fixed warnings
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
8d2cd130 35# define type_of_call
36#else
37# define pyclus PYCLUS
38# define pycell PYCELL
452af8c7 39# define pyrobo PYROBO
992f2843 40# define pyquen PYQUEN
16a82508 41# define pyevnw PYEVNW
8d2cd130 42# define type_of_call _stdcall
43#endif
44
45extern "C" void type_of_call pyclus(Int_t & );
46extern "C" void type_of_call pycell(Int_t & );
452af8c7 47extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
48extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 49extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 50extern "C" void type_of_call pyevnw(){;}
8d2cd130 51
52//_____________________________________________________________________________
53
54AliPythia* AliPythia::fgAliPythia=NULL;
55
e8a8adcd 56AliPythia::AliPythia():
57 fProcess(kPyMb),
58 fEcms(0.),
59 fStrucFunc(kCTEQ5L),
60 fXJet(0.),
61 fYJet(0.),
32c8e463 62 fNGmax(30),
63 fZmax(0.97),
e8a8adcd 64 fGlauber(0),
65 fQuenchingWeights(0)
8d2cd130 66{
67// Default Constructor
68//
69// Set random number
7cdba479 70 if (!AliPythiaRndm::GetPythiaRandom())
71 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 72 fGlauber = 0;
73 fQuenchingWeights = 0;
8d2cd130 74}
75
e8a8adcd 76AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 77 TPythia6(pythia),
78 AliRndm(pythia),
e8a8adcd 79 fProcess(kPyMb),
80 fEcms(0.),
81 fStrucFunc(kCTEQ5L),
82 fXJet(0.),
83 fYJet(0.),
32c8e463 84 fNGmax(30),
85 fZmax(0.97),
e8a8adcd 86 fGlauber(0),
87 fQuenchingWeights(0)
88{
89 // Copy Constructor
90 pythia.Copy(*this);
91}
92
8d2cd130 93void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
94{
95// Initialise the process to generate
7cdba479 96 if (!AliPythiaRndm::GetPythiaRandom())
97 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 98
99 fProcess = process;
100 fEcms = energy;
101 fStrucFunc = strucfunc;
1d5b1b20 102//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 103 SetMDCY(Pycomp(111) ,1,0); // pi0
104 SetMDCY(Pycomp(310) ,1,0); // K0S
105 SetMDCY(Pycomp(3122),1,0); // kLambda
106 SetMDCY(Pycomp(3112),1,0); // sigma -
107 SetMDCY(Pycomp(3212),1,0); // sigma 0
108 SetMDCY(Pycomp(3222),1,0); // sigma +
109 SetMDCY(Pycomp(3312),1,0); // xi -
110 SetMDCY(Pycomp(3322),1,0); // xi 0
111 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 112 // Select structure function
8d2cd130 113 SetMSTP(52,2);
e2de0ce1 114 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 115 // Particles produced in string fragmentation point directly to either of the two endpoints
116 // of the string (depending in the side they were generated from).
117 SetMSTU(16,2);
118
8d2cd130 119//
120// Pythia initialisation for selected processes//
121//
122// Make MSEL clean
123//
124 for (Int_t i=1; i<= 200; i++) {
125 SetMSUB(i,0);
126 }
127// select charm production
128 switch (process)
129 {
65f2626c 130 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
131// Multiple interactions on.
132 SetMSTP(81,1);
133// Double Gaussian matter distribution.
134 SetMSTP(82,4);
135 SetPARP(83,0.5);
136 SetPARP(84,0.4);
137// pT0.
138 SetPARP(82,2.0);
139// Reference energy for pT0 and energy rescaling pace.
140 SetPARP(89,1800);
141 SetPARP(90,0.25);
142// String drawing almost completely minimizes string length.
143 SetPARP(85,0.9);
144 SetPARP(86,0.95);
145// ISR and FSR activity.
146 SetPARP(67,4);
147 SetPARP(71,4);
148// Lambda_FSR scale.
149 SetPARJ(81,0.29);
150 break;
151 case kPyOldUEQ2ordered2:
152// Old underlying events with Q2 ordered QCD processes
153// Multiple interactions on.
154 SetMSTP(81,1);
155// Double Gaussian matter distribution.
156 SetMSTP(82,4);
157 SetPARP(83,0.5);
158 SetPARP(84,0.4);
159// pT0.
160 SetPARP(82,2.0);
161// Reference energy for pT0 and energy rescaling pace.
162 SetPARP(89,1800);
163 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
164// String drawing almost completely minimizes string length.
165 SetPARP(85,0.9);
166 SetPARP(86,0.95);
167// ISR and FSR activity.
168 SetPARP(67,4);
169 SetPARP(71,4);
170// Lambda_FSR scale.
