8d2cd130 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
7cdba479 |
16 | /* $Id$ */ |
8d2cd130 |
17 | |
18 | #include "AliPythia.h" |
7cdba479 |
19 | #include "AliPythiaRndm.h" |
0f482ae4 |
20 | #include "../FASTSIM/AliFastGlauber.h" |
21 | #include "../FASTSIM/AliQuenchingWeights.h" |
22 | #include "TVector3.h" |
8d2cd130 |
23 | |
24 | ClassImp(AliPythia) |
25 | |
26 | #ifndef WIN32 |
27 | # define pyclus pyclus_ |
28 | # define pycell pycell_ |
452af8c7 |
29 | # define pyshow pyshow_ |
30 | # define pyrobo pyrobo_ |
8d2cd130 |
31 | # define type_of_call |
32 | #else |
33 | # define pyclus PYCLUS |
34 | # define pycell PYCELL |
452af8c7 |
35 | # define pyrobo PYROBO |
8d2cd130 |
36 | # define type_of_call _stdcall |
37 | #endif |
38 | |
39 | extern "C" void type_of_call pyclus(Int_t & ); |
40 | extern "C" void type_of_call pycell(Int_t & ); |
452af8c7 |
41 | extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &); |
42 | extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &); |
8d2cd130 |
43 | |
44 | //_____________________________________________________________________________ |
45 | |
46 | AliPythia* AliPythia::fgAliPythia=NULL; |
47 | |
48 | AliPythia::AliPythia() |
49 | { |
50 | // Default Constructor |
51 | // |
52 | // Set random number |
7cdba479 |
53 | if (!AliPythiaRndm::GetPythiaRandom()) |
54 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
0f482ae4 |
55 | fGlauber = 0; |
56 | fQuenchingWeights = 0; |
8d2cd130 |
57 | } |
58 | |
59 | void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc) |
60 | { |
61 | // Initialise the process to generate |
7cdba479 |
62 | if (!AliPythiaRndm::GetPythiaRandom()) |
63 | AliPythiaRndm::SetPythiaRandom(GetRandom()); |
8d2cd130 |
64 | |
65 | fProcess = process; |
66 | fEcms = energy; |
67 | fStrucFunc = strucfunc; |
68 | // don't decay p0 |
69 | SetMDCY(Pycomp(111),1,0); |
70 | // select structure function |
71 | SetMSTP(52,2); |
72 | SetMSTP(51,strucfunc); |
73 | // |
74 | // Pythia initialisation for selected processes// |
75 | // |
76 | // Make MSEL clean |
77 | // |
78 | for (Int_t i=1; i<= 200; i++) { |
79 | SetMSUB(i,0); |
80 | } |
81 | // select charm production |
82 | switch (process) |
83 | { |
84 | case kPyCharm: |
85 | SetMSEL(4); |
86 | // |
87 | // heavy quark masses |
88 | |
89 | SetPMAS(4,1,1.2); |
90 | SetMSTU(16,2); |
91 | // |
92 | // primordial pT |
93 | SetMSTP(91,1); |
94 | SetPARP(91,1.); |
95 | SetPARP(93,5.); |
96 | // |
97 | break; |
98 | case kPyBeauty: |
99 | SetMSEL(5); |
100 | SetPMAS(5,1,4.75); |
101 | SetMSTU(16,2); |
102 | break; |
103 | case kPyJpsi: |
104 | SetMSEL(0); |
105 | // gg->J/Psi g |
106 | SetMSUB(86,1); |
107 | break; |
108 | case kPyJpsiChi: |
109 | SetMSEL(0); |
110 | // gg->J/Psi g |
111 | SetMSUB(86,1); |
112 | // gg-> chi_0c g |
113 | SetMSUB(87,1); |
114 | // gg-> chi_1c g |
115 | SetMSUB(88,1); |
116 | // gg-> chi_2c g |
117 | SetMSUB(89,1); |
118 | break; |
119 | case kPyCharmUnforced: |
120 | SetMSEL(0); |
121 | // gq->qg |
122 | SetMSUB(28,1); |
123 | // gg->qq |
124 | SetMSUB(53,1); |
125 | // gg->gg |
126 | SetMSUB(68,1); |
127 | break; |
128 | case kPyBeautyUnforced: |
129 | SetMSEL(0); |
130 | // gq->qg |
131 | SetMSUB(28,1); |
132 | // gg->qq |
133 | SetMSUB(53,1); |
134 | // gg->gg |
135 | SetMSUB(68,1); |
136 | break; |
137 | case kPyMb: |
138 | // Minimum Bias pp-Collisions |
139 | // |
140 | // |
141 | // select Pythia min. bias model |
142 | SetMSEL(0); |
511db649 |
143 | SetMSUB(92,1); // single diffraction AB-->XB |
144 | SetMSUB(93,1); // single diffraction AB-->AX |
145 | SetMSUB(94,1); // double diffraction |
146 | SetMSUB(95,1); // low pt production |
147 | |
148 | // |
149 | // ATLAS Tuning |
150 | // |
0f482ae4 |
151 | SetMSTP(51,7); // CTEQ5L pdf |
511db649 |
152 | SetMSTP(81,1); // Multiple Interactions ON |
153 | SetMSTP(82,4); // Double Gaussian Model |
154 | |
155 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
156 | SetPARP(89,1000.); // [GeV] Ref. energy |
157 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
158 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
159 | SetPARP(84,0.5); // Core radius |
160 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
161 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
162 | SetPARP(67,1); // Regulates Initial State Radiation |
163 | break; |
8d2cd130 |
164 | case kPyMbNonDiffr: |
165 | // Minimum Bias pp-Collisions |
166 | // |
167 | // |
168 | // select Pythia min. bias model |
169 | SetMSEL(0); |
511db649 |
170 | SetMSUB(95,1); // low pt production |
0f482ae4 |
171 | |
172 | // |
173 | // ATLAS Tuning |
174 | // |
511db649 |
175 | |
0f482ae4 |
