From Laurent:
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
8d2cd130 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
7cdba479 16/* $Id$ */
8d2cd130 17
18#include "AliPythia.h"
7cdba479 19#include "AliPythiaRndm.h"
0f482ae4 20#include "../FASTSIM/AliFastGlauber.h"
21#include "../FASTSIM/AliQuenchingWeights.h"
22#include "TVector3.h"
8d2cd130 23
24ClassImp(AliPythia)
25
26#ifndef WIN32
27# define pyclus pyclus_
28# define pycell pycell_
452af8c7 29# define pyshow pyshow_
30# define pyrobo pyrobo_
992f2843 31# define pyquen pyquen_
8d2cd130 32# define type_of_call
33#else
34# define pyclus PYCLUS
35# define pycell PYCELL
452af8c7 36# define pyrobo PYROBO
992f2843 37# define pyquen PYQUEN
8d2cd130 38# define type_of_call _stdcall
39#endif
40
41extern "C" void type_of_call pyclus(Int_t & );
42extern "C" void type_of_call pycell(Int_t & );
452af8c7 43extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
44extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 45extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
8d2cd130 46
47//_____________________________________________________________________________
48
49AliPythia* AliPythia::fgAliPythia=NULL;
50
51AliPythia::AliPythia()
52{
53// Default Constructor
54//
55// Set random number
7cdba479 56 if (!AliPythiaRndm::GetPythiaRandom())
57 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 58 fGlauber = 0;
59 fQuenchingWeights = 0;
8d2cd130 60}
61
62void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
63{
64// Initialise the process to generate
7cdba479 65 if (!AliPythiaRndm::GetPythiaRandom())
66 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 67
68 fProcess = process;
69 fEcms = energy;
70 fStrucFunc = strucfunc;
1d5b1b20 71//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
72 SetMDCY(Pycomp(111) ,1,0);
73 SetMDCY(Pycomp(310) ,1,0);
74 SetMDCY(Pycomp(3122),1,0);
75 SetMDCY(Pycomp(3112),1,0);
76 SetMDCY(Pycomp(3212),1,0);
77 SetMDCY(Pycomp(3222),1,0);
78 SetMDCY(Pycomp(3312),1,0);
79 SetMDCY(Pycomp(3322),1,0);
80 SetMDCY(Pycomp(3334),1,0);
81 // select structure function
8d2cd130 82 SetMSTP(52,2);
83 SetMSTP(51,strucfunc);
84//
85// Pythia initialisation for selected processes//
86//
87// Make MSEL clean
88//
89 for (Int_t i=1; i<= 200; i++) {
90 SetMSUB(i,0);
91 }
92// select charm production
93 switch (process)
94 {
95 case kPyCharm:
96 SetMSEL(4);
97//
98// heavy quark masses
99
100 SetPMAS(4,1,1.2);
101 SetMSTU(16,2);
102//
103// primordial pT
104 SetMSTP(91,1);
105 SetPARP(91,1.);
106 SetPARP(93,5.);
107//
108 break;
109 case kPyBeauty:
110 SetMSEL(5);
111 SetPMAS(5,1,4.75);
112 SetMSTU(16,2);
113 break;
114 case kPyJpsi:
115 SetMSEL(0);
116// gg->J/Psi g
117 SetMSUB(86,1);
118 break;
119 case kPyJpsiChi:
120 SetMSEL(0);
121// gg->J/Psi g
122 SetMSUB(86,1);
123// gg-> chi_0c g
124 SetMSUB(87,1);
125// gg-> chi_1c g
126 SetMSUB(88,1);
127// gg-> chi_2c g
128 SetMSUB(89,1);
129 break;
130 case kPyCharmUnforced:
131 SetMSEL(0);
132// gq->qg
133 SetMSUB(28,1);
134// gg->qq
135 SetMSUB(53,1);
136// gg->gg
137 SetMSUB(68,1);
138 break;
139 case kPyBeautyUnforced:
140 SetMSEL(0);
141// gq->qg
142 SetMSUB(28,1);
143// gg->qq
144 SetMSUB(53,1);
145// gg->gg
146 SetMSUB(68,1);
147 break;
148 case kPyMb:
149// Minimum Bias pp-Collisions
150//
151//
152// select Pythia min. bias model
153 SetMSEL(0);
511db649 154 SetMSUB(92,1); // single diffraction AB-->XB
155 SetMSUB(93,1); // single diffraction AB-->AX