171 SetPARJ(81,0.29);
172 break;
173 case kPyOldPopcorn:
174// Old production mechanism: Old Popcorn
175 SetMSEL(1);
176 SetMSTJ(12,3);
177// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
178 SetMSTP(88,2);
179// (D=1)see can be used to form baryons (BARYON JUNCTION)
180 SetMSTJ(1,1);
e0e89f40 181 AtlasTuning();
65f2626c 182 break;
8d2cd130 183 case kPyCharm:
184 SetMSEL(4);
8d2cd130 185// heavy quark masses
186
187 SetPMAS(4,1,1.2);
8d2cd130 188//
189// primordial pT
190 SetMSTP(91,1);
191 SetPARP(91,1.);
192 SetPARP(93,5.);
193//
194 break;
195 case kPyBeauty:
196 SetMSEL(5);
197 SetPMAS(5,1,4.75);
8d2cd130 198 break;
199 case kPyJpsi:
200 SetMSEL(0);
201// gg->J/Psi g
202 SetMSUB(86,1);
203 break;
204 case kPyJpsiChi:
205 SetMSEL(0);
206// gg->J/Psi g
207 SetMSUB(86,1);
208// gg-> chi_0c g
209 SetMSUB(87,1);
210// gg-> chi_1c g
211 SetMSUB(88,1);
212// gg-> chi_2c g
213 SetMSUB(89,1);
214 break;
215 case kPyCharmUnforced:
216 SetMSEL(0);
217// gq->qg
218 SetMSUB(28,1);
219// gg->qq
220 SetMSUB(53,1);
221// gg->gg
222 SetMSUB(68,1);
223 break;
224 case kPyBeautyUnforced:
225 SetMSEL(0);
226// gq->qg
227 SetMSUB(28,1);
228// gg->qq
229 SetMSUB(53,1);
230// gg->gg
231 SetMSUB(68,1);
232 break;
233 case kPyMb:
234// Minimum Bias pp-Collisions
235//
236//
237// select Pythia min. bias model
238 SetMSEL(0);
511db649 239 SetMSUB(92,1); // single diffraction AB-->XB
240 SetMSUB(93,1); // single diffraction AB-->AX
241 SetMSUB(94,1); // double diffraction
242 SetMSUB(95,1); // low pt production
243
e0e89f40 244 AtlasTuning();
511db649 245 break;
04081a91 246
247 case kPyMbWithDirectPhoton:
248// Minimum Bias pp-Collisions with direct photon processes added
249//
250//
251// select Pythia min. bias model
252 SetMSEL(0);
253 SetMSUB(92,1); // single diffraction AB-->XB
254 SetMSUB(93,1); // single diffraction AB-->AX
255 SetMSUB(94,1); // double diffraction
256 SetMSUB(95,1); // low pt production
257
258 SetMSUB(14,1); //
259 SetMSUB(18,1); //
260 SetMSUB(29,1); //
261 SetMSUB(114,1); //
262 SetMSUB(115,1); //
263
264
265 AtlasTuning();
266 break;
267
f529e69b 268 case kPyMbDefault:
269// Minimum Bias pp-Collisions
270//
271//
272// select Pythia min. bias model
273 SetMSEL(0);
274 SetMSUB(92,1); // single diffraction AB-->XB
275 SetMSUB(93,1); // single diffraction AB-->AX
276 SetMSUB(94,1); // double diffraction
277 SetMSUB(95,1); // low pt production
278
279 break;
0a0cbcfd 280 case kPyLhwgMb:
281// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
282// -> Pythia 6.3 or above is needed
283//
284 SetMSEL(0);
285 SetMSUB(92,1); // single diffraction AB-->XB
286 SetMSUB(93,1); // single diffraction AB-->AX
287 SetMSUB(94,1); // double diffraction
288 SetMSUB(95,1); // low pt production
289
e2de0ce1 290 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 291 SetMSTP(52,2);
292 SetMSTP(68,1);
293 SetMSTP(70,2);
294 SetMSTP(81,1); // Multiple Interactions ON
295 SetMSTP(82,4); // Double Gaussian Model
296 SetMSTP(88,1);
297
298 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
299 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
300 SetPARP(84,0.5); // Core radius
301 SetPARP(85,0.9); // Regulates gluon prod. mechanism
302 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
303
304 break;
8d2cd130 305 case kPyMbNonDiffr:
306// Minimum Bias pp-Collisions
307//
308//
309// select Pythia min. bias model
310 SetMSEL(0);
511db649 311 SetMSUB(95,1); // low pt production
0f482ae4 312
e0e89f40 313 AtlasTuning();
8d2cd130 314 break;
d7de4a67 315 case kPyMbMSEL1:
316 ConfigHeavyFlavor();
317// Intrinsic <kT^2>
318 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
319 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
320 SetPARP(93,5.); // Upper cut-off
321// Set Q-quark mass
322 SetPMAS(4,1,1.2); // Charm quark mass
323 SetPMAS(5,1,4.78); // Beauty quark mass
324 SetPARP(71,4.); // Defaut value
325// Atlas Tuning
326 AtlasTuning();
327 break;
8d2cd130 328 case kPyJets:
329//
330// QCD Jets
331//
332 SetMSEL(1);
65f2626c 333 // Pythia Tune A (CDF)
334 //
4167b79f 335 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 336 SetMSTP(82,4); // Double Gaussian Model
337 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
338 SetPARP(84,0.4); // Core radius
339 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
340 SetPARP(86,0.95); // Regulates gluon prod. mechanism
341 SetPARP(89,1800.); // [GeV] Ref. energy
342 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
343 break;
8d2cd130 344 case kPyDirectGamma:
345 SetMSEL(10);
346 break;
adf4d898 347 case kPyCharmPbPbMNR:
348 case kPyD0PbPbMNR:
90d7b703 349 case kPyDPlusPbPbMNR:
e0e89f40 350 case kPyDPlusStrangePbPbMNR:
90d7b703 351 // Tuning of Pythia parameters aimed to get a resonable agreement
352 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
353 // c-cbar single inclusive and double differential distributions.