176 | SetMSTP(51,7); // CTEQ5L pdf |
511db649 |
177 | SetMSTP(81,1); // Multiple Interactions ON |
178 | SetMSTP(82,4); // Double Gaussian Model |
179 | |
180 | SetPARP(82,1.8); // [GeV] PT_min at Ref. energy |
181 | SetPARP(89,1000.); // [GeV] Ref. energy |
182 | SetPARP(90,0.16); // 2*epsilon (exponent in power law) |
183 | SetPARP(83,0.5); // Core density in proton matter distribution (def.value) |
184 | SetPARP(84,0.5); // Core radius |
185 | SetPARP(85,0.33); // Regulates gluon prod. mechanism |
186 | SetPARP(86,0.66); // Regulates gluon prod. mechanism |
187 | SetPARP(67,1); // Regulates Initial State Radiation |
8d2cd130 |
188 | break; |
189 | case kPyJets: |
190 | // |
191 | // QCD Jets |
192 | // |
193 | SetMSEL(1); |
194 | break; |
195 | case kPyDirectGamma: |
196 | SetMSEL(10); |
197 | break; |
adf4d898 |
198 | case kPyCharmPbPbMNR: |
199 | case kPyD0PbPbMNR: |
8d2cd130 |
200 | // Tuning of Pythia parameters aimed to get a resonable agreement |
201 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
202 | // c-cbar single inclusive and double differential distributions. |
203 | // This parameter settings are meant to work with Pb-Pb collisions |
adf4d898 |
204 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
8d2cd130 |
205 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
206 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
207 | |
208 | // All QCD processes |
209 | SetMSEL(1); |
210 | |
211 | // No multiple interactions |
212 | SetMSTP(81,0); |
213 | SetPARP(81,0.0); |
214 | SetPARP(82,0.0); |
215 | |
216 | // Initial/final parton shower on (Pythia default) |
217 | SetMSTP(61,1); |
218 | SetMSTP(71,1); |
219 | |
220 | // 2nd order alpha_s |
221 | SetMSTP(2,2); |
222 | |
223 | // QCD scales |
224 | SetMSTP(32,2); |
225 | SetPARP(34,1.0); |
226 | |
adf4d898 |
227 | // Intrinsic <kT> |
8d2cd130 |
228 | SetMSTP(91,1); |
229 | SetPARP(91,1.304); |
230 | SetPARP(93,6.52); |
231 | |
232 | // Set c-quark mass |
233 | SetPMAS(4,1,1.2); |
234 | |
90d7b703 |
235 | break; |
236 | case kPyDPlusPbPbMNR: |
237 | // Tuning of Pythia parameters aimed to get a resonable agreement |
238 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
239 | // c-cbar single inclusive and double differential distributions. |
240 | // This parameter settings are meant to work with Pb-Pb collisions |
241 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
242 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
243 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
244 | |
245 | // All QCD processes |
246 | SetMSEL(1); |
247 | |
248 | // No multiple interactions |
249 | SetMSTP(81,0); |
250 | SetPARP(81,0.0); |
251 | SetPARP(82,0.0); |
252 | |
253 | // Initial/final parton shower on (Pythia default) |
254 | SetMSTP(61,1); |
255 | SetMSTP(71,1); |
256 | |
257 | // 2nd order alpha_s |
258 | SetMSTP(2,2); |
259 | |
260 | // QCD scales |
261 | SetMSTP(32,2); |
262 | SetPARP(34,1.0); |
263 | |
264 | // Intrinsic <kT> |
265 | SetMSTP(91,1); |
266 | SetPARP(91,1.304); |
267 | SetPARP(93,6.52); |
268 | |
269 | // Set c-quark mass |
270 | SetPMAS(4,1,1.2); |
271 | |
8d2cd130 |
272 | break; |
adf4d898 |
273 | case kPyCharmpPbMNR: |
274 | case kPyD0pPbMNR: |
275 | // Tuning of Pythia parameters aimed to get a resonable agreement |
276 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
277 | // c-cbar single inclusive and double differential distributions. |
278 | // This parameter settings are meant to work with p-Pb collisions |
279 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
280 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
281 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
282 | |
283 | // All QCD processes |
284 | SetMSEL(1); |
285 | |
286 | // No multiple interactions |
287 | SetMSTP(81,0); |
288 | SetPARP(81,0.0); |
289 | SetPARP(82,0.0); |
290 | |
291 | // Initial/final parton shower on (Pythia default) |
292 | SetMSTP(61,1); |
293 | SetMSTP(71,1); |
294 | |
295 | // 2nd order alpha_s |
296 | SetMSTP(2,2); |
297 | |
298 | // QCD scales |
299 | SetMSTP(32,2); |
300 | SetPARP(34,1.0); |
301 | |
302 | // Intrinsic <kT> |
303 | SetMSTP(91,1); |
304 | SetPARP(91,1.16); |
305 | SetPARP(93,5.8); |
306 | |
307 | // Set c-quark mass |
308 | SetPMAS(4,1,1.2); |
309 | |
90d7b703 |
310 | break; |
311 | case kPyDPluspPbMNR: |
312 | // Tuning of Pythia parameters aimed to get a resonable agreement |
313 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
314 | // c-cbar single inclusive and double differential distributions. |
315 | // This parameter settings are meant to work with p-Pb collisions |
316 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