156 SetMSUB(94,1); // double diffraction
157 SetMSUB(95,1); // low pt production
158
159//
160// ATLAS Tuning
161//
c01c4118 162
163 SetMSTP(51, kCTEQ5L); // CTEQ5L pdf
511db649 164 SetMSTP(81,1); // Multiple Interactions ON
165 SetMSTP(82,4); // Double Gaussian Model
166
167 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
168 SetPARP(89,1000.); // [GeV] Ref. energy
169 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
170 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
171 SetPARP(84,0.5); // Core radius
172 SetPARP(85,0.33); // Regulates gluon prod. mechanism
173 SetPARP(86,0.66); // Regulates gluon prod. mechanism
174 SetPARP(67,1); // Regulates Initial State Radiation
175 break;
8d2cd130 176 case kPyMbNonDiffr:
177// Minimum Bias pp-Collisions
178//
179//
180// select Pythia min. bias model
181 SetMSEL(0);
511db649 182 SetMSUB(95,1); // low pt production
0f482ae4 183
184//
185// ATLAS Tuning
186//
511db649 187
d682afd1 188 SetMSTP(51,kCTEQ5L); // CTEQ5L pdf
511db649 189 SetMSTP(81,1); // Multiple Interactions ON
190 SetMSTP(82,4); // Double Gaussian Model
191
192 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
193 SetPARP(89,1000.); // [GeV] Ref. energy
194 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
195 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
196 SetPARP(84,0.5); // Core radius
197 SetPARP(85,0.33); // Regulates gluon prod. mechanism
198 SetPARP(86,0.66); // Regulates gluon prod. mechanism
199 SetPARP(67,1); // Regulates Initial State Radiation
8d2cd130 200 break;
201 case kPyJets:
202//
203// QCD Jets
204//
205 SetMSEL(1);
22e6d6b6 206//
207// Pythia Tune A (CDF)
208//
209 SetPARP(67,4.); // Regulates Initial State Radiation
210 SetMSTP(82,4); // Double Gaussian Model
211 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
212 SetPARP(84,0.4); // Core radius
213 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
214 SetPARP(86,0.95); // Regulates gluon prod. mechanism
215 SetPARP(89,1800.); // [GeV] Ref. energy
216 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
8d2cd130 217 break;
218 case kPyDirectGamma:
219 SetMSEL(10);
220 break;
adf4d898 221 case kPyCharmPbPbMNR:
222 case kPyD0PbPbMNR:
8d2cd130 223 // Tuning of Pythia parameters aimed to get a resonable agreement
224 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
225 // c-cbar single inclusive and double differential distributions.
226 // This parameter settings are meant to work with Pb-Pb collisions
adf4d898 227 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
8d2cd130 228 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
229 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
230
231 // All QCD processes
232 SetMSEL(1);
233
234 // No multiple interactions
235 SetMSTP(81,0);
236 SetPARP(81,0.0);
237 SetPARP(82,0.0);
238
239 // Initial/final parton shower on (Pythia default)
240 SetMSTP(61,1);
241 SetMSTP(71,1);
242
243 // 2nd order alpha_s
244 SetMSTP(2,2);
245
246 // QCD scales
247 SetMSTP(32,2);
248 SetPARP(34,1.0);
249
adf4d898 250 // Intrinsic <kT>
8d2cd130 251 SetMSTP(91,1);
252 SetPARP(91,1.304);
253 SetPARP(93,6.52);
254
255 // Set c-quark mass
256 SetPMAS(4,1,1.2);
257
90d7b703 258 break;
259 case kPyDPlusPbPbMNR:
260 // Tuning of Pythia parameters aimed to get a resonable agreement
261 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
262 // c-cbar single inclusive and double differential distributions.
