Remove unused parameter in function
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
cd07c39b 35# define pyshowq pyshowq_
694b39f9 36# define pytune pytune_
9b61ba2a 37# define py2ent py2ent_
8d2cd130 38# define type_of_call
39#else
40# define pyclus PYCLUS
41# define pycell PYCELL
452af8c7 42# define pyrobo PYROBO
992f2843 43# define pyquen PYQUEN
16a82508 44# define pyevnw PYEVNW
cd07c39b 45# define pyshowq PYSHOWQ
9b61ba2a 46# define pytune PYTUNE
47# define py2ent PY2ENT
8d2cd130 48# define type_of_call _stdcall
49#endif
50
51extern "C" void type_of_call pyclus(Int_t & );
52extern "C" void type_of_call pycell(Int_t & );
452af8c7 53extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
54extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 55extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 56extern "C" void type_of_call pyevnw(){;}
cd07c39b 57extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
694b39f9 58extern "C" void type_of_call pytune(Int_t &);
9b61ba2a 59extern "C" void type_of_call py2ent(Int_t &, Int_t&, Int_t&, Double_t&);
8d2cd130 60
61//_____________________________________________________________________________
62
63AliPythia* AliPythia::fgAliPythia=NULL;
64
e8a8adcd 65AliPythia::AliPythia():
66 fProcess(kPyMb),
67 fEcms(0.),
68 fStrucFunc(kCTEQ5L),
69 fXJet(0.),
70 fYJet(0.),
32c8e463 71 fNGmax(30),
72 fZmax(0.97),
e8a8adcd 73 fGlauber(0),
0bd3d7c5 74 fQuenchingWeights(0),
75 fItune(-1)
8d2cd130 76{
77// Default Constructor
78//
79// Set random number
7cdba479 80 if (!AliPythiaRndm::GetPythiaRandom())
81 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 82 fGlauber = 0;
83 fQuenchingWeights = 0;
8d2cd130 84}
85
e8a8adcd 86AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 87 TPythia6(pythia),
88 AliRndm(pythia),
e8a8adcd 89 fProcess(kPyMb),
90 fEcms(0.),
91 fStrucFunc(kCTEQ5L),
92 fXJet(0.),
93 fYJet(0.),
32c8e463 94 fNGmax(30),
95 fZmax(0.97),
e8a8adcd 96 fGlauber(0),
0bd3d7c5 97 fQuenchingWeights(0),
98 fItune(-1)
e8a8adcd 99{
100 // Copy Constructor
101 pythia.Copy(*this);
102}
103
efe3b1cd 104void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t itune)
8d2cd130 105{
106// Initialise the process to generate
7cdba479 107 if (!AliPythiaRndm::GetPythiaRandom())
108 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 109
0bd3d7c5 110 fItune = itune;
111
8d2cd130 112 fProcess = process;
113 fEcms = energy;
114 fStrucFunc = strucfunc;
1d5b1b20 115//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 116 SetMDCY(Pycomp(111) ,1,0); // pi0
117 SetMDCY(Pycomp(310) ,1,0); // K0S
118 SetMDCY(Pycomp(3122),1,0); // kLambda
119 SetMDCY(Pycomp(3112),1,0); // sigma -
120 SetMDCY(Pycomp(3212),1,0); // sigma 0
121 SetMDCY(Pycomp(3222),1,0); // sigma +
122 SetMDCY(Pycomp(3312),1,0); // xi -
123 SetMDCY(Pycomp(3322),1,0); // xi 0
124 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 125 // Select structure function
8d2cd130 126 SetMSTP(52,2);
e2de0ce1 127 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 128 // Particles produced in string fragmentation point directly to either of the two endpoints
129 // of the string (depending in the side they were generated from).
130 SetMSTU(16,2);
131
8d2cd130 132//
133// Pythia initialisation for selected processes//
134//
135// Make MSEL clean
136//
137 for (Int_t i=1; i<= 200; i++) {
138 SetMSUB(i,0);
139 }
140// select charm production
141 switch (process)
142 {
65f2626c 143 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
144// Multiple interactions on.
145 SetMSTP(81,1);
146// Double Gaussian matter distribution.
147 SetMSTP(82,4);
148 SetPARP(83,0.5);
149 SetPARP(84,0.4);
150// pT0.
151 SetPARP(82,2.0);
152// Reference energy for pT0 and energy rescaling pace.
153 SetPARP(89,1800);
154 SetPARP(90,0.25);
155// String drawing almost completely minimizes string length.
156 SetPARP(85,0.9);
157 SetPARP(86,0.95);
158// ISR and FSR activity.
159 SetPARP(67,4);
160 SetPARP(71,4);
161// Lambda_FSR scale.
162 SetPARJ(81,0.29);
163 break;
164 case kPyOldUEQ2ordered2:
165// Old underlying events with Q2 ordered QCD processes
166// Multiple interactions on.
167 SetMSTP(81,1);
168// Double Gaussian matter distribution.
169 SetMSTP(82,4);
170 SetPARP(83,0.5);
171 SetPARP(84,0.4);
172// pT0.
173 SetPARP(82,2.0);
174// Reference energy for pT0 and energy rescaling pace.
175 SetPARP(89,1800);
176 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
177// String drawing almost completely minimizes string length.
178 SetPARP(85,0.9);
179 SetPARP(86,0.95);
180// ISR and FSR activity.
181 SetPARP(67,4);
182 SetPARP(71,4);
183// Lambda_FSR scale.