317 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
318 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
319 | |
320 | // All QCD processes |
321 | SetMSEL(1); |
322 | |
323 | // No multiple interactions |
324 | SetMSTP(81,0); |
325 | SetPARP(81,0.0); |
326 | SetPARP(82,0.0); |
327 | |
328 | // Initial/final parton shower on (Pythia default) |
329 | SetMSTP(61,1); |
330 | SetMSTP(71,1); |
331 | |
332 | // 2nd order alpha_s |
333 | SetMSTP(2,2); |
334 | |
335 | // QCD scales |
336 | SetMSTP(32,2); |
337 | SetPARP(34,1.0); |
338 | |
339 | // Intrinsic <kT> |
340 | SetMSTP(91,1); |
341 | SetPARP(91,1.16); |
342 | SetPARP(93,5.8); |
343 | |
344 | // Set c-quark mass |
345 | SetPMAS(4,1,1.2); |
346 | |
adf4d898 |
347 | break; |
348 | case kPyCharmppMNR: |
349 | case kPyD0ppMNR: |
350 | // Tuning of Pythia parameters aimed to get a resonable agreement |
351 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
352 | // c-cbar single inclusive and double differential distributions. |
353 | // This parameter settings are meant to work with pp collisions |
354 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
355 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
356 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
357 | |
358 | // All QCD processes |
359 | SetMSEL(1); |
360 | |
361 | // No multiple interactions |
362 | SetMSTP(81,0); |
363 | SetPARP(81,0.0); |
364 | SetPARP(82,0.0); |
365 | |
366 | // Initial/final parton shower on (Pythia default) |
367 | SetMSTP(61,1); |
368 | SetMSTP(71,1); |
369 | |
370 | // 2nd order alpha_s |
371 | SetMSTP(2,2); |
372 | |
373 | // QCD scales |
374 | SetMSTP(32,2); |
375 | SetPARP(34,1.0); |
376 | |
377 | // Intrinsic <kT^2> |
378 | SetMSTP(91,1); |
379 | SetPARP(91,1.); |
380 | SetPARP(93,5.); |
381 | |
382 | // Set c-quark mass |
383 | SetPMAS(4,1,1.2); |
384 | |
90d7b703 |
385 | break; |
386 | case kPyDPlusppMNR: |
387 | // Tuning of Pythia parameters aimed to get a resonable agreement |
388 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
389 | // c-cbar single inclusive and double differential distributions. |
390 | // This parameter settings are meant to work with pp collisions |
391 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
392 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
393 | // has to be set to 2.1GeV. Example in ConfigCharmPPR.C. |
394 | |
395 | // All QCD processes |
396 | SetMSEL(1); |
397 | |
398 | // No multiple interactions |
399 | SetMSTP(81,0); |
400 | SetPARP(81,0.0); |
401 | SetPARP(82,0.0); |
402 | |
403 | // Initial/final parton shower on (Pythia default) |
404 | SetMSTP(61,1); |
405 | SetMSTP(71,1); |
406 | |
407 | // 2nd order alpha_s |
408 | SetMSTP(2,2); |
409 | |
410 | // QCD scales |
411 | SetMSTP(32,2); |
412 | SetPARP(34,1.0); |
413 | |
414 | // Intrinsic <kT^2> |
415 | SetMSTP(91,1); |
416 | SetPARP(91,1.); |
417 | SetPARP(93,5.); |
418 | |
419 | // Set c-quark mass |
420 | SetPMAS(4,1,1.2); |
421 | |
adf4d898 |
422 | break; |
423 | case kPyBeautyPbPbMNR: |
8d2cd130 |
424 | // Tuning of Pythia parameters aimed to get a resonable agreement |
425 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
426 | // b-bbar single inclusive and double differential distributions. |
427 | // This parameter settings are meant to work with Pb-Pb collisions |
428 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
429 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
430 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
431 | |
432 | // All QCD processes |
433 | SetMSEL(1); |
434 | |
435 | // No multiple interactions |
436 | SetMSTP(81,0); |
437 | SetPARP(81,0.0); |
438 | SetPARP(82,0.0); |
439 | |
440 | // Initial/final parton shower on (Pythia default) |
441 | SetMSTP(61,1); |
442 | SetMSTP(71,1); |
443 | |
444 | // 2nd order alpha_s |
445 | SetMSTP(2,2); |
446 | |
447 | // QCD scales |
448 | SetMSTP(32,2); |
449 | SetPARP(34,1.0); |
450 | SetPARP(67,1.0); |
451 | SetPARP(71,1.0); |
452 | |
adf4d898 |
453 | // Intrinsic <kT> |
8d2cd130 |
454 | SetMSTP(91,1); |
455 | SetPARP(91,2.035); |
456 | SetPARP(93,10.17); |
457 | |
458 | // Set b-quark mass |
459 | SetPMAS(5,1,4.75); |
460 | |
adf4d898 |
461 | break; |
462 | case kPyBeautypPbMNR: |
463 | // Tuning of Pythia parameters aimed to get a resonable agreement |
464 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
465 | // b-bbar single inclusive and double differential distributions. |
466 | // This parameter settings are meant to work with p-Pb collisions |
467 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
468 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
469 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