263 // This parameter settings are meant to work with Pb-Pb collisions
264 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
265 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
266 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
267
268 // All QCD processes
269 SetMSEL(1);
270
271 // No multiple interactions
272 SetMSTP(81,0);
273 SetPARP(81,0.0);
274 SetPARP(82,0.0);
275
276 // Initial/final parton shower on (Pythia default)
277 SetMSTP(61,1);
278 SetMSTP(71,1);
279
280 // 2nd order alpha_s
281 SetMSTP(2,2);
282
283 // QCD scales
284 SetMSTP(32,2);
285 SetPARP(34,1.0);
286
287 // Intrinsic <kT>
288 SetMSTP(91,1);
289 SetPARP(91,1.304);
290 SetPARP(93,6.52);
291
292 // Set c-quark mass
293 SetPMAS(4,1,1.2);
294
8d2cd130 295 break;
adf4d898 296 case kPyCharmpPbMNR:
297 case kPyD0pPbMNR:
298 // Tuning of Pythia parameters aimed to get a resonable agreement
299 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
300 // c-cbar single inclusive and double differential distributions.
301 // This parameter settings are meant to work with p-Pb collisions
302 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
303 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
304 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
305
306 // All QCD processes
307 SetMSEL(1);
308
309 // No multiple interactions
310 SetMSTP(81,0);
311 SetPARP(81,0.0);
312 SetPARP(82,0.0);
313
314 // Initial/final parton shower on (Pythia default)
315 SetMSTP(61,1);
316 SetMSTP(71,1);
317
318 // 2nd order alpha_s
319 SetMSTP(2,2);
320
321 // QCD scales
322 SetMSTP(32,2);
323 SetPARP(34,1.0);
324
325 // Intrinsic <kT>
326 SetMSTP(91,1);
327 SetPARP(91,1.16);
328 SetPARP(93,5.8);
329
330 // Set c-quark mass
331 SetPMAS(4,1,1.2);
332
90d7b703 333 break;
334 case kPyDPluspPbMNR:
335 // Tuning of Pythia parameters aimed to get a resonable agreement
336 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
337 // c-cbar single inclusive and double differential distributions.
338 // This parameter settings are meant to work with p-Pb collisions
339 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
340 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
341 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
342
343 // All QCD processes
344 SetMSEL(1);
345
346 // No multiple interactions
347 SetMSTP(81,0);
348 SetPARP(81,0.0);
349 SetPARP(82,0.0);
350
351 // Initial/final parton shower on (Pythia default)
352 SetMSTP(61,1);
353 SetMSTP(71,1);
354
355 // 2nd order alpha_s
356 SetMSTP(2,2);
357
358 // QCD scales
359 SetMSTP(32,2);
360 SetPARP(34,1.0);
361
362 // Intrinsic <kT>
363 SetMSTP(91,1);
364 SetPARP(91,1.16);
365 SetPARP(93,5.8);
366
367 // Set c-quark mass
368 SetPMAS(4,1,1.2);
369
adf4d898 370 break;
371 case kPyCharmppMNR:
372 case kPyD0ppMNR:
373 // Tuning of Pythia parameters aimed to get a resonable agreement
374 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
375 // c-cbar single inclusive and double differential distributions.
