8d2cd130 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
7cdba479 |
16 | /* $Id$ */ |
8d2cd130 |
17 | |
18 | #include "AliPythia.h" |
7cdba479 |
19 | #include "AliPythiaRndm.h" |
0f482ae4 |
20 | #include "../FASTSIM/AliFastGlauber.h" |
21 | #include "../FASTSIM/AliQuenchingWeights.h" |
22 | #include "TVector3.h" |
8d2cd130 |
23 | |
24 | ClassImp(AliPythia) |
25 | |
26 | #ifndef WIN32 |
27 | # define pyclus pyclus_ |
28 | # define pycell pycell_ |
452af8c7 |
29 | # define pyshow pyshow_ |
30 | # define pyrobo pyrobo_ |
992f2843 |
31 | # define pyquen pyquen_ |
8d2cd130 |
32 | # define type_of_call |
33 | #else |
34 | # define pyclus PYCLUS |
35 | # define pycell PYCELL |
452af8c7 |
36 | # define pyrobo PYROBO |
992f2843 |
37 | # define pyquen PYQUEN |
8d2cd130 |
38 | # define type_of_call _stdcall |
39 | #endif |
40 | |
41 | extern "C" void type_of_call pyclus(Int_t & ); |
42 | extern "C" void type_of_call pycell(Int_t & ); |
452af8c7 |
43 | extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); |
44 | extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); |
992f2843 |
45 | extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &); |
8d2cd130 |
46 | |
47 | //_____________________________________________________________________________ |
48 | |
49 | AliPythia* AliPythia::fgAliPythia=NULL; |
50 | |
51 | AliPythia::AliPythia() |
52 | { |
53 | // Default Constructor |
54 | // |
55 | // Set random number |
7cdba479 |
56 | if (!AliPythiaRndm::GetPythiaRandom()) |
57 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
0f482ae4 |
58 | fGlauber = 0; |
59 | fQuenchingWeights = 0; |
8d2cd130 |
60 | } |
61 | |
62 | void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) |
63 | { |
64 | // Initialise the process to generate |
7cdba479 |
65 | if (!AliPythiaRndm::GetPythiaRandom()) |
66 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
67 | |
68 | fProcess = process; |
69 | fEcms = energy; |
70 | fStrucFunc = strucfunc; |
1d5b1b20 |
71 | //...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-. |
72 | SetMDCY(Pycomp(111) ,1,0); |
73 | SetMDCY(Pycomp(310) ,1,0); |
74 | SetMDCY(Pycomp(3122),1,0); |
75 | SetMDCY(Pycomp(3112),1,0); |
76 | SetMDCY(Pycomp(3212),1,0); |
77 | SetMDCY(Pycomp(3222),1,0); |
78 | SetMDCY(Pycomp(3312),1,0); |
79 | SetMDCY(Pycomp(3322),1,0); |
80 | SetMDCY(Pycomp(3334),1,0); |
81 | // select structure function |
8d2cd130 |
82 | SetMSTP(52,2); |
83 | SetMSTP(51,strucfunc); |
84 | // |
85 | // Pythia initialisation for selected processes// |
86 | // |
87 | // Make MSEL clean |
88 | // |
89 | for (Int_t i=1; i<= 200; i++) { |
90 | SetMSUB(i,0); |
91 | } |
92 | // select charm production |
93 | switch (process) |
94 | { |
95 | case kPyCharm: |
96 | SetMSEL(4); |
97 | // |
98 | // heavy quark masses |
99 | |
100 | SetPMAS(4,1,1.2); |
101 | SetMSTU(16,2); |
102 | // |
103 | // primordial pT |
104 | SetMSTP(91,1); |
105 | SetPARP(91,1.); |
106 | SetPARP(93,5.); |
107 | // |
108 | break; |
109 | case kPyBeauty: |
110 | SetMSEL(5); |
111 | SetPMAS(5,1,4.75); |
112 | SetMSTU(16,2); |
113 | break; |
114 | case kPyJpsi: |
115 | SetMSEL(0); |
116 | // gg->J/Psi g |
117 | SetMSUB(86,1); |
118 | break; |
119 | case kPyJpsiChi: |
120 | SetMSEL(0); |
121 | // gg->J/Psi g |
122 | SetMSUB(86,1); |
123 | // gg-> chi_0c g |
124 | SetMSUB(87,1); |
125 | // gg-> chi_1c g |
126 | SetMSUB(88,1); |
127 | // gg-> chi_2c g |
128 | SetMSUB(89,1); |
129 | break; |
130 | case kPyCharmUnforced: |
131 | SetMSEL(0); |
132 | // gq->qg |
133 | SetMSUB(28,1); |
134 | // gg->qq |
135 | SetMSUB(53,1); |
136 | // gg->gg |
137 | SetMSUB(68,1); |
138 | break; |
139 | case kPyBeautyUnforced: |
140 | SetMSEL(0); |
141 | // gq->qg |
142 | SetMSUB(28,1); |
143 | // gg->qq |
144 | SetMSUB(53,1); |
145 | // gg->gg |
146 | SetMSUB(68,1); |
147 | break; |
148 | case kPyMb: |
149 | // Minimum Bias pp-Collisions |
150 | // |
151 | // |
152 | // select Pythia min. bias model |
153 | SetMSEL(0); |
511db649 |
154 | SetMSUB(92,1); // single diffraction AB-->XB |
155 | SetMSUB(93,1); // single diffraction AB-->AX |
156 | SetMSUB(94,1); // double diffraction |
157 | SetMSUB(95,1); // low pt production |
158 | |
159 | // |
160 | // ATLAS Tuning |
161 | // |
c01c4118 |
162 | |
163 | SetMSTP(51, kCTEQ5L); // CTEQ5L pdf |
511db649 |
164 | SetMSTP(81,1); // Multiple Interactions ON |
165 | SetMSTP(82,4); // Double Gaussian Model |
166 | |
167 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
168 | SetPARP(89,1000.); // [GeV] Ref. energy |
169 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
170 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
171 | SetPARP(84,0.5); // Core radius |
172 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
173 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
174 | SetPARP(67,1); // Regulates Initial State Radiation |
175 | break; |
8d2cd130 |
176 | case kPyMbNonDiffr: |
177 | // Minimum Bias pp-Collisions |
178 | // |
179 | // |
