4] > 0.) { |
1103 | p2[isys][4] = TMath::Sqrt(p2[isys][4]); |
1104 | break; |
1105 | } else { |
b280c4cc |
1106 | printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]); |
4e383037 |
1107 | printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]); |
6e90ad26 |
1108 | if (p2[isys][4] < -0.01) { |
4e383037 |
1109 | printf("Negative mass squared !\n"); |
1110 | // Here we have to put the gluon back to mass shell |
1111 | // This will lead to a small energy imbalance |
1112 | p2[isys][4] = 0.; |
1113 | p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]); |
1114 | break; |
6e90ad26 |
1115 | } else { |
1116 | p2[isys][4] = 0.; |
1117 | break; |
1118 | } |
1119 | } |
6e90ad26 |
1120 | /* |
6e90ad26 |
1121 | zHeavy *= 0.98; |
1122 | printf("zHeavy lowered to %f\n", zHeavy); |
1123 | if (zHeavy < 0.01) { |
1124 | printf("No success ! \n"); |
1125 | icount = 0; |
1126 | quenched[isys] = kFALSE; |
1127 | break; |
1128 | } |
4e383037 |
1129 | */ |
1130 | } // iteration on z (while) |
1131 | |
6e90ad26 |
1132 | // Update event record |
1133 | for (Int_t k = 0; k < icount; k++) { |
1134 | // printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] ); |
1135 | fPyjets->P[0][kNew[k]] = pNew[k][0]; |
1136 | fPyjets->P[1][kNew[k]] = pNew[k][1]; |
1137 | fPyjets->P[2][kNew[k]] = pNew[k][2]; |
1138 | fPyjets->P[3][kNew[k]] = pNew[k][3]; |
0f482ae4 |
1139 | } |
4e383037 |
1140 | // |
1141 | // Add the gluons |
1142 | // |
1143 | Int_t ish = 0; |
1837e95c |
1144 | Int_t iGlu; |
4e383037 |
1145 | if (!quenched[isys]) continue; |
0f482ae4 |
1146 | // |
1147 | // Last parton from shower i |
4e383037 |
1148 | Int_t in = klast[isys]; |
0f482ae4 |
1149 | // |
1150 | // Continue if no parton in shower i selected |
1151 | if (in == -1) continue; |
1152 | // |
1153 | // If this is the second initial parton and it is behind the first move pointer by previous ish |
4e383037 |
1154 | if (isys == 1 && klast[1] > klast[0]) in += ish; |
0f482ae4 |
1155 | // |
1156 | // Starting index |
452af8c7 |
1157 | |
4e383037 |
1158 | // jmin = in - 1; |
0f482ae4 |
1159 | // How many additional gluons will be generated |
1160 | ish = 1; |
4e383037 |
1161 | if (p2[isys][4] > 0.05) ish = 2; |
0f482ae4 |
1162 | // |
1163 | // Position of gluons |
4e383037 |
1164 | iGlu = numpart; |
1165 | if (iglu == 0) igMin = iGlu; |
1166 | igMax = iGlu; |
0f482ae4 |
1167 | numpart += ish; |
1168 | (fPyjets->N) += ish; |
4e383037 |
1169 | |
0f482ae4 |
1170 | if (ish == 1) { |
4e383037 |
1171 | fPyjets->P[0][iGlu] = p2[isys][0]; |
1172 | fPyjets->P[1][iGlu] = p2[isys][1]; |
1173 | fPyjets->P[2][iGlu] = p2[isys][2]; |
1174 | fPyjets->P[3][iGlu] = p2[isys][3]; |
1175 | fPyjets->P[4][iGlu] = p2[isys][4]; |
0f482ae4 |
1176 | |
4e383037 |
1177 | fPyjets->K[0][iGlu] = 1; |
1178 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1; |
0f482ae4 |
1179 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1180 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1181 | fPyjets->K[3][iGlu] = -1; |
1182 | fPyjets->K[4][iGlu] = -1; |
4e383037 |
1183 | |
1184 | pg[0] += p2[isys][0]; |
1185 | pg[1] += p2[isys][1]; |
1186 | pg[2] += p2[isys][2]; |
1187 | pg[3] += p2[isys][3]; |
0f482ae4 |
1188 | } else { |
1189 | // |
1190 | // Split gluon in rest frame. |
1191 | // |
4e383037 |
1192 | Double_t bx = p2[isys][0] / p2[isys][3]; |
1193 | Double_t by = p2[isys][1] / p2[isys][3]; |
1194 | Double_t bz = p2[isys][2] / p2[isys][3]; |
1195 | Double_t pst = p2[isys][4] / 2.; |
0f482ae4 |
1196 | // |
1197 | // Isotropic decay ???? |
1198 | Double_t cost = 2. * gRandom->Rndm() - 1.; |
1199 | Double_t sint = TMath::Sqrt(1. - cost * cost); |
1200 | Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); |
1201 | |
1202 | Double_t pz1 = pst * cost; |
1203 | Double_t pz2 = -pst * cost; |
1204 | Double_t pt1 = pst * sint; |
1205 | Double_t pt2 = -pst * sint; |
1206 | Double_t px1 = pt1 * TMath::Cos(phi); |