376 // This parameter settings are meant to work with pp collisions
377 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
378 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
379 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
380
381 // All QCD processes
382 SetMSEL(1);
383
384 // No multiple interactions
385 SetMSTP(81,0);
386 SetPARP(81,0.0);
387 SetPARP(82,0.0);
388
389 // Initial/final parton shower on (Pythia default)
390 SetMSTP(61,1);
391 SetMSTP(71,1);
392
393 // 2nd order alpha_s
394 SetMSTP(2,2);
395
396 // QCD scales
397 SetMSTP(32,2);
398 SetPARP(34,1.0);
399
400 // Intrinsic <kT^2>
401 SetMSTP(91,1);
402 SetPARP(91,1.);
403 SetPARP(93,5.);
404
405 // Set c-quark mass
406 SetPMAS(4,1,1.2);
407
90d7b703 408 break;
409 case kPyDPlusppMNR:
410 // Tuning of Pythia parameters aimed to get a resonable agreement
411 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
412 // c-cbar single inclusive and double differential distributions.
413 // This parameter settings are meant to work with pp collisions
414 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
415 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
416 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
417
418 // All QCD processes
419 SetMSEL(1);
420
421 // No multiple interactions
422 SetMSTP(81,0);
423 SetPARP(81,0.0);
424 SetPARP(82,0.0);
425
426 // Initial/final parton shower on (Pythia default)
427 SetMSTP(61,1);
428 SetMSTP(71,1);
429
430 // 2nd order alpha_s
431 SetMSTP(2,2);
432
433 // QCD scales
434 SetMSTP(32,2);
435 SetPARP(34,1.0);
436
437 // Intrinsic <kT^2>
438 SetMSTP(91,1);
439 SetPARP(91,1.);
440 SetPARP(93,5.);
441
442 // Set c-quark mass
443 SetPMAS(4,1,1.2);
444
adf4d898 445 break;
446 case kPyBeautyPbPbMNR:
8d2cd130 447 // Tuning of Pythia parameters aimed to get a resonable agreement
448 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
449 // b-bbar single inclusive and double differential distributions.
450 // This parameter settings are meant to work with Pb-Pb collisions
451 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
452 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
453 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
454
455 // All QCD processes
456 SetMSEL(1);
457
458 // No multiple interactions
459 SetMSTP(81,0);
460 SetPARP(81,0.0);
461 SetPARP(82,0.0);
462
463 // Initial/final parton shower on (Pythia default)
464 SetMSTP(61,1);
465 SetMSTP(71,1);
466
467 // 2nd order alpha_s
468 SetMSTP(2,2);
469
470 // QCD scales
471 SetMSTP(32,2);
472 SetPARP(34,1.0);
473 SetPARP(67,1.0);
474 SetPARP(71,1.0);
475
adf4d898 476 // Intrinsic <kT>
8d2cd130 477 SetMSTP(91,1);
478 SetPARP(91,2.035);
479 SetPARP(93,10.17);
480
481 // Set b-quark mass
482 SetPMAS(5,1,4.75);
483
adf4d898 484 break;
485 case kPyBeautypPbMNR:
486 // Tuning of Pythia parameters aimed to get a resonable agreement
487 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
488 // b-bbar single inclusive and double differential distributions.
489 // This parameter settings are meant to work with p-Pb collisions
490 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
491 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
492 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
493
494 // All QCD processes
495 SetMSEL(1);
496
497 // No multiple interactions
498 SetMSTP(81,0);
499 SetPARP(81,0.0);
500 SetPARP(82,0.0);
501
502 // Initial/final parton shower on (Pythia default)
503 SetMSTP(61,1);
504 SetMSTP(71,1);
505
506 // 2nd order alpha_s
507 SetMSTP(2,2);
508
509 // QCD scales
510 SetMSTP(32,2);
511 SetPARP(34,1.0);
512 SetPARP(67,1.0);
513 SetPARP(71,1.0);
514
515 // Intrinsic <kT>
516 SetMSTP(91,1);
517 SetPARP(91,1.60);
518 SetPARP(93,8.00);
519
520 // Set b-quark mass
521 SetPMAS(5,1,4.75);
522
523 break;
524 case kPyBeautyppMNR:
525 // Tuning of Pythia parameters aimed to get a resonable agreement
526 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
527 // b-bbar single inclusive and double differential distributions.