184 SetPARJ(81,0.29);
185 break;
186 case kPyOldPopcorn:
187// Old production mechanism: Old Popcorn
188 SetMSEL(1);
189 SetMSTJ(12,3);
190// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
191 SetMSTP(88,2);
192// (D=1)see can be used to form baryons (BARYON JUNCTION)
193 SetMSTJ(1,1);
e0e89f40 194 AtlasTuning();
65f2626c 195 break;
8d2cd130 196 case kPyCharm:
197 SetMSEL(4);
8d2cd130 198// heavy quark masses
199
200 SetPMAS(4,1,1.2);
8d2cd130 201//
202// primordial pT
203 SetMSTP(91,1);
204 SetPARP(91,1.);
205 SetPARP(93,5.);
206//
207 break;
208 case kPyBeauty:
209 SetMSEL(5);
210 SetPMAS(5,1,4.75);
8d2cd130 211 break;
212 case kPyJpsi:
213 SetMSEL(0);
214// gg->J/Psi g
215 SetMSUB(86,1);
216 break;
217 case kPyJpsiChi:
218 SetMSEL(0);
219// gg->J/Psi g
220 SetMSUB(86,1);
221// gg-> chi_0c g
222 SetMSUB(87,1);
223// gg-> chi_1c g
224 SetMSUB(88,1);
225// gg-> chi_2c g
226 SetMSUB(89,1);
227 break;
228 case kPyCharmUnforced:
229 SetMSEL(0);
230// gq->qg
231 SetMSUB(28,1);
232// gg->qq
233 SetMSUB(53,1);
234// gg->gg
235 SetMSUB(68,1);
236 break;
237 case kPyBeautyUnforced:
238 SetMSEL(0);
239// gq->qg
240 SetMSUB(28,1);
241// gg->qq
242 SetMSUB(53,1);
243// gg->gg
244 SetMSUB(68,1);
245 break;
246 case kPyMb:
247// Minimum Bias pp-Collisions
248//
249//
250// select Pythia min. bias model
251 SetMSEL(0);
511db649 252 SetMSUB(92,1); // single diffraction AB-->XB
253 SetMSUB(93,1); // single diffraction AB-->AX
254 SetMSUB(94,1); // double diffraction
255 SetMSUB(95,1); // low pt production
256
e0e89f40 257 AtlasTuning();
511db649 258 break;
0bd3d7c5 259
260 case kPyMbAtlasTuneMC09:
261// Minimum Bias pp-Collisions
262//
263//
264// select Pythia min. bias model
265 SetMSEL(0);
266 SetMSUB(92,1); // single diffraction AB-->XB
267 SetMSUB(93,1); // single diffraction AB-->AX
268 SetMSUB(94,1); // double diffraction
269 SetMSUB(95,1); // low pt production
270
271 AtlasTuning_MC09();
272 break;
04081a91 273
274 case kPyMbWithDirectPhoton:
275// Minimum Bias pp-Collisions with direct photon processes added
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
285 SetMSUB(14,1); //
286 SetMSUB(18,1); //
287 SetMSUB(29,1); //
288 SetMSUB(114,1); //
289 SetMSUB(115,1); //
290
291
292 AtlasTuning();
293 break;
294
f529e69b 295 case kPyMbDefault:
296// Minimum Bias pp-Collisions
297//
298//
299// select Pythia min. bias model
300 SetMSEL(0);
6d2ec66d 301 SetMSUB(92,1); // single diffraction AB-->XB
302 SetMSUB(93,1); // single diffraction AB-->AX
f529e69b 303 SetMSUB(94,1); // double diffraction
304 SetMSUB(95,1); // low pt production
f529e69b 305 break;
0a0cbcfd 306 case kPyLhwgMb:
307// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
308// -> Pythia 6.3 or above is needed
309//
310 SetMSEL(0);
311 SetMSUB(92,1); // single diffraction AB-->XB
312 SetMSUB(93,1); // single diffraction AB-->AX
313 SetMSUB(94,1); // double diffraction
314 SetMSUB(95,1); // low pt production
315
e2de0ce1 316 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 317 SetMSTP(52,2);
318 SetMSTP(68,1);
319 SetMSTP(70,2);
320 SetMSTP(81,1); // Multiple Interactions ON
321 SetMSTP(82,4); // Double Gaussian Model
322 SetMSTP(88,1);
323
324 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
325 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
326 SetPARP(84,0.5); // Core radius
327 SetPARP(85,0.9); // Regulates gluon prod. mechanism
328 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
329
330 break;
8d2cd130 331 case kPyMbNonDiffr:
332// Minimum Bias pp-Collisions
333//
334//
335// select Pythia min. bias model
336 SetMSEL(0);
511db649 337 SetMSUB(95,1); // low pt production
0f482ae4 338
e0e89f40 339 AtlasTuning();
8d2cd130 340 break;
d7de4a67 341 case kPyMbMSEL1:
342 ConfigHeavyFlavor();
343// Intrinsic <kT^2>
344 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
345 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
346 SetPARP(93,5.); // Upper cut-off
347// Set Q-quark mass
348 SetPMAS(4,1,1.2); // Charm quark mass
349 SetPMAS(5,1,4.78); // Beauty quark mass
350 SetPARP(71,4.); // Defaut value
351// Atlas Tuning
352 AtlasTuning();
353 break;
8d2cd130 354 case kPyJets:
355//
356// QCD Jets
357//
358 SetMSEL(1);
65f2626c 359 // Pythia Tune A (CDF)
360 //
4167b79f 361 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 362 SetMSTP(82,4); // Double Gaussian Model
363 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
364 SetPARP(84,0.4); // Core radius
365 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
366 SetPARP(86,0.95); // Regulates gluon prod. mechanism
367 SetPARP(89,1800.); // [GeV] Ref. energy
0bd3d7c5 368 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
65f2626c 369 break;
8d2cd130 370 case kPyDirectGamma:
371 SetMSEL(10);
372 break;
adf4d898 373 case kPyCharmPbPbMNR:
374 case kPyD0PbPbMNR:
90d7b703 375 case kPyDPlusPbPbMNR:
e0e89f40 376 case kPyDPlusStrangePbPbMNR:
90d7b703 377 // Tuning of Pythia parameters aimed to get a resonable agreement
378 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
379 // c-cbar single inclusive and double differential distributions.