180 | // select Pythia min. bias model |
181 | SetMSEL(0); |
511db649 |
182 | SetMSUB(95,1); // low pt production |
0f482ae4 |
183 | |
184 | // |
185 | // ATLAS Tuning |
186 | // |
511db649 |
187 | |
d682afd1 |
188 | SetMSTP(51,kCTEQ5L); // CTEQ5L pdf |
511db649 |
189 | SetMSTP(81,1); // Multiple Interactions ON |
190 | SetMSTP(82,4); // Double Gaussian Model |
191 | |
192 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
193 | SetPARP(89,1000.); // [GeV] Ref. energy |
194 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
195 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
196 | SetPARP(84,0.5); // Core radius |
197 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
198 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
199 | SetPARP(67,1); // Regulates Initial State Radiation |
8d2cd130 |
200 | break; |
201 | case kPyJets: |
202 | // |
203 | // QCD Jets |
204 | // |
205 | SetMSEL(1); |
206 | break; |
207 | case kPyDirectGamma: |
208 | SetMSEL(10); |
209 | break; |
adf4d898 |
210 | case kPyCharmPbPbMNR: |
211 | case kPyD0PbPbMNR: |
8d2cd130 |
212 | // Tuning of Pythia parameters aimed to get a resonable agreement |
213 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
214 | // c-cbar single inclusive and double differential distributions. |
215 | // This parameter settings are meant to work with Pb-Pb collisions |
adf4d898 |
216 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
8d2cd130 |
217 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
218 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
219 | |
220 | // All QCD processes |
221 | SetMSEL(1); |
222 | |
223 | // No multiple interactions |
224 | SetMSTP(81,0); |
225 | SetPARP(81,0.0); |
226 | SetPARP(82,0.0); |
227 | |
228 | // Initial/final parton shower on (Pythia default) |
229 | SetMSTP(61,1); |
230 | SetMSTP(71,1); |
231 | |
232 | // 2nd order alpha_s |
233 | SetMSTP(2,2); |
234 | |
235 | // QCD scales |
236 | SetMSTP(32,2); |
237 | SetPARP(34,1.0); |
238 | |
adf4d898 |
239 | // Intrinsic <kT> |
8d2cd130 |
240 | SetMSTP(91,1); |
241 | SetPARP(91,1.304); |
242 | SetPARP(93,6.52); |
243 | |
244 | // Set c-quark mass |
245 | SetPMAS(4,1,1.2); |
246 | |
90d7b703 |
247 | break; |
248 | case kPyDPlusPbPbMNR: |
249 | // Tuning of Pythia parameters aimed to get a resonable agreement |
250 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
251 | // c-cbar single inclusive and double differential distributions. |
252 | // This parameter settings are meant to work with Pb-Pb collisions |
253 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
254 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
255 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
256 | |
257 | // All QCD processes |
258 | SetMSEL(1); |
259 | |
260 | // No multiple interactions |
261 | SetMSTP(81,0); |
262 | SetPARP(81,0.0); |
263 | SetPARP(82,0.0); |
264 | |
265 | // Initial/final parton shower on (Pythia default) |
266 | SetMSTP(61,1); |
267 | SetMSTP(71,1); |
268 | |
269 | // 2nd order alpha_s |
270 | SetMSTP(2,2); |
271 | |
272 | // QCD scales |
273 | SetMSTP(32,2); |
274 | SetPARP(34,1.0); |
275 | |
276 | // Intrinsic <kT> |
277 | SetMSTP(91,1); |
278 | SetPARP(91,1.304); |
279 | SetPARP(93,6.52); |
280 | |
281 | // Set c-quark mass |
282 | SetPMAS(4,1,1.2); |
283 | |
8d2cd130 |
284 | break; |
adf4d898 |
285 | case kPyCharmpPbMNR: |
286 | case kPyD0pPbMNR: |
287 | // Tuning of Pythia parameters aimed to get a resonable agreement |
288 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
289 | // c-cbar single inclusive and double differential distributions. |
290 | // This parameter settings are meant to work with p-Pb collisions |
291 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
292 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
293 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
294 | |
295 | // All QCD processes |
296 | SetMSEL(1); |
297 | |
298 | // No multiple interactions |
299 | SetMSTP(81,0); |
300 | SetPARP(81,0.0); |
301 | SetPARP(82,0.0); |
302 | |
303 | // Initial/final parton shower on (Pythia default) |
304 | SetMSTP(61,1); |
305 | SetMSTP(71,1); |
306 | |
307 | // 2nd order alpha_s |
308 | SetMSTP(2,2); |
309 | |
310 | // QCD scales |
311 | SetMSTP(32,2); |
312 | SetPARP(34,1.0); |
313 | |
314 | // Intrinsic <kT> |
315 | SetMSTP(91,1); |
316 | SetPARP(91,1.16); |
317 | SetPARP(93,5.8); |
318 | |
319 | // Set c-quark mass |
320 | SetPMAS(4,1,1.2); |
321 | |
90d7b703 |
322 | break; |
323 | case kPyDPluspPbMNR: |
324 | // Tuning of Pythia parameters aimed to get a resonable agreement |
325 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
326 | // c-cbar single inclusive and double differential distributions. |
327 | // This parameter settings are meant to work with p-Pb collisions |
328 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
329 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
330 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