528 // This parameter settings are meant to work with pp collisions
529 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
530 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
531 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
532
533 // All QCD processes
534 SetMSEL(1);
535
536 // No multiple interactions
537 SetMSTP(81,0);
538 SetPARP(81,0.0);
539 SetPARP(82,0.0);
540
541 // Initial/final parton shower on (Pythia default)
542 SetMSTP(61,1);
543 SetMSTP(71,1);
544
545 // 2nd order alpha_s
546 SetMSTP(2,2);
547
548 // QCD scales
549 SetMSTP(32,2);
550 SetPARP(34,1.0);
551 SetPARP(67,1.0);
552 SetPARP(71,1.0);
553
554 // Intrinsic <kT>
555 SetMSTP(91,1);
556 SetPARP(91,1.);
557 SetPARP(93,5.);
558
559 // Set b-quark mass
560 SetPMAS(5,1,4.75);
561
8d2cd130 562 break;
589380c6 563
564 case kPyW:
565
566 //Inclusive production of W+/-
567 SetMSEL(0);
568 //f fbar -> W+
569 SetMSUB(2,1);
570 // //f fbar -> g W+
571 // SetMSUB(16,1);
572 // //f fbar -> gamma W+
573 // SetMSUB(20,1);
574 // //f g -> f W+
575 // SetMSUB(31,1);
576 // //f gamma -> f W+
577 // SetMSUB(36,1);
578
579 // Initial/final parton shower on (Pythia default)
580 // With parton showers on we are generating "W inclusive process"
581 SetMSTP(61,1); //Initial QCD & QED showers on
582 SetMSTP(71,1); //Final QCD & QED showers on
583
584 break;
8d2cd130 585 }
586//
587// Initialize PYTHIA
588 SetMSTP(41,1); // all resonance decays switched on
589
590 Initialize("CMS","p","p",fEcms);
591
592}
593
594Int_t AliPythia::CheckedLuComp(Int_t kf)
595{
596// Check Lund particle code (for debugging)
597 Int_t kc=Pycomp(kf);
598 printf("\n Lucomp kf,kc %d %d",kf,kc);
599 return kc;
600}
601
602void AliPythia::SetNuclei(Int_t a1, Int_t a2)
603{
604// Treat protons as inside nuclei with mass numbers a1 and a2
605// The MSTP array in the PYPARS common block is used to enable and
606// select the nuclear structure functions.
607// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
608// =1: internal PYTHIA acording to MSTP(51)
609// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
610// If the following mass number both not equal zero, nuclear corrections of the stf are used.
611// MSTP(192) : Mass number of nucleus side 1
612// MSTP(193) : Mass number of nucleus side 2
613 SetMSTP(52,2);
614 SetMSTP(192, a1);
615 SetMSTP(193, a2);
616}
617
618
619AliPythia* AliPythia::Instance()
620{
621// Set random number generator
622 if (fgAliPythia) {
623 return fgAliPythia;
624 } else {
625 fgAliPythia = new AliPythia();
626 return fgAliPythia;
627 }
628}
629
630void AliPythia::PrintParticles()
631{
632// Print list of particl properties
633 Int_t np = 0;
c31f1d37 634 char* name = new char[16];
8d2cd130 635 for (Int_t kf=0; kf<1000000; kf++) {
636 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 637 Int_t kc = Pycomp(c*kf);
638 if (kc) {
639 Float_t mass = GetPMAS(kc,1);
640 Float_t width = GetPMAS(kc,2);
641 Float_t tau = GetPMAS(kc,4);
c31f1d37 642
8d2cd130 643 Pyname(kf,name);
644
645 np++;
646
647 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
648 c*kf, name, mass, width, tau);
649 }
650 }
651 }
652 printf("\n Number of particles %d \n \n", np);
653}
654
655void AliPythia::ResetDecayTable()
656{
657// Set default values for pythia decay switches
658 Int_t i;
659 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
660 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
661}
662
663void AliPythia::SetDecayTable()
664{
665// Set default values for pythia decay switches
666//
667 Int_t i;
668 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
669 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
670}
671
672void AliPythia::Pyclus(Int_t& njet)
673{
674// Call Pythia clustering algorithm
675//
676 pyclus(njet);
677}
678
679void AliPythia::Pycell(Int_t& njet)
680{
681// Call Pythia jet reconstruction algorithm
682//
683 pycell(njet);
684}
685