354 // This parameter settings are meant to work with Pb-Pb collisions
355 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
356 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
357 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 358 ConfigHeavyFlavor();
90d7b703 359 // Intrinsic <kT>
360 SetMSTP(91,1);
361 SetPARP(91,1.304);
362 SetPARP(93,6.52);
90d7b703 363 // Set c-quark mass
364 SetPMAS(4,1,1.2);
90d7b703 365 break;
adf4d898 366 case kPyCharmpPbMNR:
367 case kPyD0pPbMNR:
90d7b703 368 case kPyDPluspPbMNR:
e0e89f40 369 case kPyDPlusStrangepPbMNR:
90d7b703 370 // Tuning of Pythia parameters aimed to get a resonable agreement
371 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
372 // c-cbar single inclusive and double differential distributions.
373 // This parameter settings are meant to work with p-Pb collisions
374 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
375 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
376 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 377 ConfigHeavyFlavor();
90d7b703 378 // Intrinsic <kT>
3dc3ec94 379 SetMSTP(91,1);
380 SetPARP(91,1.16);
381 SetPARP(93,5.8);
382
90d7b703 383 // Set c-quark mass
3dc3ec94 384 SetPMAS(4,1,1.2);
90d7b703 385 break;
adf4d898 386 case kPyCharmppMNR:
387 case kPyD0ppMNR:
90d7b703 388 case kPyDPlusppMNR:
e0e89f40 389 case kPyDPlusStrangeppMNR:
90d7b703 390 // Tuning of Pythia parameters aimed to get a resonable agreement
391 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
392 // c-cbar single inclusive and double differential distributions.
393 // This parameter settings are meant to work with pp collisions
394 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
395 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
396 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 397 ConfigHeavyFlavor();
90d7b703 398 // Intrinsic <kT^2>
3dc3ec94 399 SetMSTP(91,1);
400 SetPARP(91,1.);
401 SetPARP(93,5.);
402
90d7b703 403 // Set c-quark mass
3dc3ec94 404 SetPMAS(4,1,1.2);
90d7b703 405 break;
e0e89f40 406 case kPyCharmppMNRwmi:
407 // Tuning of Pythia parameters aimed to get a resonable agreement
408 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
409 // c-cbar single inclusive and double differential distributions.
410 // This parameter settings are meant to work with pp collisions
411 // and with kCTEQ5L PDFs.
412 // Added multiple interactions according to ATLAS tune settings.
413 // To get a "reasonable" agreement with MNR results, events have to be
414 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
415 // set to 2.76 GeV.
416 // To get a "perfect" agreement with MNR results, events have to be
417 // generated in four ptHard bins with the following relative
418 // normalizations:
419 // 2.76-3 GeV: 25%
420 // 3-4 GeV: 40%
421 // 4-8 GeV: 29%
422 // >8 GeV: 6%
423 ConfigHeavyFlavor();
424 // Intrinsic <kT^2>
425 SetMSTP(91,1);
426 SetPARP(91,1.);
427 SetPARP(93,5.);
428
429 // Set c-quark mass
430 SetPMAS(4,1,1.2);
431 AtlasTuning();
432 break;
adf4d898 433 case kPyBeautyPbPbMNR:
8d2cd130 434 // Tuning of Pythia parameters aimed to get a resonable agreement
435 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
436 // b-bbar single inclusive and double differential distributions.
437 // This parameter settings are meant to work with Pb-Pb collisions
438 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
439 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
440 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 441 ConfigHeavyFlavor();
8d2cd130 442 // QCD scales
3dc3ec94 443 SetPARP(67,1.0);
444 SetPARP(71,1.0);
adf4d898 445 // Intrinsic <kT>
3dc3ec94 446 SetMSTP(91,1);
447 SetPARP(91,2.035);
448 SetPARP(93,10.17);
8d2cd130 449 // Set b-quark mass
3dc3ec94 450 SetPMAS(5,1,4.75);
8d2cd130 451 break;
adf4d898 452 case kPyBeautypPbMNR:
453 // Tuning of Pythia parameters aimed to get a resonable agreement
454 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
455 // b-bbar single inclusive and double differential distributions.
456 // This parameter settings are meant to work with p-Pb collisions
457 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
458 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
459 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 460 ConfigHeavyFlavor();
adf4d898 461 // QCD scales
3dc3ec94 462 SetPARP(67,1.0);
463 SetPARP(71,1.0);
adf4d898 464 // Intrinsic <kT>
3dc3ec94 465 SetMSTP(91,1);
466 SetPARP(91,1.60);
467 SetPARP(93,8.00);
adf4d898 468 // Set b-quark mass
3dc3ec94 469 SetPMAS(5,1,4.75);
adf4d898 470 break;
471 case kPyBeautyppMNR:
472 // Tuning of Pythia parameters aimed to get a resonable agreement
473 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
474 // b-bbar single inclusive and double differential distributions.