470 | |
471 | // All QCD processes |
472 | SetMSEL(1); |
473 | |
474 | // No multiple interactions |
475 | SetMSTP(81,0); |
476 | SetPARP(81,0.0); |
477 | SetPARP(82,0.0); |
478 | |
479 | // Initial/final parton shower on (Pythia default) |
480 | SetMSTP(61,1); |
481 | SetMSTP(71,1); |
482 | |
483 | // 2nd order alpha_s |
484 | SetMSTP(2,2); |
485 | |
486 | // QCD scales |
487 | SetMSTP(32,2); |
488 | SetPARP(34,1.0); |
489 | SetPARP(67,1.0); |
490 | SetPARP(71,1.0); |
491 | |
492 | // Intrinsic <kT> |
493 | SetMSTP(91,1); |
494 | SetPARP(91,1.60); |
495 | SetPARP(93,8.00); |
496 | |
497 | // Set b-quark mass |
498 | SetPMAS(5,1,4.75); |
499 | |
500 | break; |
501 | case kPyBeautyppMNR: |
502 | // Tuning of Pythia parameters aimed to get a resonable agreement |
503 | // between with the NLO calculation by Mangano, Nason, Ridolfi for the |
504 | // b-bbar single inclusive and double differential distributions. |
505 | // This parameter settings are meant to work with pp collisions |
506 | // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs. |
507 | // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard) |
508 | // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C. |
509 | |
510 | // All QCD processes |
511 | SetMSEL(1); |
512 | |
513 | // No multiple interactions |
514 | SetMSTP(81,0); |
515 | SetPARP(81,0.0); |
516 | SetPARP(82,0.0); |
517 | |
518 | // Initial/final parton shower on (Pythia default) |
519 | SetMSTP(61,1); |
520 | SetMSTP(71,1); |
521 | |
522 | // 2nd order alpha_s |
523 | SetMSTP(2,2); |
524 | |
525 | // QCD scales |
526 | SetMSTP(32,2); |
527 | SetPARP(34,1.0); |
528 | SetPARP(67,1.0); |
529 | SetPARP(71,1.0); |
530 | |
531 | // Intrinsic <kT> |
532 | SetMSTP(91,1); |
533 | SetPARP(91,1.); |
534 | SetPARP(93,5.); |
535 | |
536 | // Set b-quark mass |
537 | SetPMAS(5,1,4.75); |
538 | |
8d2cd130 |
539 | break; |
540 | } |
541 | // |
542 | // Initialize PYTHIA |
543 | SetMSTP(41,1); // all resonance decays switched on |
544 | |
545 | Initialize("CMS","p","p",fEcms); |
546 | |
547 | } |
548 | |
549 | Int_t AliPythia::CheckedLuComp(Int_t kf) |
550 | { |
551 | // Check Lund particle code (for debugging) |
552 | Int_t kc=Pycomp(kf); |
553 | printf("\n Lucomp kf,kc %d %d",kf,kc); |
554 | return kc; |
555 | } |
556 | |
557 | void AliPythia::SetNuclei(Int_t a1, Int_t a2) |
558 | { |
559 | // Treat protons as inside nuclei with mass numbers a1 and a2 |
560 | // The MSTP array in the PYPARS common block is used to enable and |
561 | // select the nuclear structure functions. |
562 | // MSTP(52) : (D=1) choice of proton and nuclear structure-function library |
563 | // =1: internal PYTHIA acording to MSTP(51) |
564 | // =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET |
565 | // If the following mass number both not equal zero, nuclear corrections of the stf are used. |
566 | // MSTP(192) : Mass number of nucleus side 1 |
567 | // MSTP(193) : Mass number of nucleus side 2 |
568 | SetMSTP(52,2); |
569 | SetMSTP(192, a1); |
570 | SetMSTP(193, a2); |
571 | } |
572 | |
573 | |
574 | AliPythia* AliPythia::Instance() |
575 | { |
576 | // Set random number generator |
577 | if (fgAliPythia) { |
578 | return fgAliPythia; |
579 | } else { |
580 | fgAliPythia = new AliPythia(); |
581 | return fgAliPythia; |
582 | } |
583 | } |
584 | |
585 | void AliPythia::PrintParticles() |
586 | { |
587 | // Print list of particl properties |
588 | Int_t np = 0; |
c31f1d37 |
589 | char* name = new char[16]; |
8d2cd130 |
590 | for (Int_t kf=0; kf<1000000; kf++) { |
591 | for (Int_t c = 1; c > -2; c-=2) { |
8d2cd130 |
592 | Int_t kc = Pycomp(c*kf); |
593 | if (kc) { |
594 | Float_t mass = GetPMAS(kc,1); |
595 | Float_t width = GetPMAS(kc,2); |
596 | Float_t tau = GetPMAS(kc,4); |
c31f1d37 |
597 | |
8d2cd130 |
598 | Pyname(kf,name); |
599 | |
600 | np++; |
601 | |
602 | printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e", |
603 | c*kf, name, mass, width, tau); |
604 | } |
605 | } |
606 | } |
607 | printf("\n Number of particles %d \n \n", np); |
608 | } |
609 | |
610 | void AliPythia::ResetDecayTable() |
611 | { |
612 | // Set default values for pythia decay switches |
613 | Int_t i; |
614 | for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]); |
615 | for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]); |
616 | } |
617 | |
618 | void AliPythia::SetDecayTable() |
619 | { |
620 | // Set default values for pythia decay switches |
621 | // |
622 | Int_t i; |
623 | for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1); |
624 | for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1); |
625 | } |
626 | |