452af8c7 686void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
687{
688// Call Pythia jet reconstruction algorithm
689//
452af8c7 690 pyshow(ip1, ip2, qmax);
691}
692
693void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
694{
695 pyrobo(imi, ima, the, phi, bex, bey, bez);
696}
697
698
699
86b6ad68 700void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod)
0f482ae4 701{
702// Initializes
703// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
704// (2) The nuclear geometry using the Glauber Model
705//
706
707
708 fGlauber = new AliFastGlauber();
709 fGlauber->Init(2);
710 fGlauber->SetCentralityClass(cMin, cMax);
711
712 fQuenchingWeights = new AliQuenchingWeights();
713 fQuenchingWeights->InitMult();
86b6ad68 714 fQuenchingWeights->SetK(k);
0f482ae4 715 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
0f482ae4 716}
717
718
452af8c7 719void AliPythia::Quench()
720{
721//
722//
723// Simple Jet Quenching routine:
724// =============================
725// The jet formed by all final state partons radiated by the parton created
0f482ae4 726// in the hard collisions is quenched by a factor (1-z) using light cone variables in
727// the initial parton reference frame:
452af8c7 728// (E + p_z)new = (1-z) (E + p_z)old
729//
0f482ae4 730//
731//
732//
452af8c7 733// The lost momentum is first balanced by one gluon with virtuality > 0.
734// Subsequently the gluon splits to yield two gluons with E = p.
735//
0f482ae4 736//
737//
4e383037 738 static Float_t eMean = 0.;
739 static Int_t icall = 0;
0f482ae4 740
c2c598a3 741 Double_t p0[4][5];
742 Double_t p1[4][5];
743 Double_t p2[4][5];
744 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 745
746 Int_t numpart = fPyjets->N;
86b6ad68 747 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 748 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
749 Bool_t quenched[4];
b280c4cc 750 Double_t wjtKick[4];
c2c598a3 751 Int_t nGluon[4];
86b6ad68 752 Int_t qPdg[4];
0f482ae4 753 Int_t imo, kst, pdg;
b280c4cc 754
511db649 755//
c2c598a3 756// Sore information about Primary partons
757//
758// j =
759// 0, 1 partons from hard scattering
760// 2, 3 partons from initial state radiation
761//
762 for (Int_t i = 2; i <= 7; i++) {
763 Int_t j = 0;
764 // Skip gluons that participate in hard scattering
765 if (i == 4 || i == 5) continue;
766 // Gluons from hard Scattering
767 if (i == 6 || i == 7) {
768 j = i - 6;
769 pxq[j] = fPyjets->P[0][i];
770 pyq[j] = fPyjets->P[1][i];
771 pzq[j] = fPyjets->P[2][i];
772 eq[j] = fPyjets->P[3][i];
773 mq[j] = fPyjets->P[4][i];
774 } else {
775 // Gluons from initial state radiation
776 //
777 // Obtain 4-momentum vector from difference between original parton and parton after gluon
778 // radiation. Energy is calculated independently because initial state radition does not
779 // conserve strictly momentum and energy for each partonic system independently.
780 //
781 // Not very clean. Should be improved !
782 //
783 //
784 j = i;
785 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
786 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
787 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
788 mq[j] = fPyjets->P[4][i];
789 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
790 }
791//
792// Calculate some kinematic variables
511db649 793//
4e383037 794 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 795 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
796 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
797 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
798 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 799 qPdg[j] = fPyjets->K[1][i];
800 }
801
802 Double_t int0[4];
803 Double_t int1[4];
86b6ad68 804
b280c4cc 805 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
806
86b6ad68 807 for (Int_t j = 0; j < 4; j++) {
c2c598a3 808 //
809 // Quench only central jets and with E > 10.