475 // This parameter settings are meant to work with pp collisions
476 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
477 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
478 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 479 ConfigHeavyFlavor();
adf4d898 480 // QCD scales
3dc3ec94 481 SetPARP(67,1.0);
482 SetPARP(71,1.0);
483
484 // Intrinsic <kT>
485 SetMSTP(91,1);
486 SetPARP(91,1.);
487 SetPARP(93,5.);
488
489 // Set b-quark mass
490 SetPMAS(5,1,4.75);
adf4d898 491 break;
e0e89f40 492 case kPyBeautyppMNRwmi:
493 // Tuning of Pythia parameters aimed to get a resonable agreement
494 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
495 // b-bbar single inclusive and double differential distributions.
496 // This parameter settings are meant to work with pp collisions
497 // and with kCTEQ5L PDFs.
498 // Added multiple interactions according to ATLAS tune settings.
499 // To get a "reasonable" agreement with MNR results, events have to be
500 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
501 // set to 2.76 GeV.
502 // To get a "perfect" agreement with MNR results, events have to be
503 // generated in four ptHard bins with the following relative
504 // normalizations:
505 // 2.76-4 GeV: 5%
506 // 4-6 GeV: 31%
507 // 6-8 GeV: 28%
508 // >8 GeV: 36%
509 ConfigHeavyFlavor();
510 // QCD scales
511 SetPARP(67,1.0);
512 SetPARP(71,1.0);
513
514 // Intrinsic <kT>
515 SetMSTP(91,1);
516 SetPARP(91,1.);
517 SetPARP(93,5.);
518
519 // Set b-quark mass
520 SetPMAS(5,1,4.75);
521
522 AtlasTuning();
523 break;
589380c6 524 case kPyW:
525
526 //Inclusive production of W+/-
527 SetMSEL(0);
528 //f fbar -> W+
529 SetMSUB(2,1);
530 // //f fbar -> g W+
531 // SetMSUB(16,1);
532 // //f fbar -> gamma W+
533 // SetMSUB(20,1);
534 // //f g -> f W+
535 // SetMSUB(31,1);
536 // //f gamma -> f W+
537 // SetMSUB(36,1);
538
539 // Initial/final parton shower on (Pythia default)
540 // With parton showers on we are generating "W inclusive process"
541 SetMSTP(61,1); //Initial QCD & QED showers on
542 SetMSTP(71,1); //Final QCD & QED showers on
543
544 break;
0f6ee828 545
546 case kPyZ:
547
548 //Inclusive production of Z
549 SetMSEL(0);
550 //f fbar -> Z/gamma
551 SetMSUB(1,1);
552
553 // // f fbar -> g Z/gamma
554 // SetMSUB(15,1);
555 // // f fbar -> gamma Z/gamma
556 // SetMSUB(19,1);
557 // // f g -> f Z/gamma
558 // SetMSUB(30,1);
559 // // f gamma -> f Z/gamma
560 // SetMSUB(35,1);
561
562 //only Z included, not gamma
563 SetMSTP(43,2);
564
565 // Initial/final parton shower on (Pythia default)
566 // With parton showers on we are generating "Z inclusive process"
567 SetMSTP(61,1); //Initial QCD & QED showers on
568 SetMSTP(71,1); //Final QCD & QED showers on
569
570 break;
571
8d2cd130 572 }
573//
574// Initialize PYTHIA
575 SetMSTP(41,1); // all resonance decays switched on
8d2cd130 576 Initialize("CMS","p","p",fEcms);
4167b79f 577
8d2cd130 578}
579
580Int_t AliPythia::CheckedLuComp(Int_t kf)
581{
582// Check Lund particle code (for debugging)
583 Int_t kc=Pycomp(kf);
584 printf("\n Lucomp kf,kc %d %d",kf,kc);
585 return kc;
586}
587
20e47f08 588void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 589{
590// Treat protons as inside nuclei with mass numbers a1 and a2
591// The MSTP array in the PYPARS common block is used to enable and
592// select the nuclear structure functions.
593// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
594// =1: internal PYTHIA acording to MSTP(51)
595// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
596// If the following mass number both not equal zero, nuclear corrections of the stf are used.