627 | void AliPythia::Pyclus(Int_t& njet) |
628 | { |
629 | // Call Pythia clustering algorithm |
630 | // |
631 | pyclus(njet); |
632 | } |
633 | |
634 | void AliPythia::Pycell(Int_t& njet) |
635 | { |
636 | // Call Pythia jet reconstruction algorithm |
637 | // |
638 | pycell(njet); |
639 | } |
640 | |
452af8c7 |
641 | void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax) |
642 | { |
643 | // Call Pythia jet reconstruction algorithm |
644 | // |
452af8c7 |
645 | pyshow(ip1, ip2, qmax); |
646 | } |
647 | |
648 | void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez) |
649 | { |
650 | pyrobo(imi, ima, the, phi, bex, bey, bez); |
651 | } |
652 | |
653 | |
654 | |
0f482ae4 |
655 | void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t qTransport, Float_t maxLength, Int_t iECMethod) |
656 | { |
657 | // Initializes |
658 | // (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann |
659 | // (2) The nuclear geometry using the Glauber Model |
660 | // |
661 | |
662 | |
663 | fGlauber = new AliFastGlauber(); |
664 | fGlauber->Init(2); |
665 | fGlauber->SetCentralityClass(cMin, cMax); |
666 | |
667 | fQuenchingWeights = new AliQuenchingWeights(); |
668 | fQuenchingWeights->InitMult(); |
669 | fQuenchingWeights->SetQTransport(qTransport); |
670 | fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod)); |
671 | fQuenchingWeights->SetLengthMax(Int_t(maxLength)); |
672 | fQuenchingWeights->SampleEnergyLoss(); |
673 | |
674 | } |
675 | |
676 | |
452af8c7 |
677 | void AliPythia::Quench() |
678 | { |
679 | // |
680 | // |
681 | // Simple Jet Quenching routine: |
682 | // ============================= |
683 | // The jet formed by all final state partons radiated by the parton created |
0f482ae4 |
684 | // in the hard collisions is quenched by a factor (1-z) using light cone variables in |
685 | // the initial parton reference frame: |
452af8c7 |
686 | // (E + p_z)new = (1-z) (E + p_z)old |
687 | // |
0f482ae4 |
688 | // |
689 | // |
690 | // |
452af8c7 |
691 | // The lost momentum is first balanced by one gluon with virtuality > 0. |
692 | // Subsequently the gluon splits to yield two gluons with E = p. |
693 | // |
0f482ae4 |
694 | // |
695 | // |
4e383037 |
696 | static Float_t eMean = 0.; |
697 | static Int_t icall = 0; |
0f482ae4 |
698 | |
699 | Double_t p0[2][5]; |
700 | Double_t p1[2][5]; |
701 | Double_t p2[2][5]; |
452af8c7 |
702 | Int_t klast[2] = {-1, -1}; |
452af8c7 |
703 | |
704 | Int_t numpart = fPyjets->N; |
0f482ae4 |
705 | Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0.; |
706 | Double_t pxq[2], pyq[2], pzq[2], eq[2], yq[2], mq[2], pq[2], phiq[2], thetaq[2], ptq[2]; |
707 | Bool_t quenched[2]; |
708 | Double_t phi; |
709 | Double_t zInitial[2], wjtKick[2]; |
4e383037 |
710 | Int_t nGluon[2]; |
711 | |
0f482ae4 |
712 | Int_t imo, kst, pdg; |
511db649 |
713 | // |
0f482ae4 |
714 | // Primary partons |
511db649 |
715 | // |
4e383037 |
716 | |
717 | |
0f482ae4 |
718 | |
719 | for (Int_t i = 6; i <= 7; i++) { |
720 | Int_t j = i - 6; |
452af8c7 |
721 | |
0f482ae4 |
722 | pxq[j] = fPyjets->P[0][i]; |
723 | pyq[j] = fPyjets->P[1][i]; |
724 | pzq[j] = fPyjets->P[2][i]; |
725 | eq[j] = fPyjets->P[3][i]; |
726 | mq[j] = fPyjets->P[4][i]; |
4e383037 |
727 | yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14)); |
0f482ae4 |
728 | pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]); |
729 | phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]); |
730 | ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]); |
731 | thetaq[j] = TMath::ATan2(ptq[j], pzq[j]); |
732 | phi = phiq[j]; |
733 | |
734 | // Quench only central jets |
735 | if (TMath::Abs(yq[j]) > 2.5) { |
736 | zInitial[j] = 0.; |
737 | } else { |
738 | pdg = fPyjets->K[1][i]; |
739 | |
740 | // Get length in nucleus |
741 | Double_t l; |
742 | fGlauber->GetLengthsForPythia(1, &phi, &l, -1.); |
743 | // |
744 | // Energy loss for given length and parton typr |
745 | Int_t itype = (pdg == 21) ? 2 : 1; |
4e383037 |
746 | |
0f482ae4 |
747 | Double_t eloss = fQuenchingWeights->GetELossRandom(itype, l, eq[j]); |
4e383037 |
748 | if (eq[j] > 80. && TMath::Abs(yq[j]) < 0.5) { |
749 | icall ++; |
750 | eMean += eloss; |
751 | } |
752 | |
0f482ae4 |
753 | // |
754 | // Extra pt |
4e383037 |
755 | |
0f482ae4 |
756 | wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->GetQTransport()); |
757 | // |
758 | // Fractional energy loss |
759 | zInitial[j] = eloss / eq[j]; |
760 | // |
761 | // Avoid complete loss |
762 | // |
763 | if (zInitial[j] == 1.) zInitial[j] = 0.95; |
764 | // |
765 | // Some debug printing |
4e383037 |
766 | printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n", |