380 // This parameter settings are meant to work with Pb-Pb collisions
381 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
382 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
383 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 384 ConfigHeavyFlavor();
90d7b703 385 // Intrinsic <kT>
386 SetMSTP(91,1);
387 SetPARP(91,1.304);
388 SetPARP(93,6.52);
90d7b703 389 // Set c-quark mass
390 SetPMAS(4,1,1.2);
90d7b703 391 break;
adf4d898 392 case kPyCharmpPbMNR:
393 case kPyD0pPbMNR:
90d7b703 394 case kPyDPluspPbMNR:
e0e89f40 395 case kPyDPlusStrangepPbMNR:
90d7b703 396 // Tuning of Pythia parameters aimed to get a resonable agreement
397 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
398 // c-cbar single inclusive and double differential distributions.
399 // This parameter settings are meant to work with p-Pb collisions
400 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
401 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
402 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 403 ConfigHeavyFlavor();
90d7b703 404 // Intrinsic <kT>
3dc3ec94 405 SetMSTP(91,1);
406 SetPARP(91,1.16);
407 SetPARP(93,5.8);
408
90d7b703 409 // Set c-quark mass
3dc3ec94 410 SetPMAS(4,1,1.2);
90d7b703 411 break;
adf4d898 412 case kPyCharmppMNR:
413 case kPyD0ppMNR:
90d7b703 414 case kPyDPlusppMNR:
e0e89f40 415 case kPyDPlusStrangeppMNR:
90d7b703 416 // Tuning of Pythia parameters aimed to get a resonable agreement
417 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
418 // c-cbar single inclusive and double differential distributions.
419 // This parameter settings are meant to work with pp collisions
420 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
421 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
422 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 423 ConfigHeavyFlavor();
90d7b703 424 // Intrinsic <kT^2>
3dc3ec94 425 SetMSTP(91,1);
426 SetPARP(91,1.);
427 SetPARP(93,5.);
428
90d7b703 429 // Set c-quark mass
3dc3ec94 430 SetPMAS(4,1,1.2);
90d7b703 431 break;
e0e89f40 432 case kPyCharmppMNRwmi:
433 // Tuning of Pythia parameters aimed to get a resonable agreement
434 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
435 // c-cbar single inclusive and double differential distributions.
436 // This parameter settings are meant to work with pp collisions
437 // and with kCTEQ5L PDFs.
438 // Added multiple interactions according to ATLAS tune settings.
439 // To get a "reasonable" agreement with MNR results, events have to be
440 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
441 // set to 2.76 GeV.
442 // To get a "perfect" agreement with MNR results, events have to be
443 // generated in four ptHard bins with the following relative
444 // normalizations:
445 // 2.76-3 GeV: 25%
446 // 3-4 GeV: 40%
447 // 4-8 GeV: 29%
448 // >8 GeV: 6%
449 ConfigHeavyFlavor();
450 // Intrinsic <kT^2>
451 SetMSTP(91,1);
452 SetPARP(91,1.);
453 SetPARP(93,5.);
454
455 // Set c-quark mass
456 SetPMAS(4,1,1.2);
457 AtlasTuning();
458 break;
adf4d898 459 case kPyBeautyPbPbMNR:
8d2cd130 460 // Tuning of Pythia parameters aimed to get a resonable agreement
461 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
462 // b-bbar single inclusive and double differential distributions.
463 // This parameter settings are meant to work with Pb-Pb collisions
464 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
465 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
466 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 467 ConfigHeavyFlavor();
8d2cd130 468 // QCD scales
3dc3ec94 469 SetPARP(67,1.0);
470 SetPARP(71,1.0);
adf4d898 471 // Intrinsic <kT>
3dc3ec94 472 SetMSTP(91,1);
473 SetPARP(91,2.035);
474 SetPARP(93,10.17);
8d2cd130 475 // Set b-quark mass
3dc3ec94 476 SetPMAS(5,1,4.75);
8d2cd130 477 break;
adf4d898 478 case kPyBeautypPbMNR:
479 // Tuning of Pythia parameters aimed to get a resonable agreement
480 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
481 // b-bbar single inclusive and double differential distributions.
482 // This parameter settings are meant to work with p-Pb collisions
483 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
484 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
485 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 486 ConfigHeavyFlavor();
adf4d898 487 // QCD scales
3dc3ec94 488 SetPARP(67,1.0);
489 SetPARP(71,1.0);
adf4d898 490 // Intrinsic <kT>
3dc3ec94 491 SetMSTP(91,1);
492 SetPARP(91,1.60);
493 SetPARP(93,8.00);
adf4d898 494 // Set b-quark mass
3dc3ec94 495 SetPMAS(5,1,4.75);
adf4d898 496 break;
497 case kPyBeautyppMNR:
498 // Tuning of Pythia parameters aimed to get a resonable agreement
499 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
500 // b-bbar single inclusive and double differential distributions.
501 // This parameter settings are meant to work with pp collisions
502 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
503 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
504 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 505 ConfigHeavyFlavor();
adf4d898 506 // QCD scales
3dc3ec94 507 SetPARP(67,1.0);
508 SetPARP(71,1.0);
509
510 // Intrinsic <kT>
511 SetMSTP(91,1);
512 SetPARP(91,1.);
513 SetPARP(93,5.);
514
515 // Set b-quark mass
516 SetPMAS(5,1,4.75);
adf4d898 517 break;
9dfe63b3 518 case kPyBeautyJets:
e0e89f40 519 case kPyBeautyppMNRwmi:
520 // Tuning of Pythia parameters aimed to get a resonable agreement
521 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
522 // b-bbar single inclusive and double differential distributions.
523 // This parameter settings are meant to work with pp collisions
524 // and with kCTEQ5L PDFs.
525 // Added multiple interactions according to ATLAS tune settings.
526 // To get a "reasonable" agreement with MNR results, events have to be
527 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
528 // set to 2.76 GeV.