597// MSTP(192) : Mass number of nucleus side 1
598// MSTP(193) : Mass number of nucleus side 2
20e47f08 599// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 600 SetMSTP(52,2);
601 SetMSTP(192, a1);
20e47f08 602 SetMSTP(193, a2);
603 SetMSTP(194, pdf);
8d2cd130 604}
605
606
607AliPythia* AliPythia::Instance()
608{
609// Set random number generator
610 if (fgAliPythia) {
611 return fgAliPythia;
612 } else {
613 fgAliPythia = new AliPythia();
614 return fgAliPythia;
615 }
616}
617
618void AliPythia::PrintParticles()
619{
620// Print list of particl properties
621 Int_t np = 0;
c31f1d37 622 char* name = new char[16];
8d2cd130 623 for (Int_t kf=0; kf<1000000; kf++) {
624 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 625 Int_t kc = Pycomp(c*kf);
626 if (kc) {
627 Float_t mass = GetPMAS(kc,1);
628 Float_t width = GetPMAS(kc,2);
629 Float_t tau = GetPMAS(kc,4);
c31f1d37 630
8d2cd130 631 Pyname(kf,name);
632
633 np++;
634
635 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
636 c*kf, name, mass, width, tau);
637 }
638 }
639 }
640 printf("\n Number of particles %d \n \n", np);
641}
642
643void AliPythia::ResetDecayTable()
644{
645// Set default values for pythia decay switches
646 Int_t i;
647 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
648 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
649}
650
651void AliPythia::SetDecayTable()
652{
653// Set default values for pythia decay switches
654//
655 Int_t i;
656 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
657 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
658}
659
660void AliPythia::Pyclus(Int_t& njet)
661{
662// Call Pythia clustering algorithm
663//
664 pyclus(njet);
665}
666
667void AliPythia::Pycell(Int_t& njet)
668{
669// Call Pythia jet reconstruction algorithm
670//
671 pycell(njet);
672}
673
452af8c7 674void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
675{
676// Call Pythia jet reconstruction algorithm
677//
452af8c7 678 pyshow(ip1, ip2, qmax);
679}
680
681void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
682{
683 pyrobo(imi, ima, the, phi, bex, bey, bez);
684}
685
686
687
32c8e463 688void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 689{
690// Initializes
691// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
692// (2) The nuclear geometry using the Glauber Model
693//
6b435cde 694
18b7a4a1 695 fGlauber = AliFastGlauber::Instance();
0f482ae4 696 fGlauber->Init(2);
697 fGlauber->SetCentralityClass(cMin, cMax);
698
699 fQuenchingWeights = new AliQuenchingWeights();
700 fQuenchingWeights->InitMult();
86b6ad68 701 fQuenchingWeights->SetK(k);
0f482ae4 702 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 703 fNGmax = ngmax;
704 fZmax = zmax;
705
0f482ae4 706}
707
708
452af8c7 709void AliPythia::Quench()
710{
711//
712//
713// Simple Jet Quenching routine:
714// =============================
715// The jet formed by all final state partons radiated by the parton created
0f482ae4 716// in the hard collisions is quenched by a factor (1-z) using light cone variables in
717// the initial parton reference frame:
452af8c7 718// (E + p_z)new = (1-z) (E + p_z)old
719//
0f482ae4 720//
721//
722//
452af8c7 723// The lost momentum is first balanced by one gluon with virtuality > 0.
724// Subsequently the gluon splits to yield two gluons with E = p.
725//
0f482ae4 726//
727//
4e383037 728 static Float_t eMean = 0.;
729 static Int_t icall = 0;
0f482ae4 730
c2c598a3 731 Double_t p0[4][5];
732 Double_t p1[4][5];
733 Double_t p2[4][5];
734 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 735
736 Int_t numpart = fPyjets->N;
86b6ad68 737 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 738 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
739 Bool_t quenched[4];
b280c4cc 740 Double_t wjtKick[4];
c2c598a3 741 Int_t nGluon[4];
86b6ad68 742 Int_t qPdg[4];
0f482ae4 743 Int_t imo, kst, pdg;
b280c4cc 744
511db649 745//
c2c598a3 746// Sore information about Primary partons
747//
748// j =
749// 0, 1 partons from hard scattering
750// 2, 3 partons from initial state radiation
751//
752 for (Int_t i = 2; i <= 7; i++) {
753 Int_t j = 0;
754 // Skip gluons that participate in hard scattering
755 if (i == 4 || i == 5) continue;
756 // Gluons from hard Scattering
757 if (i == 6 || i == 7) {
758 j = i - 6;
759 pxq[j] = fPyjets->P[0][i];
760 pyq[j] = fPyjets->P[1][i];
761 pzq[j] = fPyjets->P[2][i];
762 eq[j] = fPyjets->P[3][i];
763 mq[j] = fPyjets->P[4][i];
764 } else {
765 // Gluons from initial state radiation
766 //
767 // Obtain 4-momentum vector from difference between original parton and parton after gluon
768 // radiation. Energy is calculated independently because initial state radition does not
769 // conserve strictly momentum and energy for each partonic system independently.
770 //
771 // Not very clean. Should be improved !
772 //
773 //
774 j = i;
775 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
776 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
777 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
778 mq[j] = fPyjets->P[4][i];
779 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
780 }
781//
782// Calculate some kinematic variables
511db649 783//
4e383037 784 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 785 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
786 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
787 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
788 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 789 qPdg[j] = fPyjets->K[1][i];
790 }
791
792 Double_t int0[4];
793 Double_t int1[4];
86b6ad68 794
b280c4cc 795 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
796
86b6ad68 797 for (Int_t j = 0; j < 4; j++) {
c2c598a3 798 //
799 // Quench only central jets and with E > 10.
800 //
86b6ad68 801
802
803 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
804 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
805
c2c598a3 806 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 807 fZQuench[j] = 0.;
0f482ae4 808 } else {
c2c598a3 809 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 810 icall ++;
811 eMean += eloss;
812 }
0f482ae4 813 //
814 // Extra pt
86b6ad68 815 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
816 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 817 //
818 // Fractional energy loss
b280c4cc 819 fZQuench[j] = eloss / eq[j];
0f482ae4 820 //
821 // Avoid complete loss
822 //
1044c4d8 823 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 824 //
825 // Some debug printing
86b6ad68 826
827
bf9bb016 828// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
829// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 830
b280c4cc 831// fZQuench[j] = 0.8;
832// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 833 }
4e383037 834
b280c4cc 835 quenched[j] = (fZQuench[j] > 0.01);
4e383037 836 } // primary partons
c2c598a3 837
b280c4cc 838
839
6e90ad26 840 Double_t pNew[1000][4];
841 Int_t kNew[1000];
842 Int_t icount = 0;
b280c4cc 843 Double_t zquench[4];
844
6e90ad26 845//
4e383037 846// System Loop
c2c598a3 847 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 848// Skip to next system if not quenched.