767 | j, itype, eq[j], phi, l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]); |
768 | |
769 | zInitial[j] = 1.; |
770 | while (zInitial[j] >= 0.95) zInitial[j] = gRandom->Exp(0.2); |
0f482ae4 |
771 | } |
4e383037 |
772 | |
0f482ae4 |
773 | quenched[j] = (zInitial[j] > 0.01); |
4e383037 |
774 | } // primary partons |
0f482ae4 |
775 | |
6e90ad26 |
776 | Double_t pNew[1000][4]; |
777 | Int_t kNew[1000]; |
778 | Int_t icount = 0; |
779 | // |
4e383037 |
780 | // System Loop |
781 | for (Int_t isys = 0; isys < 2; isys++) { |
6e90ad26 |
782 | // Skip to next system if not quenched. |
4e383037 |
783 | if (!quenched[isys]) continue; |
784 | |
785 | nGluon[isys] = 1 + Int_t(zInitial[isys] / (1. - zInitial[isys])); |
786 | if (nGluon[isys] > 6) nGluon[isys] = 6; |
787 | zInitial[isys] = 1. - TMath::Power(1. - zInitial[isys], 1./Double_t(nGluon[isys])); |
788 | wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys])); |
0f482ae4 |
789 | |
4e383037 |
790 | |
791 | |
792 | Int_t igMin = -1; |
793 | Int_t igMax = -1; |
794 | Double_t pg[4] = {0., 0., 0., 0.}; |
795 | |
796 | // |
797 | // Loop on radiation events |
798 | |
799 | for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) { |
6e90ad26 |
800 | Double_t zHeavy = zInitial[isys]; |
6e90ad26 |
801 | // |
4e383037 |
802 | |
6e90ad26 |
803 | while (1) { |
804 | icount = 0; |
805 | for (Int_t k = 0; k < 4; k++) |
806 | { |
807 | p0[isys][k] = 0.; |
808 | p1[isys][k] = 0.; |
809 | p2[isys][k] = 0.; |
810 | } |
811 | // Loop over partons |
812 | for (Int_t i = 0; i < numpart; i++) |
813 | { |
814 | imo = fPyjets->K[2][i]; |
815 | kst = fPyjets->K[0][i]; |
816 | pdg = fPyjets->K[1][i]; |
817 | |
818 | |
819 | |
0f482ae4 |
820 | // Quarks and gluons only |
6e90ad26 |
821 | if (pdg != 21 && TMath::Abs(pdg) > 6) continue; |
0f482ae4 |
822 | // Particles from hard scattering only |
6e90ad26 |
823 | if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1]; |
4e383037 |
824 | if (imo != (isys + 7) && (imo % 1000) != (isys + 7)) continue; |
6e90ad26 |
825 | |
0f482ae4 |
826 | // Skip comment lines |
6e90ad26 |
827 | if (kst != 1 && kst != 2) continue; |
0f482ae4 |
828 | // |
829 | // Parton kinematic |
6e90ad26 |
830 | px = fPyjets->P[0][i]; |
831 | py = fPyjets->P[1][i]; |
832 | pz = fPyjets->P[2][i]; |
833 | e = fPyjets->P[3][i]; |
834 | m = fPyjets->P[4][i]; |
835 | pt = TMath::Sqrt(px * px + py * py); |
836 | p = TMath::Sqrt(px * px + py * py + pz * pz); |
837 | phi = TMath::Pi() + TMath::ATan2(-py, -px); |
838 | theta = TMath::ATan2(pt, pz); |
839 | |
0f482ae4 |
840 | // |
841 | // Save 4-momentum sum for balancing |
6e90ad26 |
842 | Int_t index = imo - 7; |
4e383037 |
843 | if (index >= 1000) index = imo % 1000 - 7; |
6e90ad26 |
844 | |
845 | p0[index][0] += px; |
846 | p0[index][1] += py; |
847 | p0[index][2] += pz; |
848 | p0[index][3] += e; |
6e90ad26 |
849 | |
850 | klast[index] = i; |
851 | |
0f482ae4 |
852 | // |
853 | // Fractional energy loss |
6e90ad26 |
854 | Double_t z = zInitial[index]; |
4e383037 |
855 | |
856 | // Don't fully quench radiated gluons |
857 | // |
858 | if (imo > 1000) { |
859 | // This small factor makes sure that the gluons are not too close in phase space to avoid recombination |
860 | // |
861 | |
862 | z = 0.05; |
863 | } |
864 | |
865 | // |
866 | |
6e90ad26 |
867 | if (m > 0.) z = zHeavy; |
868 | |
869 | // |
870 | // |
871 | // Transform into frame in which initial parton is along z-axis |
872 | // |
873 | TVector3 v(px, py, pz); |
874 | v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]); |
875 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z(); |
876 | |
877 | Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys); |
878 | Double_t mt2 = jt * jt + m * m; |
879 | Double_t zmax = 1.; |
880 | // |
881 | // Kinematic limit on z |
882 | // |
4e383037 |
883 | if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt); |
6e90ad26 |
884 | // |
885 | // Change light-cone kinematics rel. to initial parton |
886 | // |
887 | Double_t eppzOld = e + pl; |
888 | Double_t empzOld = e - pl; |
889 | |
890 | Double_t eppzNew = (1. - z) * eppzOld; |
891 | Double_t empzNew = empzOld - mt2 * z / eppzOld; |
892 | Double_t eNew = 0.5 * (eppzNew + empzNew); |
893 | Double_t plNew = 0.5 * (eppzNew - empzNew); |
894 | |
895 | Double_t jtNew; |
896 | // |
897 | // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0 |
898 | Double_t mt2New = eppzNew * empzNew; |
899 | if (mt2New < 1.e-8) mt2New = 0.; |
4e383037 |
900 | if (z < zmax) { |
901 | if (m * m > mt2New) { |
902 | // |
903 | // This should not happen |
904 | // |
905 | Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew); |