810 //
86b6ad68 811
812
813 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
814 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
815
c2c598a3 816 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 817 fZQuench[j] = 0.;
0f482ae4 818 } else {
c2c598a3 819 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 820 icall ++;
821 eMean += eloss;
822 }
0f482ae4 823 //
824 // Extra pt
86b6ad68 825 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
826 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 827 //
828 // Fractional energy loss
b280c4cc 829 fZQuench[j] = eloss / eq[j];
0f482ae4 830 //
831 // Avoid complete loss
832 //
b280c4cc 833 if (fZQuench[j] == 1.) fZQuench[j] = 0.95;
0f482ae4 834 //
835 // Some debug printing
86b6ad68 836
837
bf9bb016 838// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
839// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 840
b280c4cc 841// fZQuench[j] = 0.8;
842// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 843 }
4e383037 844
b280c4cc 845 quenched[j] = (fZQuench[j] > 0.01);
4e383037 846 } // primary partons
c2c598a3 847
b280c4cc 848
849
6e90ad26 850 Double_t pNew[1000][4];
851 Int_t kNew[1000];
852 Int_t icount = 0;
b280c4cc 853 Double_t zquench[4];
854
6e90ad26 855//
4e383037 856// System Loop
c2c598a3 857 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 858// Skip to next system if not quenched.
4e383037 859 if (!quenched[isys]) continue;
860
b280c4cc 861 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
4e383037 862 if (nGluon[isys] > 6) nGluon[isys] = 6;
b280c4cc 863 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 864 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 865
4e383037 866
867
868 Int_t igMin = -1;
869 Int_t igMax = -1;
870 Double_t pg[4] = {0., 0., 0., 0.};
871
872//
873// Loop on radiation events
874
875 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 876 while (1) {
877 icount = 0;
878 for (Int_t k = 0; k < 4; k++)
879 {
880 p0[isys][k] = 0.;
881 p1[isys][k] = 0.;
882 p2[isys][k] = 0.;
883 }
884// Loop over partons
885 for (Int_t i = 0; i < numpart; i++)
886 {
887 imo = fPyjets->K[2][i];
888 kst = fPyjets->K[0][i];
889 pdg = fPyjets->K[1][i];
890
891
892
0f482ae4 893// Quarks and gluons only
6e90ad26 894 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 895// Particles from hard scattering only
c2c598a3 896
6e90ad26 897 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 898 Int_t imom = imo % 1000;
899 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
900 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
901
6e90ad26 902
0f482ae4 903// Skip comment lines
6e90ad26 904 if (kst != 1 && kst != 2) continue;
0f482ae4 905//
906// Parton kinematic
6e90ad26 907 px = fPyjets->P[0][i];
908 py = fPyjets->P[1][i];
909 pz = fPyjets->P[2][i];
910 e = fPyjets->P[3][i];
911 m = fPyjets->P[4][i];
912 pt = TMath::Sqrt(px * px + py * py);
913 p = TMath::Sqrt(px * px + py * py + pz * pz);
914 phi = TMath::Pi() + TMath::ATan2(-py, -px);
915 theta = TMath::ATan2(pt, pz);
916
0f482ae4 917//
c2c598a3 918// Save 4-momentum sum for balancing
919 Int_t index = isys;
6e90ad26 920
921 p0[index][0] += px;
922 p0[index][1] += py;
923 p0[index][2] += pz;
924 p0[index][3] += e;
6e90ad26 925
926 klast[index] = i;
927
0f482ae4 928//
929// Fractional energy loss
b280c4cc 930 Double_t z = zquench[index];
4e383037 931
c2c598a3 932
4e383037 933// Don't fully quench radiated gluons
934//
935 if (imo > 1000) {
936// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
937//
938
c2c598a3 939 z = 0.02;
4e383037 940 }