4e383037 849 if (!quenched[isys]) continue;
850
b280c4cc 851 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 852 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 853 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 854 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 855
4e383037 856
857
858 Int_t igMin = -1;
859 Int_t igMax = -1;
860 Double_t pg[4] = {0., 0., 0., 0.};
861
862//
863// Loop on radiation events
864
865 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 866 while (1) {
867 icount = 0;
868 for (Int_t k = 0; k < 4; k++)
869 {
870 p0[isys][k] = 0.;
871 p1[isys][k] = 0.;
872 p2[isys][k] = 0.;
873 }
874// Loop over partons
875 for (Int_t i = 0; i < numpart; i++)
876 {
877 imo = fPyjets->K[2][i];
878 kst = fPyjets->K[0][i];
879 pdg = fPyjets->K[1][i];
880
881
882
0f482ae4 883// Quarks and gluons only
6e90ad26 884 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 885// Particles from hard scattering only
c2c598a3 886
6e90ad26 887 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 888 Int_t imom = imo % 1000;
889 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
890 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
891
6e90ad26 892
0f482ae4 893// Skip comment lines
6e90ad26 894 if (kst != 1 && kst != 2) continue;
0f482ae4 895//
896// Parton kinematic
6e90ad26 897 px = fPyjets->P[0][i];
898 py = fPyjets->P[1][i];
899 pz = fPyjets->P[2][i];
900 e = fPyjets->P[3][i];
901 m = fPyjets->P[4][i];
902 pt = TMath::Sqrt(px * px + py * py);
903 p = TMath::Sqrt(px * px + py * py + pz * pz);
904 phi = TMath::Pi() + TMath::ATan2(-py, -px);
905 theta = TMath::ATan2(pt, pz);
906
0f482ae4 907//
c2c598a3 908// Save 4-momentum sum for balancing
909 Int_t index = isys;
6e90ad26 910
911 p0[index][0] += px;
912 p0[index][1] += py;
913 p0[index][2] += pz;
914 p0[index][3] += e;
6e90ad26 915
916 klast[index] = i;
917
0f482ae4 918//
919// Fractional energy loss
b280c4cc 920 Double_t z = zquench[index];
4e383037 921
c2c598a3 922
4e383037 923// Don't fully quench radiated gluons
924//
925 if (imo > 1000) {
926// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
927//
928
c2c598a3 929 z = 0.02;
4e383037 930 }
c2c598a3 931// printf("z: %d %f\n", imo, z);
932
4e383037 933
934//
6e90ad26 935
936 //
937 //
938 // Transform into frame in which initial parton is along z-axis
939 //
940 TVector3 v(px, py, pz);
941 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
942 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
943
944 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
945 Double_t mt2 = jt * jt + m * m;
946 Double_t zmax = 1.;
947 //
948 // Kinematic limit on z
949 //
4e383037 950 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 951 //
952 // Change light-cone kinematics rel. to initial parton
953 //
954 Double_t eppzOld = e + pl;
955 Double_t empzOld = e - pl;
956
957 Double_t eppzNew = (1. - z) * eppzOld;
958 Double_t empzNew = empzOld - mt2 * z / eppzOld;
959 Double_t eNew = 0.5 * (eppzNew + empzNew);
960 Double_t plNew = 0.5 * (eppzNew - empzNew);
961
962 Double_t jtNew;
963 //
964 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
965 Double_t mt2New = eppzNew * empzNew;
966 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 967 if (z < zmax) {
968 if (m * m > mt2New) {
969 //
970 // This should not happen
971 //
972 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
973 jtNew = 0;
974 } else {
975 jtNew = TMath::Sqrt(mt2New - m * m);
976 }
6e90ad26 977 } else {
4e383037 978 // If pT is to small (probably a leading massive particle) we scale only the energy
979 // This can cause negative masses of the radiated gluon
980 // Let's hope for the best ...