529 // To get a "perfect" agreement with MNR results, events have to be
530 // generated in four ptHard bins with the following relative
531 // normalizations:
532 // 2.76-4 GeV: 5%
533 // 4-6 GeV: 31%
534 // 6-8 GeV: 28%
535 // >8 GeV: 36%
536 ConfigHeavyFlavor();
537 // QCD scales
538 SetPARP(67,1.0);
539 SetPARP(71,1.0);
540
541 // Intrinsic <kT>
542 SetMSTP(91,1);
543 SetPARP(91,1.);
544 SetPARP(93,5.);
545
546 // Set b-quark mass
547 SetPMAS(5,1,4.75);
548
549 AtlasTuning();
550 break;
589380c6 551 case kPyW:
552
553 //Inclusive production of W+/-
554 SetMSEL(0);
555 //f fbar -> W+
556 SetMSUB(2,1);
557 // //f fbar -> g W+
558 // SetMSUB(16,1);
559 // //f fbar -> gamma W+
560 // SetMSUB(20,1);
561 // //f g -> f W+
562 // SetMSUB(31,1);
563 // //f gamma -> f W+
564 // SetMSUB(36,1);
565
566 // Initial/final parton shower on (Pythia default)
567 // With parton showers on we are generating "W inclusive process"
568 SetMSTP(61,1); //Initial QCD & QED showers on
569 SetMSTP(71,1); //Final QCD & QED showers on
570
571 break;
0f6ee828 572
573 case kPyZ:
574
575 //Inclusive production of Z
576 SetMSEL(0);
577 //f fbar -> Z/gamma
578 SetMSUB(1,1);
579
580 // // f fbar -> g Z/gamma
581 // SetMSUB(15,1);
582 // // f fbar -> gamma Z/gamma
583 // SetMSUB(19,1);
584 // // f g -> f Z/gamma
585 // SetMSUB(30,1);
586 // // f gamma -> f Z/gamma
587 // SetMSUB(35,1);
588
589 //only Z included, not gamma
590 SetMSTP(43,2);
591
592 // Initial/final parton shower on (Pythia default)
593 // With parton showers on we are generating "Z inclusive process"
594 SetMSTP(61,1); //Initial QCD & QED showers on
595 SetMSTP(71,1); //Final QCD & QED showers on
596
597 break;
598
8d2cd130 599 }
600//
601// Initialize PYTHIA
efe3b1cd 602//
603// Select the tune
604 if (itune > -1) Pytune(itune);
605
606//
8d2cd130 607 SetMSTP(41,1); // all resonance decays switched on
d95b55fa 608 Initialize("CMS","p","p",fEcms);
4167b79f 609
8d2cd130 610}
611
612Int_t AliPythia::CheckedLuComp(Int_t kf)
613{
614// Check Lund particle code (for debugging)
615 Int_t kc=Pycomp(kf);
616 printf("\n Lucomp kf,kc %d %d",kf,kc);
617 return kc;
618}
619
20e47f08 620void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 621{
622// Treat protons as inside nuclei with mass numbers a1 and a2
623// The MSTP array in the PYPARS common block is used to enable and
624// select the nuclear structure functions.
625// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
626// =1: internal PYTHIA acording to MSTP(51)
627// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
628// If the following mass number both not equal zero, nuclear corrections of the stf are used.
629// MSTP(192) : Mass number of nucleus side 1
630// MSTP(193) : Mass number of nucleus side 2
20e47f08 631// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 632 SetMSTP(52,2);
633 SetMSTP(192, a1);
20e47f08 634 SetMSTP(193, a2);
635 SetMSTP(194, pdf);
8d2cd130 636}
637
638
639AliPythia* AliPythia::Instance()
640{
641// Set random number generator
642 if (fgAliPythia) {
643 return fgAliPythia;
644 } else {
645 fgAliPythia = new AliPythia();
646 return fgAliPythia;
647 }
648}
649
650void AliPythia::PrintParticles()
651{
652// Print list of particl properties
653 Int_t np = 0;
c31f1d37 654 char* name = new char[16];
8d2cd130 655 for (Int_t kf=0; kf<1000000; kf++) {
656 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 657 Int_t kc = Pycomp(c*kf);
658 if (kc) {
659 Float_t mass = GetPMAS(kc,1);
660 Float_t width = GetPMAS(kc,2);
661 Float_t tau = GetPMAS(kc,4);
c31f1d37 662
8d2cd130 663 Pyname(kf,name);
664
665 np++;
666
667 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
668 c*kf, name, mass, width, tau);
669 }
670 }
671 }
672 printf("\n Number of particles %d \n \n", np);
673}
674
675void AliPythia::ResetDecayTable()
676{
677// Set default values for pythia decay switches
678 Int_t i;
679 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
680 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
681}
682
683void AliPythia::SetDecayTable()
684{
685// Set default values for pythia decay switches
686//
687 Int_t i;
688 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
689 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
690}
691
692void AliPythia::Pyclus(Int_t& njet)
693{
694// Call Pythia clustering algorithm
695//
696 pyclus(njet);
697}
698
699void AliPythia::Pycell(Int_t& njet)
700{
701// Call Pythia jet reconstruction algorithm
702//
703 pycell(njet);
704}
705
452af8c7 706void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
707{
708// Call Pythia jet reconstruction algorithm
709//
452af8c7 710 pyshow(ip1, ip2, qmax);
711}
712
713void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
714{
715 pyrobo(imi, ima, the, phi, bex, bey, bez);
716}
717
694b39f9 718void AliPythia::Pytune(Int_t itune)
719{
c5e2801a 720/*
721C
722C ITUNE NAME (detailed descriptions below)
723C 0 Default : No settings changed => linked Pythia version's defaults.