331 | |
332 | // All QCD processes |
333 | SetMSEL(1); |
334 | |
335 | // No multiple interactions |
336 | SetMSTP(81,0); |
337 | SetPARP(81,0.0); |
338 | SetPARP(82,0.0); |
339 | |
340 | // Initial/final parton shower on (Pythia default) |
341 | SetMSTP(61,1); |
342 | SetMSTP(71,1); |
343 | |
344 | // 2nd order alpha_s |
345 | SetMSTP(2,2); |
346 | |
347 | // QCD scales |
348 | SetMSTP(32,2); |
349 | SetPARP(34,1.0); |
350 | |
351 | // Intrinsic <kT> |
352 | SetMSTP(91,1); |
353 | SetPARP(91,1.16); |
354 | SetPARP(93,5.8); |
355 | |
356 | // Set c-quark mass |
357 | SetPMAS(4,1,1.2); |
358 | |
adf4d898 |
359 | break; |
360 | case kPyCharmppMNR: |
361 | case kPyD0ppMNR: |
362 | // Tuning of Pythia parameters aimed to get a resonable agreement |
363 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
364 | // c-cbar single inclusive and double differential distributions. |
365 | // This parameter settings are meant to work with pp collisions |
366 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
367 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
368 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
369 | |
370 | // All QCD processes |
371 | SetMSEL(1); |
372 | |
373 | // No multiple interactions |
374 | SetMSTP(81,0); |
375 | SetPARP(81,0.0); |
376 | SetPARP(82,0.0); |
377 | |
378 | // Initial/final parton shower on (Pythia default) |
379 | SetMSTP(61,1); |
380 | SetMSTP(71,1); |
381 | |
382 | // 2nd order alpha_s |
383 | SetMSTP(2,2); |
384 | |
385 | // QCD scales |
386 | SetMSTP(32,2); |
387 | SetPARP(34,1.0); |
388 | |
389 | // Intrinsic <kT^2> |
390 | SetMSTP(91,1); |
391 | SetPARP(91,1.); |
392 | SetPARP(93,5.); |
393 | |
394 | // Set c-quark mass |
395 | SetPMAS(4,1,1.2); |
396 | |
90d7b703 |
397 | break; |
398 | case kPyDPlusppMNR: |
399 | // Tuning of Pythia parameters aimed to get a resonable agreement |
400 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
401 | // c-cbar single inclusive and double differential distributions. |
402 | // This parameter settings are meant to work with pp collisions |
403 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
404 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
405 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
406 | |
407 | // All QCD processes |
408 | SetMSEL(1); |
409 | |
410 | // No multiple interactions |
411 | SetMSTP(81,0); |
412 | SetPARP(81,0.0); |
413 | SetPARP(82,0.0); |
414 | |
415 | // Initial/final parton shower on (Pythia default) |
416 | SetMSTP(61,1); |
417 | SetMSTP(71,1); |
418 | |
419 | // 2nd order alpha_s |
420 | SetMSTP(2,2); |
421 | |
422 | // QCD scales |
423 | SetMSTP(32,2); |
424 | SetPARP(34,1.0); |
425 | |
426 | // Intrinsic <kT^2> |
427 | SetMSTP(91,1); |
428 | SetPARP(91,1.); |
429 | SetPARP(93,5.); |
430 | |
431 | // Set c-quark mass |
432 | SetPMAS(4,1,1.2); |
433 | |
adf4d898 |
434 | break; |
435 | case kPyBeautyPbPbMNR: |
8d2cd130 |
436 | // Tuning of Pythia parameters aimed to get a resonable agreement |
437 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
438 | // b-bbar single inclusive and double differential distributions. |
439 | // This parameter settings are meant to work with Pb-Pb collisions |
440 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
441 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
442 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
443 | |
444 | // All QCD processes |
445 | SetMSEL(1); |
446 | |
447 | // No multiple interactions |
448 | SetMSTP(81,0); |
449 | SetPARP(81,0.0); |
450 | SetPARP(82,0.0); |
451 | |
452 | // Initial/final parton shower on (Pythia default) |
453 | SetMSTP(61,1); |
454 | SetMSTP(71,1); |
455 | |
456 | // 2nd order alpha_s |
457 | SetMSTP(2,2); |
458 | |
459 | // QCD scales |
460 | SetMSTP(32,2); |
461 | SetPARP(34,1.0); |
462 | SetPARP(67,1.0); |
463 | SetPARP(71,1.0); |
464 | |
adf4d898 |
465 | // Intrinsic <kT> |
8d2cd130 |
466 | SetMSTP(91,1); |
467 | SetPARP(91,2.035); |
468 | SetPARP(93,10.17); |
469 | |
470 | // Set b-quark mass |
471 | SetPMAS(5,1,4.75); |
472 | |
adf4d898 |
473 | break; |
474 | case kPyBeautypPbMNR: |
475 | // Tuning of Pythia parameters aimed to get a resonable agreement |
476 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
477 | // b-bbar single inclusive and double differential distributions. |
478 | // This parameter settings are meant to work with p-Pb collisions |
479 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
480 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
481 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
482 | |
483 | // All QCD processes |
484 | SetMSEL(1); |
485 | |
486 | // No multiple interactions |
487 | SetMSTP(81,0); |
488 | SetPARP(81,0.0); |
489 | SetPARP(82,0.0); |
490 | |
491 | // Initial/final parton shower on (Pythia default) |
492 | SetMSTP(61,1); |
493 | SetMSTP(71,1); |
494 | |
495 | // 2nd order alpha_s |
496 | SetMSTP(2,2); |
497 | |