981 jtNew = jt;
982 eNew = TMath::Sqrt(plNew * plNew + mt2);
983
6e90ad26 984 }
6e90ad26 985 //
986 // Calculate new px, py
987 //
b07be423 988 Double_t pxNew = 0;
989 Double_t pyNew = 0;
6e90ad26 990
b07be423 991 if (jt>0) {
6b118b3c 992 pxNew = jtNew / jt * pxs;
993 pyNew = jtNew / jt * pys;
b07be423 994 }
6e90ad26 995// Double_t dpx = pxs - pxNew;
996// Double_t dpy = pys - pyNew;
997// Double_t dpz = pl - plNew;
998// Double_t de = e - eNew;
999// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1000// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1001// printf("New mass (2) %e %e \n", pxNew, pyNew);
1002 //
1003 // Rotate back
1004 //
1005 TVector3 w(pxNew, pyNew, plNew);
1006 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1007 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1008
1009 p1[index][0] += pxNew;
1010 p1[index][1] += pyNew;
1011 p1[index][2] += plNew;
1012 p1[index][3] += eNew;
1013 //
1014 // Updated 4-momentum vectors
1015 //
1016 pNew[icount][0] = pxNew;
1017 pNew[icount][1] = pyNew;
1018 pNew[icount][2] = plNew;
1019 pNew[icount][3] = eNew;
1020 kNew[icount] = i;
1021 icount++;
1022 } // parton loop
0f482ae4 1023 //
6e90ad26 1024 // Check if there was phase-space for quenching
0f482ae4 1025 //
0f482ae4 1026
6e90ad26 1027 if (icount == 0) quenched[isys] = kFALSE;
1028 if (!quenched[isys]) break;
1029
1030 for (Int_t j = 0; j < 4; j++)
1031 {
1032 p2[isys][j] = p0[isys][j] - p1[isys][j];
1033 }
1034 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1035 if (p2[isys][4] > 0.) {
1036 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1037 break;
1038 } else {
b280c4cc 1039 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1040 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1041 if (p2[isys][4] < -0.01) {
4e383037 1042 printf("Negative mass squared !\n");
1043 // Here we have to put the gluon back to mass shell
1044 // This will lead to a small energy imbalance
1045 p2[isys][4] = 0.;
1046 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1047 break;
6e90ad26 1048 } else {
1049 p2[isys][4] = 0.;
1050 break;
1051 }
1052 }
6e90ad26 1053 /*
6e90ad26 1054 zHeavy *= 0.98;
1055 printf("zHeavy lowered to %f\n", zHeavy);
1056 if (zHeavy < 0.01) {
1057 printf("No success ! \n");
1058 icount = 0;
1059 quenched[isys] = kFALSE;
1060 break;
1061 }
4e383037 1062 */
1063 } // iteration on z (while)
1064
6e90ad26 1065// Update event record
1066 for (Int_t k = 0; k < icount; k++) {
1067// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1068 fPyjets->P[0][kNew[k]] = pNew[k][0];
1069 fPyjets->P[1][kNew[k]] = pNew[k][1];
1070 fPyjets->P[2][kNew[k]] = pNew[k][2];
1071 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1072 }
4e383037 1073 //
1074 // Add the gluons
1075 //
1076 Int_t ish = 0;
1837e95c 1077 Int_t iGlu;
4e383037 1078 if (!quenched[isys]) continue;
0f482ae4 1079//
1080// Last parton from shower i
4e383037 1081 Int_t in = klast[isys];
0f482ae4 1082//
1083// Continue if no parton in shower i selected
1084 if (in == -1) continue;
1085//
1086// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1087 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1088//
1089// Starting index
452af8c7 1090
4e383037 1091// jmin = in - 1;
0f482ae4 1092// How many additional gluons will be generated
1093 ish = 1;
4e383037 1094 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1095//
1096// Position of gluons
4e383037 1097 iGlu = numpart;
1098 if (iglu == 0) igMin = iGlu;
1099 igMax = iGlu;
0f482ae4 1100 numpart += ish;
1101 (fPyjets->N) += ish;
4e383037 1102
0f482ae4 1103 if (ish == 1) {
4e383037 1104 fPyjets->P[0][iGlu] = p2[isys][0];
1105 fPyjets->P[1][iGlu] = p2[isys][1];
1106 fPyjets->P[2][iGlu] = p2[isys][2];
1107 fPyjets->P[3][iGlu] = p2[isys][3];
1108 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1109
4e383037 1110 fPyjets->K[0][iGlu] = 1;
1111 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1112 fPyjets->K[1][iGlu] = 21;
4e383037 1113 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1114 fPyjets->K[3][iGlu] = -1;
1115 fPyjets->K[4][iGlu] = -1;
4e383037 1116
1117 pg[0] += p2[isys][0];
1118 pg[1] += p2[isys][1];
1119 pg[2] += p2[isys][2];
1120 pg[3] += p2[isys][3];
0f482ae4 1121 } else {
1122 //
1123 // Split gluon in rest frame.
1124 //
4e383037 1125 Double_t bx = p2[isys][0] / p2[isys][3];
1126 Double_t by = p2[isys][1] / p2[isys][3];
1127 Double_t bz = p2[isys][2] / p2[isys][3];
1128 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1129 //
1130 // Isotropic decay ????