724C ====== Old UE, Q2-ordered showers ==========================================
725C 100 A : Rick Field's CDF Tune A
726C 101 AW : Rick Field's CDF Tune AW
727C 102 BW : Rick Field's CDF Tune BW
728C 103 DW : Rick Field's CDF Tune DW
729C 104 DWT : Rick Field's CDF Tune DW with slower UE energy scaling
730C 105 QW : Rick Field's CDF Tune QW (NB: needs CTEQ6.1M pdfs externally)
731C 106 ATLAS-DC2: Arthur Moraes' (old) ATLAS tune (ATLAS DC2 / Rome)
732C 107 ACR : Tune A modified with annealing CR
733C 108 D6 : Rick Field's CDF Tune D6 (NB: needs CTEQ6L pdfs externally)
734C 109 D6T : Rick Field's CDF Tune D6T (NB: needs CTEQ6L pdfs externally)
735C ====== Intermediate Models =================================================
736C 200 IM 1 : Intermediate model: new UE, Q2-ordered showers, annealing CR
737C 201 APT : Tune A modified to use pT-ordered final-state showers
738C ====== New UE, interleaved pT-ordered showers, annealing CR ================
739C 300 S0 : Sandhoff-Skands Tune 0
740C 301 S1 : Sandhoff-Skands Tune 1
741C 302 S2 : Sandhoff-Skands Tune 2
742C 303 S0A : S0 with "Tune A" UE energy scaling
743C 304 NOCR : New UE "best try" without colour reconnections
744C 305 Old : New UE, original (primitive) colour reconnections
745C 306 ATLAS-CSC: Arthur Moraes' (new) ATLAS tune (needs CTEQ6L externally)
746C ======= The Uppsala models =================================================
747C ( NB! must be run with special modified Pythia 6.215 version )
748C ( available from http://www.isv.uu.se/thep/MC/scigal/ )
749C 400 GAL 0 : Generalized area-law model. Old parameters
750C 401 SCI 0 : Soft-Colour-Interaction model. Old parameters
751C 402 GAL 1 : Generalized area-law model. Tevatron MB retuned (Skands)
752*/
694b39f9 753 pytune(itune);
754}
755
9b61ba2a 756void AliPythia::Py2ent(Int_t idx, Int_t pdg1, Int_t pdg2, Double_t p){
757 // Inset 2-parton system at line idx
758 py2ent(idx, pdg1, pdg2, p);
759}
452af8c7 760
761
32c8e463 762void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 763{
764// Initializes
765// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
766// (2) The nuclear geometry using the Glauber Model
767//
6b435cde 768
18b7a4a1 769 fGlauber = AliFastGlauber::Instance();
0f482ae4 770 fGlauber->Init(2);
771 fGlauber->SetCentralityClass(cMin, cMax);
772
773 fQuenchingWeights = new AliQuenchingWeights();
774 fQuenchingWeights->InitMult();
86b6ad68 775 fQuenchingWeights->SetK(k);
0f482ae4 776 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 777 fNGmax = ngmax;
778 fZmax = zmax;
779
0f482ae4 780}
781
782
452af8c7 783void AliPythia::Quench()
784{
785//
786//
787// Simple Jet Quenching routine:
788// =============================
789// The jet formed by all final state partons radiated by the parton created
0f482ae4 790// in the hard collisions is quenched by a factor (1-z) using light cone variables in
791// the initial parton reference frame:
452af8c7 792// (E + p_z)new = (1-z) (E + p_z)old
793//
0f482ae4 794//
795//
796//
452af8c7 797// The lost momentum is first balanced by one gluon with virtuality > 0.
798// Subsequently the gluon splits to yield two gluons with E = p.
799//
0f482ae4 800//
801//
4e383037 802 static Float_t eMean = 0.;
803 static Int_t icall = 0;
0f482ae4 804
c2c598a3 805 Double_t p0[4][5];
806 Double_t p1[4][5];
807 Double_t p2[4][5];
808 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 809
810 Int_t numpart = fPyjets->N;
86b6ad68 811 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 812 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
813 Bool_t quenched[4];
b280c4cc 814 Double_t wjtKick[4];
c2c598a3 815 Int_t nGluon[4];
86b6ad68 816 Int_t qPdg[4];
0f482ae4 817 Int_t imo, kst, pdg;
b280c4cc 818
511db649 819//
c2c598a3 820// Sore information about Primary partons
821//
822// j =
823// 0, 1 partons from hard scattering
824// 2, 3 partons from initial state radiation
825//
826 for (Int_t i = 2; i <= 7; i++) {
827 Int_t j = 0;
828 // Skip gluons that participate in hard scattering
829 if (i == 4 || i == 5) continue;
830 // Gluons from hard Scattering
831 if (i == 6 || i == 7) {
832 j = i - 6;
833 pxq[j] = fPyjets->P[0][i];
834 pyq[j] = fPyjets->P[1][i];
835 pzq[j] = fPyjets->P[2][i];
836 eq[j] = fPyjets->P[3][i];
837 mq[j] = fPyjets->P[4][i];
838 } else {
839 // Gluons from initial state radiation
840 //
841 // Obtain 4-momentum vector from difference between original parton and parton after gluon
842 // radiation. Energy is calculated independently because initial state radition does not
843 // conserve strictly momentum and energy for each partonic system independently.
844 //
845 // Not very clean. Should be improved !
846 //
847 //
848 j = i;
849 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
850 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
851 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
852 mq[j] = fPyjets->P[4][i];
853 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
854 }
855//
856// Calculate some kinematic variables
511db649 857//
4e383037 858 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 859 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
860 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
861 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
862 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 863 qPdg[j] = fPyjets->K[1][i];
864 }
865
866 Double_t int0[4];
867 Double_t int1[4];
86b6ad68 868
b280c4cc 869 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
870
86b6ad68 871 for (Int_t j = 0; j < 4; j++) {
c2c598a3 872 //
873 // Quench only central jets and with E > 10.
874 //
86b6ad68 875
876
877 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
878 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
879
c2c598a3 880 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 881 fZQuench[j] = 0.;
0f482ae4 882 } else {
c2c598a3 883 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 884 icall ++;
885 eMean += eloss;
886 }
0f482ae4 887 //
888 // Extra pt
86b6ad68 889 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
890 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 891 //
892 // Fractional energy loss
b280c4cc 893 fZQuench[j] = eloss / eq[j];
0f482ae4 894 //
895 // Avoid complete loss
896 //
1044c4d8 897 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 898 //
899 // Some debug printing
86b6ad68 900
901
bf9bb016 902// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
903// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 904
b280c4cc 905// fZQuench[j] = 0.8;
906// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 907 }
4e383037 908
b280c4cc 909 quenched[j] = (fZQuench[j] > 0.01);
4e383037 910 } // primary partons
c2c598a3 911
b280c4cc 912
913
6e90ad26 914 Double_t pNew[1000][4];
915 Int_t kNew[1000];
916 Int_t icount = 0;
b280c4cc 917 Double_t zquench[4];
918
6e90ad26 919//
4e383037 920// System Loop
c2c598a3 921 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 922// Skip to next system if not quenched.