906 | jtNew = 0; |
907 | } else { |
908 | jtNew = TMath::Sqrt(mt2New - m * m); |
909 | } |
6e90ad26 |
910 | } else { |
4e383037 |
911 | // If pT is to small (probably a leading massive particle) we scale only the energy |
912 | // This can cause negative masses of the radiated gluon |
913 | // Let's hope for the best ... |
914 | jtNew = jt; |
915 | eNew = TMath::Sqrt(plNew * plNew + mt2); |
916 | |
6e90ad26 |
917 | } |
6e90ad26 |
918 | // |
919 | // Calculate new px, py |
920 | // |
921 | Double_t pxNew = jtNew / jt * pxs; |
922 | Double_t pyNew = jtNew / jt * pys; |
923 | |
924 | // Double_t dpx = pxs - pxNew; |
925 | // Double_t dpy = pys - pyNew; |
926 | // Double_t dpz = pl - plNew; |
927 | // Double_t de = e - eNew; |
928 | // Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz; |
929 | // printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew); |
930 | // printf("New mass (2) %e %e \n", pxNew, pyNew); |
931 | // |
932 | // Rotate back |
933 | // |
934 | TVector3 w(pxNew, pyNew, plNew); |
935 | w.RotateY(thetaq[index]); w.RotateZ(phiq[index]); |
936 | pxNew = w.X(); pyNew = w.Y(); plNew = w.Z(); |
937 | |
938 | p1[index][0] += pxNew; |
939 | p1[index][1] += pyNew; |
940 | p1[index][2] += plNew; |
941 | p1[index][3] += eNew; |
942 | // |
943 | // Updated 4-momentum vectors |
944 | // |
945 | pNew[icount][0] = pxNew; |
946 | pNew[icount][1] = pyNew; |
947 | pNew[icount][2] = plNew; |
948 | pNew[icount][3] = eNew; |
949 | kNew[icount] = i; |
950 | icount++; |
951 | } // parton loop |
0f482ae4 |
952 | // |
6e90ad26 |
953 | // Check if there was phase-space for quenching |
0f482ae4 |
954 | // |
0f482ae4 |
955 | |
6e90ad26 |
956 | if (icount == 0) quenched[isys] = kFALSE; |
957 | if (!quenched[isys]) break; |
958 | |
959 | for (Int_t j = 0; j < 4; j++) |
960 | { |
961 | p2[isys][j] = p0[isys][j] - p1[isys][j]; |
962 | } |
963 | p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2]; |
6e90ad26 |
964 | if (p2[isys][4] > 0.) { |
965 | p2[isys][4] = TMath::Sqrt(p2[isys][4]); |
966 | break; |
967 | } else { |
968 | printf("Warning negative mass squared in system %d %f ! \n", isys, zInitial[isys]); |
4e383037 |
969 | printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]); |
6e90ad26 |
970 | if (p2[isys][4] < -0.01) { |
4e383037 |
971 | printf("Negative mass squared !\n"); |
972 | // Here we have to put the gluon back to mass shell |
973 | // This will lead to a small energy imbalance |
974 | p2[isys][4] = 0.; |
975 | p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]); |
976 | break; |
6e90ad26 |
977 | } else { |
978 | p2[isys][4] = 0.; |
979 | break; |
980 | } |
981 | } |
6e90ad26 |
982 | /* |
6e90ad26 |
983 | zHeavy *= 0.98; |
984 | printf("zHeavy lowered to %f\n", zHeavy); |
985 | if (zHeavy < 0.01) { |
986 | printf("No success ! \n"); |
987 | icount = 0; |
988 | quenched[isys] = kFALSE; |
989 | break; |
990 | } |
4e383037 |
991 | */ |
992 | } // iteration on z (while) |
993 | |
6e90ad26 |
994 | // Update event record |
995 | for (Int_t k = 0; k < icount; k++) { |
996 | // printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] ); |
997 | fPyjets->P[0][kNew[k]] = pNew[k][0]; |
998 | fPyjets->P[1][kNew[k]] = pNew[k][1]; |
999 | fPyjets->P[2][kNew[k]] = pNew[k][2]; |
1000 | fPyjets->P[3][kNew[k]] = pNew[k][3]; |
0f482ae4 |
1001 | } |
4e383037 |
1002 | // |
1003 | // Add the gluons |
1004 | // |
1005 | Int_t ish = 0; |
1837e95c |
1006 | Int_t iGlu; |
4e383037 |
1007 | if (!quenched[isys]) continue; |
0f482ae4 |
1008 | // |
1009 | // Last parton from shower i |
4e383037 |
1010 | Int_t in = klast[isys]; |
0f482ae4 |
1011 | // |
1012 | // Continue if no parton in shower i selected |
1013 | if (in == -1) continue; |
1014 | // |
1015 | // If this is the second initial parton and it is behind the first move pointer by previous ish |
4e383037 |
1016 | if (isys == 1 && klast[1] > klast[0]) in += ish; |
0f482ae4 |
1017 | // |
1018 | // Starting index |
452af8c7 |
1019 | |
4e383037 |
1020 | // jmin = in - 1; |
0f482ae4 |
1021 | // How many additional gluons will be generated |
1022 | ish = 1; |
4e383037 |
1023 | if (p2[isys][4] > 0.05) ish = 2; |
0f482ae4 |
1024 | // |
1025 | // Position of gluons |
4e383037 |
1026 | iGlu = numpart; |
1027 | if (iglu == 0) igMin = iGlu; |
1028 | igMax = iGlu; |
0f482ae4 |
1029 | numpart += ish; |
1030 | (fPyjets->N) += ish; |
4e383037 |
1031 | |
0f482ae4 |
1032 | if (ish == 1) { |
4e383037 |
1033 | fPyjets->P[0][iGlu] = p2[isys][0]; |
1034 | fPyjets->P[1][iGlu] = p2[isys][1]; |
1035 | fPyjets->P[2][iGlu] = p2[isys][2]; |
1036 | fPyjets->P[3][iGlu] = p2[isys][3]; |
1037 | fPyjets->P[4][iGlu] = p2[isys][4]; |