498 | // QCD scales |
499 | SetMSTP(32,2); |
500 | SetPARP(34,1.0); |
501 | SetPARP(67,1.0); |
502 | SetPARP(71,1.0); |
503 | |
504 | // Intrinsic <kT> |
505 | SetMSTP(91,1); |
506 | SetPARP(91,1.60); |
507 | SetPARP(93,8.00); |
508 | |
509 | // Set b-quark mass |
510 | SetPMAS(5,1,4.75); |
511 | |
512 | break; |
513 | case kPyBeautyppMNR: |
514 | // Tuning of Pythia parameters aimed to get a resonable agreement |
515 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
516 | // b-bbar single inclusive and double differential distributions. |
517 | // This parameter settings are meant to work with pp collisions |
518 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
519 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
520 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
521 | |
522 | // All QCD processes |
523 | SetMSEL(1); |
524 | |
525 | // No multiple interactions |
526 | SetMSTP(81,0); |
527 | SetPARP(81,0.0); |
528 | SetPARP(82,0.0); |
529 | |
530 | // Initial/final parton shower on (Pythia default) |
531 | SetMSTP(61,1); |
532 | SetMSTP(71,1); |
533 | |
534 | // 2nd order alpha_s |
535 | SetMSTP(2,2); |
536 | |
537 | // QCD scales |
538 | SetMSTP(32,2); |
539 | SetPARP(34,1.0); |
540 | SetPARP(67,1.0); |
541 | SetPARP(71,1.0); |
542 | |
543 | // Intrinsic <kT> |
544 | SetMSTP(91,1); |
545 | SetPARP(91,1.); |
546 | SetPARP(93,5.); |
547 | |
548 | // Set b-quark mass |
549 | SetPMAS(5,1,4.75); |
550 | |
8d2cd130 |
551 | break; |
552 | } |
553 | // |
554 | // Initialize PYTHIA |
555 | SetMSTP(41,1); // all resonance decays switched on |
556 | |
557 | Initialize("CMS","p","p",fEcms); |
558 | |
559 | } |
560 | |
561 | Int_t AliPythia::CheckedLuComp(Int_t kf) |
562 | { |
563 | // Check Lund particle code (for debugging) |
564 | Int_t kc=Pycomp(kf); |
565 | printf("\n Lucomp kf,kc %d %d",kf,kc); |
566 | return kc; |
567 | } |
568 | |
569 | void AliPythia::SetNuclei(Int_t a1, Int_t a2) |
570 | { |
571 | // Treat protons as inside nuclei with mass numbers a1 and a2 |
572 | // The MSTP array in the PYPARS common block is used to enable and |
573 | // select the nuclear structure functions. |
574 | // MSTP(52) : (D=1) choice of proton and nuclear structure-function library |
575 | // =1: internal PYTHIA acording to MSTP(51) |
576 | // =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET |
577 | // If the following mass number both not equal zero, nuclear corrections of the stf are used. |
578 | // MSTP(192) : Mass number of nucleus side 1 |
579 | // MSTP(193) : Mass number of nucleus side 2 |
580 | SetMSTP(52,2); |
581 | SetMSTP(192, a1); |
582 | SetMSTP(193, a2); |
583 | } |
584 | |
585 | |
586 | AliPythia* AliPythia::Instance() |
587 | { |
588 | // Set random number generator |
589 | if (fgAliPythia) { |
590 | return fgAliPythia; |
591 | } else { |
592 | fgAliPythia = new AliPythia(); |
593 | return fgAliPythia; |
594 | } |
595 | } |
596 | |
597 | void AliPythia::PrintParticles() |
598 | { |
599 | // Print list of particl properties |
600 | Int_t np = 0; |
c31f1d37 |
601 | char* name = new char[16]; |
8d2cd130 |
602 | for (Int_t kf=0; kf<1000000; kf++) { |
603 | for (Int_t c = 1; c > -2; c-=2) { |
8d2cd130 |
604 | Int_t kc = Pycomp(c*kf); |
605 | if (kc) { |
606 | Float_t mass = GetPMAS(kc,1); |
607 | Float_t width = GetPMAS(kc,2); |
608 | Float_t tau = GetPMAS(kc,4); |
c31f1d37 |
609 | |
8d2cd130 |
610 | Pyname(kf,name); |
611 | |
612 | np++; |
613 | |
614 | printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e", |
615 | c*kf, name, mass, width, tau); |
616 | } |
617 | } |
618 | } |
619 | printf("\n Number of particles %d \n \n", np); |
620 | } |
621 | |
622 | void AliPythia::ResetDecayTable() |
623 | { |
624 | // Set default values for pythia decay switches |
625 | Int_t i; |
626 | for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]); |
627 | for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]); |
628 | } |
629 | |
630 | void AliPythia::SetDecayTable() |
631 | { |
632 | // Set default values for pythia decay switches |
633 | // |
634 | Int_t i; |
635 | for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1); |
636 | for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1); |
637 | } |
638 | |
639 | void AliPythia::Pyclus(Int_t& njet) |
640 | { |
641 | // Call Pythia clustering algorithm |
642 | // |
643 | pyclus(njet); |
644 | } |
645 | |
646 | void AliPythia::Pycell(Int_t& njet) |
647 | { |
648 | // Call Pythia jet reconstruction algorithm |
649 | // |
650 | pycell(njet); |
651 | } |
652 | |
452af8c7 |
653 | void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax) |
654 | { |
655 | // Call Pythia jet reconstruction algorithm |
656 | // |
452af8c7 |
657 | pyshow(ip1, ip2, qmax); |
658 | } |
659 | |
660 | void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez) |
661 | { |
662 | pyrobo(imi, ima, the, phi, bex, bey, bez); |
663 | } |
664 | |
665 | |
666 | |
86b6ad68 |
667 | void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod) |