4e383037 923 if (!quenched[isys]) continue;
924
b280c4cc 925 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 926 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 927 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 928 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 929
4e383037 930
931
932 Int_t igMin = -1;
933 Int_t igMax = -1;
934 Double_t pg[4] = {0., 0., 0., 0.};
935
936//
937// Loop on radiation events
938
939 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 940 while (1) {
941 icount = 0;
942 for (Int_t k = 0; k < 4; k++)
943 {
944 p0[isys][k] = 0.;
945 p1[isys][k] = 0.;
946 p2[isys][k] = 0.;
947 }
948// Loop over partons
949 for (Int_t i = 0; i < numpart; i++)
950 {
951 imo = fPyjets->K[2][i];
952 kst = fPyjets->K[0][i];
953 pdg = fPyjets->K[1][i];
954
955
956
0f482ae4 957// Quarks and gluons only
6e90ad26 958 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 959// Particles from hard scattering only
c2c598a3 960
6e90ad26 961 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 962 Int_t imom = imo % 1000;
963 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
964 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
965
6e90ad26 966
0f482ae4 967// Skip comment lines
6e90ad26 968 if (kst != 1 && kst != 2) continue;
0f482ae4 969//
970// Parton kinematic
6e90ad26 971 px = fPyjets->P[0][i];
972 py = fPyjets->P[1][i];
973 pz = fPyjets->P[2][i];
974 e = fPyjets->P[3][i];
975 m = fPyjets->P[4][i];
976 pt = TMath::Sqrt(px * px + py * py);
977 p = TMath::Sqrt(px * px + py * py + pz * pz);
978 phi = TMath::Pi() + TMath::ATan2(-py, -px);
979 theta = TMath::ATan2(pt, pz);
980
0f482ae4 981//
c2c598a3 982// Save 4-momentum sum for balancing
983 Int_t index = isys;
6e90ad26 984
985 p0[index][0] += px;
986 p0[index][1] += py;
987 p0[index][2] += pz;
988 p0[index][3] += e;
6e90ad26 989
990 klast[index] = i;
991
0f482ae4 992//
993// Fractional energy loss
b280c4cc 994 Double_t z = zquench[index];
4e383037 995
c2c598a3 996
4e383037 997// Don't fully quench radiated gluons
998//
999 if (imo > 1000) {
1000// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
1001//
1002
c2c598a3 1003 z = 0.02;
4e383037 1004 }
c2c598a3 1005// printf("z: %d %f\n", imo, z);
1006
4e383037 1007
1008//
6e90ad26 1009
1010 //
1011 //
1012 // Transform into frame in which initial parton is along z-axis
1013 //
1014 TVector3 v(px, py, pz);
1015 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
1016 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
1017
1018 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
1019 Double_t mt2 = jt * jt + m * m;
1020 Double_t zmax = 1.;
1021 //
1022 // Kinematic limit on z
1023 //
4e383037 1024 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 1025 //
1026 // Change light-cone kinematics rel. to initial parton
1027 //
1028 Double_t eppzOld = e + pl;
1029 Double_t empzOld = e - pl;
1030
1031 Double_t eppzNew = (1. - z) * eppzOld;
1032 Double_t empzNew = empzOld - mt2 * z / eppzOld;
1033 Double_t eNew = 0.5 * (eppzNew + empzNew);
1034 Double_t plNew = 0.5 * (eppzNew - empzNew);
1035
1036 Double_t jtNew;
1037 //
1038 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
1039 Double_t mt2New = eppzNew * empzNew;
1040 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 1041 if (z < zmax) {
1042 if (m * m > mt2New) {
1043 //
1044 // This should not happen
1045 //
1046 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1047 jtNew = 0;
1048 } else {
1049 jtNew = TMath::Sqrt(mt2New - m * m);
1050 }
6e90ad26 1051 } else {
4e383037 1052 // If pT is to small (probably a leading massive particle) we scale only the energy
1053 // This can cause negative masses of the radiated gluon
1054 // Let's hope for the best ...