1131 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1132 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1133 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1134
1135 Double_t pz1 = pst * cost;
1136 Double_t pz2 = -pst * cost;
1137 Double_t pt1 = pst * sint;
1138 Double_t pt2 = -pst * sint;
2ab330c9 1139 Double_t px1 = pt1 * TMath::Cos(phis);
1140 Double_t py1 = pt1 * TMath::Sin(phis);
1141 Double_t px2 = pt2 * TMath::Cos(phis);
1142 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1143
1144 fPyjets->P[0][iGlu] = px1;
1145 fPyjets->P[1][iGlu] = py1;
1146 fPyjets->P[2][iGlu] = pz1;
1147 fPyjets->P[3][iGlu] = pst;
1148 fPyjets->P[4][iGlu] = 0.;
1149
4e383037 1150 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1151 fPyjets->K[1][iGlu] = 21;
4e383037 1152 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1153 fPyjets->K[3][iGlu] = -1;
1154 fPyjets->K[4][iGlu] = -1;
1155
1156 fPyjets->P[0][iGlu+1] = px2;
1157 fPyjets->P[1][iGlu+1] = py2;
1158 fPyjets->P[2][iGlu+1] = pz2;
1159 fPyjets->P[3][iGlu+1] = pst;
1160 fPyjets->P[4][iGlu+1] = 0.;
1161
4e383037 1162 fPyjets->K[0][iGlu+1] = 1;
1163 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1164 fPyjets->K[1][iGlu+1] = 21;
4e383037 1165 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1166 fPyjets->K[3][iGlu+1] = -1;
1167 fPyjets->K[4][iGlu+1] = -1;
1168 SetMSTU(1,0);
1169 SetMSTU(2,0);
1170 //
1171 // Boost back
1172 //
1173 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1174 }
4e383037 1175/*
1176 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1177 Double_t px, py, pz;
1178 px = fPyjets->P[0][ig];
1179 py = fPyjets->P[1][ig];
1180 pz = fPyjets->P[2][ig];
1181 TVector3 v(px, py, pz);
1182 v.RotateZ(-phiq[isys]);
1183 v.RotateY(-thetaq[isys]);
1184 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1185 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1186 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1187 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1188 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1189 pxs += jtKick * TMath::Cos(phiKick);
1190 pys += jtKick * TMath::Sin(phiKick);
1191 TVector3 w(pxs, pys, pzs);
1192 w.RotateY(thetaq[isys]);
1193 w.RotateZ(phiq[isys]);
1194 fPyjets->P[0][ig] = w.X();
1195 fPyjets->P[1][ig] = w.Y();
1196 fPyjets->P[2][ig] = w.Z();
1197 fPyjets->P[2][ig] = w.Mag();
1198 }
1199*/
1200 } // kGluon
1201
6e90ad26 1202
4e383037 1203 // Check energy conservation
0f482ae4 1204 Double_t pxs = 0.;
1205 Double_t pys = 0.;
1206 Double_t pzs = 0.;
1207 Double_t es = 14000.;
1208
1209 for (Int_t i = 0; i < numpart; i++)
1210 {
1211 kst = fPyjets->K[0][i];
1212 if (kst != 1 && kst != 2) continue;
1213 pxs += fPyjets->P[0][i];
1214 pys += fPyjets->P[1][i];
1215 pzs += fPyjets->P[2][i];
1216 es -= fPyjets->P[3][i];
1217 }
1218 if (TMath::Abs(pxs) > 1.e-2 ||
1219 TMath::Abs(pys) > 1.e-2 ||
1220 TMath::Abs(pzs) > 1.e-1) {
1221 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1222// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1223 }
4e383037 1224
1225 } // end quenching loop (systems)
6e90ad26 1226// Clean-up
0f482ae4 1227 for (Int_t i = 0; i < numpart; i++)
1228 {
4e383037 1229 imo = fPyjets->K[2][i];
1230 if (imo > 1000) {
1231 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1232 }
0f482ae4 1233 }
4e383037 1234// this->Pylist(1);
0f482ae4 1235} // end quench
90d7b703 1236
992f2843 1237
1238void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1239{
1240 // Igor Lokthine's quenching routine
12cb0bc0 1241 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1242
992f2843 1243 pyquen(a, ibf, b);
1244}
b280c4cc 1245
12cb0bc0 1246void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1247{
1248 // Set the parameters for the PYQUEN package.
1249 // See comments in PyquenCommon.h
1250
1251
1252 PYQPAR.t0 = t0;
1253 PYQPAR.tau0 = tau0;
1254 PYQPAR.nf = nf;
1255 PYQPAR.iengl = iengl;
1256 PYQPAR.iangl = iangl;
1257}
1258
1259
16a82508 1260void AliPythia::Pyevnw()
1261{
1262 // New multiple interaction scenario
1263 pyevnw();
1264}
1265
b280c4cc 1266void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1267{
1268 // Return event specific quenching parameters
1269 xp = fXJet;
1270 yp = fYJet;
1271 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1272
1273}
1274
3dc3ec94 1275void AliPythia::ConfigHeavyFlavor()
1276{
1277 //
1278 // Default configuration for Heavy Flavor production
1279 //
1280 // All QCD processes
1281 //
1282 SetMSEL(1);
1283
1284 // No multiple interactions
1285 SetMSTP(81,0);
39c2e610 1286 SetPARP(81, 0.);
1287 SetPARP(82, 0.);
3dc3ec94 1288 // Initial/final parton shower on (Pythia default)
1289 SetMSTP(61,1);
1290 SetMSTP(71,1);
1291
1292 // 2nd order alpha_s
1293 SetMSTP(2,2);
1294
1295 // QCD scales
1296 SetMSTP(32,2);
1297 SetPARP(34,1.0);
1298}
e0e89f40 1299
1300void AliPythia::AtlasTuning()
1301{
1302 //
1303 // Configuration for the ATLAS tuning
e2de0ce1 1304 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
e0e89f40 1305 SetMSTP(81,1); // Multiple Interactions ON
1306 SetMSTP(82,4); // Double Gaussian Model
39c2e610 1307 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
e0e89f40 1308 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1309 SetPARP(89,1000.); // [GeV] Ref. energy
1310 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1311 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1312 SetPARP(84,0.5); // Core radius
1313 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1314 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1315 SetPARP(67,1); // Regulates Initial State Radiation
1316}
e8a8adcd 1317
1318AliPythia& AliPythia::operator=(const AliPythia& rhs)
1319{
1320// Assignment operator
1321 rhs.Copy(*this);
1322 return *this;
1323}
1324
1325 void AliPythia::Copy(TObject&) const
1326{
1327 //
1328 // Copy
1329 //
1330 Fatal("Copy","Not implemented!\n");
1331}