1207 | Double_t py1 = pt1 * TMath::Sin(phi); |
1208 | Double_t px2 = pt2 * TMath::Cos(phi); |
1209 | Double_t py2 = pt2 * TMath::Sin(phi); |
1210 | |
1211 | fPyjets->P[0][iGlu] = px1; |
1212 | fPyjets->P[1][iGlu] = py1; |
1213 | fPyjets->P[2][iGlu] = pz1; |
1214 | fPyjets->P[3][iGlu] = pst; |
1215 | fPyjets->P[4][iGlu] = 0.; |
1216 | |
4e383037 |
1217 | fPyjets->K[0][iGlu] = 1 ; |
0f482ae4 |
1218 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1219 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1220 | fPyjets->K[3][iGlu] = -1; |
1221 | fPyjets->K[4][iGlu] = -1; |
1222 | |
1223 | fPyjets->P[0][iGlu+1] = px2; |
1224 | fPyjets->P[1][iGlu+1] = py2; |
1225 | fPyjets->P[2][iGlu+1] = pz2; |
1226 | fPyjets->P[3][iGlu+1] = pst; |
1227 | fPyjets->P[4][iGlu+1] = 0.; |
1228 | |
4e383037 |
1229 | fPyjets->K[0][iGlu+1] = 1; |
1230 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1; |
0f482ae4 |
1231 | fPyjets->K[1][iGlu+1] = 21; |
4e383037 |
1232 | fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1233 | fPyjets->K[3][iGlu+1] = -1; |
1234 | fPyjets->K[4][iGlu+1] = -1; |
1235 | SetMSTU(1,0); |
1236 | SetMSTU(2,0); |
1237 | // |
1238 | // Boost back |
1239 | // |
1240 | Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz); |
1241 | } |
4e383037 |
1242 | /* |
1243 | for (Int_t ig = iGlu; ig < iGlu+ish; ig++) { |
1244 | Double_t px, py, pz; |
1245 | px = fPyjets->P[0][ig]; |
1246 | py = fPyjets->P[1][ig]; |
1247 | pz = fPyjets->P[2][ig]; |
1248 | TVector3 v(px, py, pz); |
1249 | v.RotateZ(-phiq[isys]); |
1250 | v.RotateY(-thetaq[isys]); |
1251 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z(); |
1252 | Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1253 | Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r)); |
1254 | if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.); |
1255 | Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1256 | pxs += jtKick * TMath::Cos(phiKick); |
1257 | pys += jtKick * TMath::Sin(phiKick); |
1258 | TVector3 w(pxs, pys, pzs); |
1259 | w.RotateY(thetaq[isys]); |
1260 | w.RotateZ(phiq[isys]); |
1261 | fPyjets->P[0][ig] = w.X(); |
1262 | fPyjets->P[1][ig] = w.Y(); |
1263 | fPyjets->P[2][ig] = w.Z(); |
1264 | fPyjets->P[2][ig] = w.Mag(); |
1265 | } |
1266 | */ |
1267 | } // kGluon |
1268 | |
6e90ad26 |
1269 | |
4e383037 |
1270 | // Check energy conservation |
0f482ae4 |
1271 | Double_t pxs = 0.; |
1272 | Double_t pys = 0.; |
1273 | Double_t pzs = 0.; |
1274 | Double_t es = 14000.; |
1275 | |
1276 | for (Int_t i = 0; i < numpart; i++) |
1277 | { |
1278 | kst = fPyjets->K[0][i]; |
1279 | if (kst != 1 && kst != 2) continue; |
1280 | pxs += fPyjets->P[0][i]; |
1281 | pys += fPyjets->P[1][i]; |
1282 | pzs += fPyjets->P[2][i]; |
1283 | es -= fPyjets->P[3][i]; |
1284 | } |
1285 | if (TMath::Abs(pxs) > 1.e-2 || |
1286 | TMath::Abs(pys) > 1.e-2 || |
1287 | TMath::Abs(pzs) > 1.e-1) { |
1288 | printf("%e %e %e %e\n", pxs, pys, pzs, es); |
4e383037 |
1289 | // Fatal("Quench()", "4-Momentum non-conservation"); |
452af8c7 |
1290 | } |
4e383037 |
1291 | |
1292 | } // end quenching loop (systems) |
6e90ad26 |
1293 | // Clean-up |
0f482ae4 |
1294 | for (Int_t i = 0; i < numpart; i++) |
1295 | { |
4e383037 |
1296 | imo = fPyjets->K[2][i]; |
1297 | if (imo > 1000) { |
1298 | fPyjets->K[2][i] = fPyjets->K[2][i] % 1000; |
1299 | } |
0f482ae4 |
1300 | } |
4e383037 |
1301 | // this->Pylist(1); |
0f482ae4 |
1302 | } // end quench |
90d7b703 |
1303 | |
992f2843 |
1304 | |
1305 | void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b) |
1306 | { |
1307 | // Igor Lokthine's quenching routine |
1308 | pyquen(a, ibf, b); |
1309 | } |
b280c4cc |
1310 | |
1311 | void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4]) |
1312 | { |
1313 | // Return event specific quenching parameters |
1314 | xp = fXJet; |
1315 | yp = fYJet; |
1316 | for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i]; |
1317 | |
1318 | } |
1319 | |
65f2626c |
1320 | |