0f482ae4 |
668 | { |
669 | // Initializes |
670 | // (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann |
671 | // (2) The nuclear geometry using the Glauber Model |
672 | // |
673 | |
674 | |
675 | fGlauber = new AliFastGlauber(); |
676 | fGlauber->Init(2); |
677 | fGlauber->SetCentralityClass(cMin, cMax); |
678 | |
679 | fQuenchingWeights = new AliQuenchingWeights(); |
680 | fQuenchingWeights->InitMult(); |
86b6ad68 |
681 | fQuenchingWeights->SetK(k); |
0f482ae4 |
682 | fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod)); |
0f482ae4 |
683 | } |
684 | |
685 | |
452af8c7 |
686 | void AliPythia::Quench() |
687 | { |
688 | // |
689 | // |
690 | // Simple Jet Quenching routine: |
691 | // ============================= |
692 | // The jet formed by all final state partons radiated by the parton created |
0f482ae4 |
693 | // in the hard collisions is quenched by a factor (1-z) using light cone variables in |
694 | // the initial parton reference frame: |
452af8c7 |
695 | // (E + p_z)new = (1-z) (E + p_z)old |
696 | // |
0f482ae4 |
697 | // |
698 | // |
699 | // |
452af8c7 |
700 | // The lost momentum is first balanced by one gluon with virtuality > 0. |
701 | // Subsequently the gluon splits to yield two gluons with E = p. |
702 | // |
0f482ae4 |
703 | // |
704 | // |
4e383037 |
705 | static Float_t eMean = 0.; |
706 | static Int_t icall = 0; |
0f482ae4 |
707 | |
c2c598a3 |
708 | Double_t p0[4][5]; |
709 | Double_t p1[4][5]; |
710 | Double_t p2[4][5]; |
711 | Int_t klast[4] = {-1, -1, -1, -1}; |
452af8c7 |
712 | |
713 | Int_t numpart = fPyjets->N; |
86b6ad68 |
714 | Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.; |
c2c598a3 |
715 | Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4]; |
716 | Bool_t quenched[4]; |
b280c4cc |
717 | Double_t wjtKick[4]; |
c2c598a3 |
718 | Int_t nGluon[4]; |
86b6ad68 |
719 | Int_t qPdg[4]; |
0f482ae4 |
720 | Int_t imo, kst, pdg; |
b280c4cc |
721 | |
511db649 |
722 | // |
c2c598a3 |
723 | // Sore information about Primary partons |
724 | // |
725 | // j = |
726 | // 0, 1 partons from hard scattering |
727 | // 2, 3 partons from initial state radiation |
728 | // |
729 | for (Int_t i = 2; i <= 7; i++) { |
730 | Int_t j = 0; |
731 | // Skip gluons that participate in hard scattering |
732 | if (i == 4 || i == 5) continue; |
733 | // Gluons from hard Scattering |
734 | if (i == 6 || i == 7) { |
735 | j = i - 6; |
736 | pxq[j] = fPyjets->P[0][i]; |
737 | pyq[j] = fPyjets->P[1][i]; |
738 | pzq[j] = fPyjets->P[2][i]; |
739 | eq[j] = fPyjets->P[3][i]; |
740 | mq[j] = fPyjets->P[4][i]; |
741 | } else { |
742 | // Gluons from initial state radiation |
743 | // |
744 | // Obtain 4-momentum vector from difference between original parton and parton after gluon |
745 | // radiation. Energy is calculated independently because initial state radition does not |
746 | // conserve strictly momentum and energy for each partonic system independently. |
747 | // |
748 | // Not very clean. Should be improved ! |
749 | // |
750 | // |
751 | j = i; |
752 | pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2]; |
753 | pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2]; |
754 | pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2]; |
755 | mq[j] = fPyjets->P[4][i]; |
756 | eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]); |
757 | } |
758 | // |
759 | // Calculate some kinematic variables |
511db649 |
760 | // |
4e383037 |
761 | yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14)); |
0f482ae4 |
762 | pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]); |
763 | phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]); |
764 | ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]); |
765 | thetaq[j] = TMath::ATan2(ptq[j], pzq[j]); |
86b6ad68 |
766 | qPdg[j] = fPyjets->K[1][i]; |
767 | } |
768 | |
769 | Double_t int0[4]; |
770 | Double_t int1[4]; |
86b6ad68 |
771 | |
b280c4cc |
772 | fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.); |
773 | |
86b6ad68 |
774 | for (Int_t j = 0; j < 4; j++) { |
c2c598a3 |
775 | // |
776 | // Quench only central jets and with E > 10. |
777 | // |
86b6ad68 |
778 | |
779 | |
780 | Int_t itype = (qPdg[j] == 21) ? 2 : 1; |
781 | Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]); |
782 | |
c2c598a3 |
783 | if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) { |
b280c4cc |
784 | fZQuench[j] = 0.; |
0f482ae4 |
785 | } else { |
c2c598a3 |
786 | if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) { |
4e383037 |
787 | icall ++; |
788 | eMean += eloss; |
789 | } |
0f482ae4 |
790 | // |
791 | // Extra pt |
86b6ad68 |
792 | Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]); |
793 | wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j])); |
0f482ae4 |
794 | // |
795 | // Fractional energy loss |
b280c4cc |
796 | fZQuench[j] = eloss / eq[j]; |
0f482ae4 |
797 | // |
798 | // Avoid complete loss |
799 | // |
b280c4cc |