1055 jtNew = jt;
1056 eNew = TMath::Sqrt(plNew * plNew + mt2);
1057
6e90ad26 1058 }
6e90ad26 1059 //
1060 // Calculate new px, py
1061 //
b07be423 1062 Double_t pxNew = 0;
1063 Double_t pyNew = 0;
6e90ad26 1064
b07be423 1065 if (jt>0) {
6b118b3c 1066 pxNew = jtNew / jt * pxs;
1067 pyNew = jtNew / jt * pys;
b07be423 1068 }
6e90ad26 1069// Double_t dpx = pxs - pxNew;
1070// Double_t dpy = pys - pyNew;
1071// Double_t dpz = pl - plNew;
1072// Double_t de = e - eNew;
1073// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1074// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1075// printf("New mass (2) %e %e \n", pxNew, pyNew);
1076 //
1077 // Rotate back
1078 //
1079 TVector3 w(pxNew, pyNew, plNew);
1080 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1081 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1082
1083 p1[index][0] += pxNew;
1084 p1[index][1] += pyNew;
1085 p1[index][2] += plNew;
1086 p1[index][3] += eNew;
1087 //
1088 // Updated 4-momentum vectors
1089 //
1090 pNew[icount][0] = pxNew;
1091 pNew[icount][1] = pyNew;
1092 pNew[icount][2] = plNew;
1093 pNew[icount][3] = eNew;
1094 kNew[icount] = i;
1095 icount++;
1096 } // parton loop
0f482ae4 1097 //
6e90ad26 1098 // Check if there was phase-space for quenching
0f482ae4 1099 //
0f482ae4 1100
6e90ad26 1101 if (icount == 0) quenched[isys] = kFALSE;
1102 if (!quenched[isys]) break;
1103
1104 for (Int_t j = 0; j < 4; j++)
1105 {
1106 p2[isys][j] = p0[isys][j] - p1[isys][j];
1107 }
1108 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1109 if (p2[isys][4] > 0.) {
1110 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1111 break;
1112 } else {
b280c4cc 1113 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1114 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1115 if (p2[isys][4] < -0.01) {
4e383037 1116 printf("Negative mass squared !\n");
1117 // Here we have to put the gluon back to mass shell
1118 // This will lead to a small energy imbalance
1119 p2[isys][4] = 0.;
1120 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1121 break;
6e90ad26 1122 } else {
1123 p2[isys][4] = 0.;
1124 break;
1125 }
1126 }
6e90ad26 1127 /*
6e90ad26 1128 zHeavy *= 0.98;
1129 printf("zHeavy lowered to %f\n", zHeavy);
1130 if (zHeavy < 0.01) {
1131 printf("No success ! \n");
1132 icount = 0;
1133 quenched[isys] = kFALSE;
1134 break;
1135 }
4e383037 1136 */
1137 } // iteration on z (while)
1138
6e90ad26 1139// Update event record
1140 for (Int_t k = 0; k < icount; k++) {
1141// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1142 fPyjets->P[0][kNew[k]] = pNew[k][0];
1143 fPyjets->P[1][kNew[k]] = pNew[k][1];
1144 fPyjets->P[2][kNew[k]] = pNew[k][2];
1145 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1146 }
4e383037 1147 //
1148 // Add the gluons
1149 //
1150 Int_t ish = 0;
1837e95c 1151 Int_t iGlu;
4e383037 1152 if (!quenched[isys]) continue;
0f482ae4 1153//
1154// Last parton from shower i
4e383037 1155 Int_t in = klast[isys];
0f482ae4 1156//
1157// Continue if no parton in shower i selected
1158 if (in == -1) continue;
1159//
1160// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1161 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1162//
1163// Starting index
452af8c7 1164
4e383037 1165// jmin = in - 1;
0f482ae4 1166// How many additional gluons will be generated
1167 ish = 1;
4e383037 1168 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1169//
1170// Position of gluons
4e383037 1171 iGlu = numpart;
1172 if (iglu == 0) igMin = iGlu;
1173 igMax = iGlu;
0f482ae4 1174 numpart += ish;
1175 (fPyjets->N) += ish;
4e383037 1176
0f482ae4 1177 if (ish == 1) {
4e383037 1178 fPyjets->P[0][iGlu] = p2[isys][0];
1179 fPyjets->P[1][iGlu] = p2[isys][1];
1180 fPyjets->P[2][iGlu] = p2[isys][2];
1181 fPyjets->P[3][iGlu] = p2[isys][3];
1182 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1183
4e383037 1184 fPyjets->K[0][iGlu] = 1;
1185 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1186 fPyjets->K[1][iGlu] = 21;
4e383037 1187 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1188 fPyjets->K[3][iGlu] = -1;
1189 fPyjets->K[4][iGlu] = -1;
4e383037 1190
1191 pg[0] += p2[isys][0];
1192 pg[1] += p2[isys][1];
1193 pg[2] += p2[isys][2];
1194 pg[3] += p2[isys][3];
0f482ae4 1195 } else {
1196 //
1197 // Split gluon in rest frame.
1198 //
4e383037 1199 Double_t bx = p2[isys][0] / p2[isys][3];
1200 Double_t by = p2[isys][1] / p2[isys][3];
1201 Double_t bz = p2[isys][2] / p2[isys][3];
1202 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1203 //
1204 // Isotropic decay ????
1205 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1206 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1207 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1208
1209 Double_t pz1 = pst * cost;
1210 Double_t pz2 = -pst * cost;
1211 Double_t pt1 = pst * sint;
1212 Double_t pt2 = -pst * sint;
2ab330c9 1213 Double_t px1 = pt1 * TMath::Cos(phis);
1214 Double_t py1 = pt1 * TMath::Sin(phis);
1215 Double_t px2 = pt2 * TMath::Cos(phis);
1216 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1217
1218 fPyjets->P[0][iGlu] = px1;
1219 fPyjets->P[1][iGlu] = py1;
1220 fPyjets->P[2][iGlu] = pz1;
1221 fPyjets->P[3][iGlu] = pst;
1222 fPyjets->P[4][iGlu] = 0.;
1223
4e383037 1224 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1225 fPyjets->K[1][iGlu] = 21;
4e383037 1226 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1227 fPyjets->K[3][iGlu] = -1;
1228 fPyjets->K[4][iGlu] = -1;
1229
1230 fPyjets->P[0][iGlu+1] = px2;
1231 fPyjets->P[1][iGlu+1] = py2;
1232 fPyjets->P[2][iGlu+1] = pz2;
1233 fPyjets->P[3][iGlu+1] = pst;
1234 fPyjets->P[4][iGlu+1] = 0.;
1235
4e383037 1236 fPyjets->K[0][iGlu+1] = 1;
1237 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1238 fPyjets->K[1][iGlu+1] = 21;
4e383037 1239 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1240 fPyjets->K[3][iGlu+1] = -1;
1241 fPyjets->K[4][iGlu+1] = -1;
1242 SetMSTU(1,0);
1243 SetMSTU(2,0);
1244 //
1245 // Boost back
1246 //