0f482ae4 |
1038 | |
4e383037 |
1039 | fPyjets->K[0][iGlu] = 1; |
1040 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1; |
0f482ae4 |
1041 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1042 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1043 | fPyjets->K[3][iGlu] = -1; |
1044 | fPyjets->K[4][iGlu] = -1; |
4e383037 |
1045 | |
1046 | pg[0] += p2[isys][0]; |
1047 | pg[1] += p2[isys][1]; |
1048 | pg[2] += p2[isys][2]; |
1049 | pg[3] += p2[isys][3]; |
0f482ae4 |
1050 | } else { |
1051 | // |
1052 | // Split gluon in rest frame. |
1053 | // |
4e383037 |
1054 | Double_t bx = p2[isys][0] / p2[isys][3]; |
1055 | Double_t by = p2[isys][1] / p2[isys][3]; |
1056 | Double_t bz = p2[isys][2] / p2[isys][3]; |
1057 | Double_t pst = p2[isys][4] / 2.; |
0f482ae4 |
1058 | // |
1059 | // Isotropic decay ???? |
1060 | Double_t cost = 2. * gRandom->Rndm() - 1.; |
1061 | Double_t sint = TMath::Sqrt(1. - cost * cost); |
1062 | Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); |
1063 | |
1064 | Double_t pz1 = pst * cost; |
1065 | Double_t pz2 = -pst * cost; |
1066 | Double_t pt1 = pst * sint; |
1067 | Double_t pt2 = -pst * sint; |
1068 | Double_t px1 = pt1 * TMath::Cos(phi); |
1069 | Double_t py1 = pt1 * TMath::Sin(phi); |
1070 | Double_t px2 = pt2 * TMath::Cos(phi); |
1071 | Double_t py2 = pt2 * TMath::Sin(phi); |
1072 | |
1073 | fPyjets->P[0][iGlu] = px1; |
1074 | fPyjets->P[1][iGlu] = py1; |
1075 | fPyjets->P[2][iGlu] = pz1; |
1076 | fPyjets->P[3][iGlu] = pst; |
1077 | fPyjets->P[4][iGlu] = 0.; |
1078 | |
4e383037 |
1079 | fPyjets->K[0][iGlu] = 1 ; |
0f482ae4 |
1080 | fPyjets->K[1][iGlu] = 21; |
4e383037 |
1081 | fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1082 | fPyjets->K[3][iGlu] = -1; |
1083 | fPyjets->K[4][iGlu] = -1; |
1084 | |
1085 | fPyjets->P[0][iGlu+1] = px2; |
1086 | fPyjets->P[1][iGlu+1] = py2; |
1087 | fPyjets->P[2][iGlu+1] = pz2; |
1088 | fPyjets->P[3][iGlu+1] = pst; |
1089 | fPyjets->P[4][iGlu+1] = 0.; |
1090 | |
4e383037 |
1091 | fPyjets->K[0][iGlu+1] = 1; |
1092 | if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1; |
0f482ae4 |
1093 | fPyjets->K[1][iGlu+1] = 21; |
4e383037 |
1094 | fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000; |
0f482ae4 |
1095 | fPyjets->K[3][iGlu+1] = -1; |
1096 | fPyjets->K[4][iGlu+1] = -1; |
1097 | SetMSTU(1,0); |
1098 | SetMSTU(2,0); |
1099 | // |
1100 | // Boost back |
1101 | // |
1102 | Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz); |
1103 | } |
4e383037 |
1104 | /* |
1105 | for (Int_t ig = iGlu; ig < iGlu+ish; ig++) { |
1106 | Double_t px, py, pz; |
1107 | px = fPyjets->P[0][ig]; |
1108 | py = fPyjets->P[1][ig]; |
1109 | pz = fPyjets->P[2][ig]; |
1110 | TVector3 v(px, py, pz); |
1111 | v.RotateZ(-phiq[isys]); |
1112 | v.RotateY(-thetaq[isys]); |
1113 | Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z(); |
1114 | Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1115 | Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r)); |
1116 | if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.); |
1117 | Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm(); |
1118 | pxs += jtKick * TMath::Cos(phiKick); |
1119 | pys += jtKick * TMath::Sin(phiKick); |
1120 | TVector3 w(pxs, pys, pzs); |
1121 | w.RotateY(thetaq[isys]); |
1122 | w.RotateZ(phiq[isys]); |
1123 | fPyjets->P[0][ig] = w.X(); |
1124 | fPyjets->P[1][ig] = w.Y(); |
1125 | fPyjets->P[2][ig] = w.Z(); |
1126 | fPyjets->P[2][ig] = w.Mag(); |
1127 | } |
1128 | */ |
1129 | } // kGluon |
1130 | |
6e90ad26 |
1131 | |
4e383037 |
1132 | // Check energy conservation |
0f482ae4 |
1133 | Double_t pxs = 0.; |
1134 | Double_t pys = 0.; |
1135 | Double_t pzs = 0.; |
1136 | Double_t es = 14000.; |
1137 | |
1138 | for (Int_t i = 0; i < numpart; i++) |
1139 | { |
1140 | kst = fPyjets->K[0][i]; |
1141 | if (kst != 1 && kst != 2) continue; |
1142 | pxs += fPyjets->P[0][i]; |
1143 | pys += fPyjets->P[1][i]; |
1144 | pzs += fPyjets->P[2][i]; |
1145 | es -= fPyjets->P[3][i]; |
1146 | } |
1147 | if (TMath::Abs(pxs) > 1.e-2 || |
1148 | TMath::Abs(pys) > 1.e-2 || |
1149 | TMath::Abs(pzs) > 1.e-1) { |
1150 | printf("%e %e %e %e\n", pxs, pys, pzs, es); |
4e383037 |
1151 | // Fatal("Quench()", "4-Momentum non-conservation"); |
452af8c7 |
1152 | } |
4e383037 |
1153 | |
1154 | } // end quenching loop (systems) |
6e90ad26 |
1155 | // Clean-up |
0f482ae4 |
1156 | for (Int_t i = 0; i < numpart; i++) |
1157 | { |
4e383037 |
1158 | imo = fPyjets->K[2][i]; |
1159 | if (imo > 1000) { |
1160 | fPyjets->K[2][i] = fPyjets->K[2][i] % 1000; |
1161 | } |
0f482ae4 |
1162 | } |
4e383037 |
1163 | // this->Pylist(1); |
0f482ae4 |
1164 | } // end quench |
90d7b703 |
1165 | |