800 | if (fZQuench[j] == 1.) fZQuench[j] = 0.95; |
0f482ae4 |
801 | // |
802 | // Some debug printing |
86b6ad68 |
803 | |
804 | |
bf9bb016 |
805 | // printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n", |
806 | // j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]); |
4e383037 |
807 | |
b280c4cc |
808 | // fZQuench[j] = 0.8; |
809 | // while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2); |
0f482ae4 |
810 | } |
4e383037 |
811 | |
b280c4cc |
812 | quenched[j] = (fZQuench[j] > 0.01); |
4e383037 |
813 | } // primary partons |
c2c598a3 |
814 | |
b280c4cc |
815 | |
816 | |
6e90ad26 |
817 | Double_t pNew[1000][4]; |
818 | Int_t kNew[1000]; |
819 | Int_t icount = 0; |
b280c4cc |
820 | Double_t zquench[4]; |
821 | |
6e90ad26 |
822 | // |
4e383037 |
823 | // System Loop |
c2c598a3 |
824 | for (Int_t isys = 0; isys < 4; isys++) { |
6e90ad26 |
825 | // Skip to next system if not quenched. |
4e383037 |
826 | if (!quenched[isys]) continue; |
827 | |
b280c4cc |
828 | nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys])); |
4e383037 |
829 | if (nGluon[isys] > 6) nGluon[isys] = 6; |
b280c4cc |
830 | zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys])); |
4e383037 |
831 | wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys])); |
0f482ae4 |
832 | |
4e383037 |
833 | |
834 | |
835 | Int_t igMin = -1; |
836 | Int_t igMax = -1; |
837 | Double_t pg[4] = {0., 0., 0., 0.}; |
838 | |
839 | // |
840 | // Loop on radiation events |
841 | |
842 | for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) { |
6e90ad26 |
843 | while (1) { |
844 | icount = 0; |
845 | for (Int_t k = 0; k < 4; k++) |
846 | { |
847 | p0[isys][k] = 0.; |
848 | p1[isys][k] = 0.; |
849 | p2[isys][k] = 0.; |
850 | } |
851 | // Loop over partons |
852 | for (Int_t i = 0; i < numpart; i++) |
853 | { |
854 | imo = fPyjets->K[2][i]; |
855 | kst = fPyjets->K[0][i]; |
856 | pdg = fPyjets->K[1][i]; |
857 | |
858 | |
859 | |
0f482ae4 |
860 | // Quarks and gluons only |
6e90ad26 |
861 | if (pdg != 21 && TMath::Abs(pdg) > 6) continue; |
0f482ae4 |
862 | // Particles from hard scattering only |
c2c598a3 |
863 | |
6e90ad26 |
864 | if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1]; |
c2c598a3 |
865 | Int_t imom = imo % 1000; |
866 | if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue; |
867 | if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue; |
868 | |
6e90ad26 |
869 | |
0f482ae4 |
870 | // Skip comment lines |
6e90ad26 |
871 | if (kst != 1 && kst != 2) continue; |
0f482ae4 |
872 | // |
873 | // Parton kinematic |
6e90ad26 |
874 | px = fPyjets->P[0][i]; |
875 | py = fPyjets->P[1][i]; |
876 | pz = fPyjets->P[2][i]; |
877 | e = fPyjets->P[3][i]; |
878 | m = fPyjets->P[4][i]; |
879 | pt = TMath::Sqrt(px * px + py * py); |
880 | p = TMath::Sqrt(px * px + py * py + pz * pz); |
881 | phi = TMath::Pi() + TMath::ATan2(-py, -px); |
882 | theta = TMath::ATan2(pt, pz); |
883 | |
0f482ae4 |
884 | // |
c2c598a3 |
885 | // Save 4-momentum sum for balancing |
886 | Int_t index = isys; |
6e90ad26 |
887 | |
888 | p0[index][0] += px; |
889 | p0[index][1] += py; |
890 | p0[index][2] += pz; |
891 | p0[index][3] += e; |
6e90ad26 |
892 | |
893 | klast[index] = i; |
894 | |
0f482ae4 |
895 | // |
896 | // Fractional energy loss |
b280c4cc |
897 | Double_t z = zquench[index]; |
4e383037 |
898 | |
c2c598a3 |
899 | |
4e383037 |
900 | // Don't fully quench radiated gluons |
901 | // |
902 | if (imo > 1000) { |
903 | // This small factor makes sure that the gluons are not too close in phase space to avoid recombination |
904 | // |
905 | |
c2c598a3 |
906 | z = 0.02; |
4e383037 |
907 | } |
c2c598a3 |
908 | // printf("z: %d %f\n", imo, z); |
909 | |
4e383037 |
910 | |
911 | // |
6e90ad26 |
912 | |
913 | // |
914 | // |
915 | // Transform into frame in which initial parton is along z-axis |
916 | // |
917 | TVector3 v(px, py, pz); |
918 | v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]); |
919 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z(); |
920 | |
921 | Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys); |
922 | Double_t mt2 = jt * jt + m * m; |
923 | Double_t zmax = 1.; |
924 | // |
925 | // Kinematic limit on z |
926 | // |
4e383037 |
927 | if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt); |
6e90ad26 |
928 | // |
929 | // Change light-cone kinematics rel. to initial parton |
930 | // |
931 | Double_t eppzOld = e + pl; |
932 | Double_t empzOld = e - pl; |
933 | |
934 | Double_t eppzNew = (1. - z) * eppzOld; |
935 | Double_t empzNew = empzOld - mt2 * z / eppzOld; |
936 | Double_t eNew = 0.5 * (eppzNew + empzNew); |
937 | Double_t plNew = 0.5 * (eppzNew - empzNew); |
938 | |
939 | Double_t jtNew; |
940 | // |
941 | // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0 |
942 | Double_t mt2New = eppzNew * empzNew; |
943 | if (mt2New < 1.e-8) mt2New = 0.; |
4e383037 |
944 | if (z < zmax) { |
945 | if (m * m > mt2New) { |
946 | // |
947 | // This should not happen |