1247 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1248 }
4e383037 1249/*
1250 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1251 Double_t px, py, pz;
1252 px = fPyjets->P[0][ig];
1253 py = fPyjets->P[1][ig];
1254 pz = fPyjets->P[2][ig];
1255 TVector3 v(px, py, pz);
1256 v.RotateZ(-phiq[isys]);
1257 v.RotateY(-thetaq[isys]);
1258 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1259 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1260 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1261 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1262 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1263 pxs += jtKick * TMath::Cos(phiKick);
1264 pys += jtKick * TMath::Sin(phiKick);
1265 TVector3 w(pxs, pys, pzs);
1266 w.RotateY(thetaq[isys]);
1267 w.RotateZ(phiq[isys]);
1268 fPyjets->P[0][ig] = w.X();
1269 fPyjets->P[1][ig] = w.Y();
1270 fPyjets->P[2][ig] = w.Z();
1271 fPyjets->P[2][ig] = w.Mag();
1272 }
1273*/
1274 } // kGluon
1275
6e90ad26 1276
4e383037 1277 // Check energy conservation
0f482ae4 1278 Double_t pxs = 0.;
1279 Double_t pys = 0.;
1280 Double_t pzs = 0.;
1281 Double_t es = 14000.;
1282
1283 for (Int_t i = 0; i < numpart; i++)
1284 {
1285 kst = fPyjets->K[0][i];
1286 if (kst != 1 && kst != 2) continue;
1287 pxs += fPyjets->P[0][i];
1288 pys += fPyjets->P[1][i];
1289 pzs += fPyjets->P[2][i];
1290 es -= fPyjets->P[3][i];
1291 }
1292 if (TMath::Abs(pxs) > 1.e-2 ||
1293 TMath::Abs(pys) > 1.e-2 ||
1294 TMath::Abs(pzs) > 1.e-1) {
1295 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1296// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1297 }
4e383037 1298
1299 } // end quenching loop (systems)
6e90ad26 1300// Clean-up
0f482ae4 1301 for (Int_t i = 0; i < numpart; i++)
1302 {
4e383037 1303 imo = fPyjets->K[2][i];
1304 if (imo > 1000) {
1305 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1306 }
0f482ae4 1307 }
4e383037 1308// this->Pylist(1);
0f482ae4 1309} // end quench
90d7b703 1310
992f2843 1311
1312void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1313{
1314 // Igor Lokthine's quenching routine
12cb0bc0 1315 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1316
992f2843 1317 pyquen(a, ibf, b);
1318}
b280c4cc 1319
12cb0bc0 1320void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1321{
1322 // Set the parameters for the PYQUEN package.
1323 // See comments in PyquenCommon.h
1324
1325
1326 PYQPAR.t0 = t0;
1327 PYQPAR.tau0 = tau0;
1328 PYQPAR.nf = nf;
1329 PYQPAR.iengl = iengl;
1330 PYQPAR.iangl = iangl;
1331}
1332
1333
16a82508 1334void AliPythia::Pyevnw()
1335{
1336 // New multiple interaction scenario
1337 pyevnw();
1338}
1339
cd07c39b 1340void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
1341{
1342 // Call medium-modified Pythia jet reconstruction algorithm
1343 //
1344 pyshowq(ip1, ip2, qmax);
1345}
1346
b280c4cc 1347void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1348{
1349 // Return event specific quenching parameters
1350 xp = fXJet;
1351 yp = fYJet;
1352 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1353
1354}
1355
3dc3ec94 1356void AliPythia::ConfigHeavyFlavor()
1357{
1358 //
1359 // Default configuration for Heavy Flavor production
1360 //
1361 // All QCD processes
1362 //
1363 SetMSEL(1);
1364
1365 // No multiple interactions
1366 SetMSTP(81,0);
39c2e610 1367 SetPARP(81, 0.);
1368 SetPARP(82, 0.);
3dc3ec94 1369 // Initial/final parton shower on (Pythia default)
1370 SetMSTP(61,1);
1371 SetMSTP(71,1);
1372
1373 // 2nd order alpha_s
1374 SetMSTP(2,2);
1375
1376 // QCD scales
1377 SetMSTP(32,2);
1378 SetPARP(34,1.0);
1379}
e0e89f40 1380
1381void AliPythia::AtlasTuning()
1382{
1383 //
1384 // Configuration for the ATLAS tuning
0bd3d7c5 1385 if (fItune > -1) return;
1386 printf("ATLAS TUNE \n");
1387
1388 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
1389 SetMSTP(81,1); // Multiple Interactions ON
1390 SetMSTP(82,4); // Double Gaussian Model
1391 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1392 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1393 SetPARP(89,1000.); // [GeV] Ref. energy
1394 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1395 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1396 SetPARP(84,0.5); // Core radius
1397 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1398 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1399 SetPARP(67,1); // Regulates Initial State Radiation
1400}
1401
1402void AliPythia::AtlasTuning_MC09()
1403{
1404 //
1405 // Configuration for the ATLAS tuning
1406 if (fItune > -1) return;
1407 printf("ATLAS New TUNE MC09\n");
1408 SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model
1409 SetMSTP(82, 4); // Double Gaussian Model
1410 SetMSTP(52, 2); // External PDF
1411 SetMSTP(51, 20650); // MRST LO*
1412
1413
1414 SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR
1415 SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR
1416 SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant
1417 SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT
1418
1419 SetPARP(78, 0.3); // the amount of color reconnection in the final state
1420 SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant
1421 SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy
1422 SetPARP(83, 0.8); // Core density in proton matter distribution (def.value)
1423 SetPARP(84, 0.7); // Core radius
1424 SetPARP(90, 0.25); // 2*epsilon (exponent in power law)
1425 SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers
1426
1427 SetMSTP(95, 6);
1428 SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF
1429 SetPARJ(42, 0.58);
1430 SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks
1431 SetPARP(89,1800.); // [GeV] Ref. energy
e0e89f40 1432}
e8a8adcd 1433
1434AliPythia& AliPythia::operator=(const AliPythia& rhs)
1435{
1436// Assignment operator
1437 rhs.Copy(*this);
1438 return *this;
1439}
1440
1441 void AliPythia::Copy(TObject&) const
1442{
1443 //
1444 // Copy
1445 //
1446 Fatal("Copy","Not implemented!\n");
1447}
cd07c39b 1448