948 | // |
949 | Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew); |
950 | jtNew = 0; |
951 | } else { |
952 | jtNew = TMath::Sqrt(mt2New - m * m); |
953 | } |
6e90ad26 |
954 | } else { |
4e383037 |
955 | // If pT is to small (probably a leading massive particle) we scale only the energy |
956 | // This can cause negative masses of the radiated gluon |
957 | // Let's hope for the best ... |
958 | jtNew = jt; |
959 | eNew = TMath::Sqrt(plNew * plNew + mt2); |
960 | |
6e90ad26 |
961 | } |
6e90ad26 |
962 | // |
963 | // Calculate new px, py |
964 | // |
965 | Double_t pxNew = jtNew / jt * pxs; |
966 | Double_t pyNew = jtNew / jt * pys; |
967 | |
968 | // Double_t dpx = pxs - pxNew; |
969 | // Double_t dpy = pys - pyNew; |
970 | // Double_t dpz = pl - plNew; |
971 | // Double_t de = e - eNew; |
972 | // Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz; |
973 | // printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew); |
974 | // printf("New mass (2) %e %e \n", pxNew, pyNew); |
975 | // |
976 | // Rotate back |
977 | // |
978 | TVector3 w(pxNew, pyNew, plNew); |
979 | w.RotateY(thetaq[index]); w.RotateZ(phiq[index]); |
980 | pxNew = w.X(); pyNew = w.Y(); plNew = w.Z(); |
981 | |
982 | p1[index][0] += pxNew; |
983 | p1[index][1] += pyNew; |
984 | p1[index][2] += plNew; |
985 | p1[index][3] += eNew; |
986 | // |
987 | // Updated 4-momentum vectors |
988 | // |
989 | pNew[icount][0] = pxNew; |
990 | pNew[icount][1] = pyNew; |
991 | pNew[icount][2] = plNew; |
992 | pNew[icount][3] = eNew; |
993 | kNew[icount] = i; |
994 | icount++; |
995 | } // parton loop |
0f482ae4 |
996 | // |
6e90ad26 |
997 | // Check if there was phase-space for quenching |
0f482ae4 |
998 | // |
0f482ae4 |
999 | |
6e90ad26 |
1000 | if (icount == 0) quenched[isys] = kFALSE; |
1001 | if (!quenched[isys]) break; |
1002 | |
1003 | for (Int_t j = 0; j < 4; j++) |
1004 | { |
1005 | p2[isys][j] = p0[isys][j] - p1[isys][j]; |
1006 | } |
1007 | p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2]; |
6e90ad26 |
1008 | if (p2[isys][4] > 0.) { |
1009 | p2[isys][4] = TMath::Sqrt(p2[isys][4]); |
1010 | break; |
1011 | } else { |
b280c4cc |
1012 | printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]); |
4e383037 |
1013 | printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]); |
6e90ad26 |
1014 | if (p2[isys][4] < -0.01) { |
4e383037 |
1015 | printf("Negative mass squared !\n"); |
1016 | // Here we have to put the gluon back to mass shell |
1017 | // This will lead to a small energy imbalance |
1018 | p2[isys][4] = 0.; |
1019 | p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]); |
1020 | break; |
6e90ad26 |
1021 | } else { |
1022 | p2[isys][4] = 0.; |
1023 | break; |
1024 | } |
1025 | } |
6e90ad26 |
1026 | /* |
6e90ad26 |
1027 | zHeavy *= 0.98; |
1028 | printf("zHeavy lowered to %f\n", zHeavy); |
1029 | if (zHeavy < 0.01) { |
1030 | printf("No success ! \n"); |
1031 | icount = 0; |
1032 | quenched[isys] = kFALSE; |
1033 | break; |
1034 | } |
4e383037 |
1035 | */ |
1036 | } // iteration on z (while) |
1037 | |
6e90ad26 |
1038 | // Update event record |
1039 | for (Int_t k = 0; k < icount; k++) { |
1040 | // printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] ); |
1041 | fPyjets->P[0][kNew[k]] = pNew[k][0]; |
1042 | fPyjets->P[1][kNew[k]] = pNew[k][1]; |
1043 | fPyjets->P[2][kNew[k]] = pNew[k][2]; |
1044 | fPyjets->P[3][kNew[k]] = pNew[k][3]; |
0f482ae4 |
1045 | } |
4e383037 |
1046 | // |
1047 | // Add the gluons |
1048 | // |
1049 | Int_t ish = 0; |
1837e95c |
1050 | Int_t iGlu; |
4e383037 |
1051 | if (!quenched[isys]) continue; |
0f482ae4 |
1052 | // |
1053 | // Last parton from shower i |
4e383037 |
1054 | Int_t in = klast[isys]; |
0f482ae4 |
1055 | // |
1056 | // Continue if no parton in shower i selected |
1057 | if (in == -1) continue; |
1058 | // |
1059 | // If this is the second initial parton and it is behind the first move pointer by previous ish |
4e383037 |
1060 | if (isys == 1 && klast[1] > klast[0]) in += ish; |
0f482ae4 |
1061 | // |
1062 | // Starting index |
452af8c7 |
1063 | |
4e383037 |
1064 | // jmin = in - 1; |
0f482ae4 |
1065 | // How many additional gluons will be generated |
1066 | ish = 1; |
4e383037 |
1067 | if (p2[isys][4] > 0.05) ish = 2; |
0f482ae4 |
1068 | // |
1069 | // Position of gluons |
4e383037 |
1070 | iGlu = numpart; |
1071 | if (iglu == 0) igMin = iGlu; |
1072 | igMax = iGlu; |
0f482ae4 |
1073 | numpart += ish; |
1074 | (fPyjets->N) += ish; |
4e383037 |
1075 | |
0f482ae4 |
1076 | if (ish == 1) { |
4e383037 |
1077 | fPyjets->P[0][iGlu] = p2[isys][0]; |
1078 | fPyjets->P[1][iGlu] = p2[isys][1]; |
1079 | fPyjets->P[2][iGlu] = p2[isys][2]; |
1080 | fPyjets->P[3][iGlu] = p2[isys][3]; |
1081 | fPyjets->P[4][iGlu] = p2[isys][4]; |
0f482ae4 |
1082 | |
4e383037 |
1083 | fPyjets->K[0][iGlu] = 1; |
1084 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1; |
0f482ae4 |
1085 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1086 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1087 | fPyjets->K[3][iGlu] = -1; |
1088 | fPyjets->K[4][iGlu] = -1; |
4e383037 |
1089 | |
1090 | pg[0] += p2[isys][0]; |
1091 | pg[1] += p2[isys][1]; |
1092 | pg[2] += p2[isys][2]; |
1093 | pg[3] += p2[isys][3]; |
0f482ae4 |
1094 | } else { |
1095 | // |
1096 | // Split gluon in rest frame. |
1097 | // |
4e383037 |
1098 | Double_t bx = p2[isys][0] / p2[isys][3]; |
1099 | Double_t by = p2[isys][1] / p2[isys][3]; |
1100 | Double_t bz = p2[isys][2] / p2[isys][3]; |
1101 | Double_t pst = p2[isys][4] / 2.; |
0f482ae4 |
1102 | // |
1103 | // Isotropic decay ???? |
1104 | Double_t cost = 2. * gRandom->Rndm() - 1.; |
1105 | Double_t sint = TMath::Sqrt(1. - cost * cost); |
1106 | Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); |
1107 | |
1108 | Double_t pz1 = pst * cost; |
1109 | Double_t pz2 = -pst * cost; |
1110 | Double_t pt1 = pst * sint; |
1111 | Double_t pt2 = -pst * sint; |
1112 | Double_t px1 = pt1 * TMath::Cos(phi); |
1113 | Double_t py1 = pt1 * TMath::Sin(phi); |
1114 | Double_t px2 = pt2 * TMath::Cos(phi); |
1115 | Double_t py2 = pt2 * TMath::Sin(phi); |
1116 | |
1117 | fPyjets->P[0][iGlu] = px1; |
1118 | fPyjets->P[1][iGlu] = py1; |
1119 | fPyjets->P[2][iGlu] = pz1; |
1120 | fPyjets->P[3][iGlu] = pst; |
1121 | fPyjets->P[4][iGlu] = 0.; |
1122 | |
4e383037 |
1123 | fPyjets->K[0][iGlu] = 1 ; |
0f482ae4 |
1124 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1125 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1126 | fPyjets->K[3][iGlu] = -1; |
1127 | fPyjets->K[4][iGlu] = -1; |
1128 | |
1129 | fPyjets->P[0][iGlu+1] = px2; |
1130 | fPyjets->P[1][iGlu+1] = py2; |
1131 | fPyjets->P[2][iGlu+1] = pz2; |
1132 | fPyjets->P[3][iGlu+1] = pst; |
1133 | fPyjets->P[4][iGlu+1] = 0.; |
1134 | |
4e383037 |
1135 | fPyjets->K[0][iGlu+1] = 1; |
1136 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1; |
0f482ae4 |
1137 | fPyjets->K[1][iGlu+1] = 21; |
4e383037 |
1138 | fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1139 | fPyjets->K[3][iGlu+1] = -1; |
1140 | fPyjets->K[4][iGlu+1] = -1; |
1141 | SetMSTU(1,0); |
1142 | SetMSTU(2,0); |
1143 | // |
1144 | // Boost back |
1145 | // |
1146 | Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz); |
1147 | } |
4e383037 |
1148 | /* |
1149 | for (Int_t ig = iGlu; ig < iGlu+ish; ig++) { |
1150 | Double_t px, py, pz; |
1151 | px = fPyjets->P[0][ig]; |
1152 | py = fPyjets->P[1][ig]; |
1153 | pz = fPyjets->P[2][ig]; |
1154 | TVector3 v(px, py, pz); |
1155 | v.RotateZ(-phiq[isys]); |
1156 | v.RotateY(-thetaq[isys]); |
1157 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z(); |
1158 | Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1159 | Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r)); |
1160 | if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.); |
1161 | Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1162 | pxs += jtKick * TMath::Cos(phiKick); |
1163 | pys += jtKick * TMath::Sin(phiKick); |
1164 | TVector3 w(pxs, pys, pzs); |
1165 | w.RotateY(thetaq[isys]); |
1166 | w.RotateZ(phiq[isys]); |
1167 | fPyjets->P[0][ig] = w.X(); |
1168 | fPyjets->P[1][ig] = w.Y(); |
1169 | fPyjets->P[2][ig] = w.Z(); |
1170 | fPyjets->P[2][ig] = w.Mag(); |
1171 | } |
1172 | */ |
1173 | } // kGluon |
1174 | |
6e90ad26 |
1175 | |
4e383037 |
1176 | // Check energy conservation |
0f482ae4 |
1177 | Double_t pxs = 0.; |
1178 | Double_t pys = 0.; |
1179 | Double_t pzs = 0.; |
1180 | Double_t es = 14000.; |
1181 | |
1182 | for (Int_t i = 0; i < numpart; i++) |
1183 | { |
1184 | kst = fPyjets->K[0][i]; |
1185 | if (kst != 1 && kst != 2) continue; |
1186 | pxs += fPyjets->P[0][i]; |
1187 | pys += fPyjets->P[1][i]; |
1188 | pzs += fPyjets->P[2][i]; |
1189 | es -= fPyjets->P[3][i]; |
1190 | } |
1191 | if (TMath::Abs(pxs) > 1.e-2 || |
1192 | TMath::Abs(pys) > 1.e-2 || |
1193 | TMath::Abs(pzs) > 1.e-1) { |
1194 | printf("%e %e %e %e\n", pxs, pys, pzs, es); |
4e383037 |
1195 | // Fatal("Quench()", "4-Momentum non-conservation"); |
452af8c7 |
1196 | } |
4e383037 |
1197 | |
1198 | } // end quenching loop (systems) |
6e90ad26 |
1199 | // Clean-up |
0f482ae4 |
1200 | for (Int_t i = 0; i < numpart; i++) |
1201 | { |
4e383037 |
1202 | imo = fPyjets->K[2][i]; |
1203 | if (imo > 1000) { |
1204 | fPyjets->K[2][i] = fPyjets->K[2][i] % 1000; |
1205 | } |
0f482ae4 |
1206 | } |
4e383037 |
1207 | // this->Pylist(1); |
0f482ae4 |
1208 | } // end quench |
90d7b703 |
1209 | |
992f2843 |
1210 | |
1211 | void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b) |
1212 | { |
1213 | // Igor Lokthine's quenching routine |
1214 | pyquen(a, ibf, b); |
1215 | } |
b280c4cc |
1216 | |
1217 | void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4]) |
1218 | { |
1219 | // Return event specific quenching parameters |
1220 | xp = fXJet; |
1221 | yp = fYJet; |
1222 | for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i]; |
1223 | |
1224 | } |
1225 | |