c2c598a3 941// printf("z: %d %f\n", imo, z);
942
4e383037 943
944//
6e90ad26 945
946 //
947 //
948 // Transform into frame in which initial parton is along z-axis
949 //
950 TVector3 v(px, py, pz);
951 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
952 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
953
954 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
955 Double_t mt2 = jt * jt + m * m;
956 Double_t zmax = 1.;
957 //
958 // Kinematic limit on z
959 //
4e383037 960 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 961 //
962 // Change light-cone kinematics rel. to initial parton
963 //
964 Double_t eppzOld = e + pl;
965 Double_t empzOld = e - pl;
966
967 Double_t eppzNew = (1. - z) * eppzOld;
968 Double_t empzNew = empzOld - mt2 * z / eppzOld;
969 Double_t eNew = 0.5 * (eppzNew + empzNew);
970 Double_t plNew = 0.5 * (eppzNew - empzNew);
971
972 Double_t jtNew;
973 //
974 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
975 Double_t mt2New = eppzNew * empzNew;
976 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 977 if (z < zmax) {
978 if (m * m > mt2New) {
979 //
980 // This should not happen
981 //
982 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
983 jtNew = 0;
984 } else {
985 jtNew = TMath::Sqrt(mt2New - m * m);
986 }
6e90ad26 987 } else {
4e383037 988 // If pT is to small (probably a leading massive particle) we scale only the energy
989 // This can cause negative masses of the radiated gluon
990 // Let's hope for the best ...
991 jtNew = jt;
992 eNew = TMath::Sqrt(plNew * plNew + mt2);
993
6e90ad26 994 }
6e90ad26 995 //
996 // Calculate new px, py
997 //
998 Double_t pxNew = jtNew / jt * pxs;
999 Double_t pyNew = jtNew / jt * pys;
1000
1001// Double_t dpx = pxs - pxNew;
1002// Double_t dpy = pys - pyNew;
1003// Double_t dpz = pl - plNew;
1004// Double_t de = e - eNew;
1005// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1006// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1007// printf("New mass (2) %e %e \n", pxNew, pyNew);
1008 //
1009 // Rotate back
1010 //
1011 TVector3 w(pxNew, pyNew, plNew);
1012 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1013 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1014
1015 p1[index][0] += pxNew;
1016 p1[index][1] += pyNew;
1017 p1[index][2] += plNew;
1018 p1[index][3] += eNew;
1019 //
1020 // Updated 4-momentum vectors
1021 //
1022 pNew[icount][0] = pxNew;
1023 pNew[icount][1] = pyNew;
1024 pNew[icount][2] = plNew;
1025 pNew[icount][3] = eNew;
1026 kNew[icount] = i;
1027 icount++;
1028 } // parton loop
0f482ae4 1029 //
6e90ad26 1030 // Check if there was phase-space for quenching
0f482ae4 1031 //
0f482ae4 1032
6e90ad26 1033 if (icount == 0) quenched[isys] = kFALSE;
1034 if (!quenched[isys]) break;
1035
1036 for (Int_t j = 0; j < 4; j++)
1037 {
1038 p2[isys][j] = p0[isys][j] - p1[isys][j];
1039 }
1040 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1041 if (p2[isys][4] > 0.) {
1042 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1043 break;
1044 } else {
b280c4cc 1045 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1046 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1047 if (p2[isys][4] < -0.01) {
4e383037 1048 printf("Negative mass squared !\n");
1049 // Here we have to put the gluon back to mass shell
1050 // This will lead to a small energy imbalance
1051 p2[isys][4] = 0.;
1052 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1053 break;
6e90ad26 1054 } else {
1055 p2[isys][4] = 0.;
1056 break;
1057 }
1058 }
6e90ad26 1059 /*
6e90ad26 1060 zHeavy *= 0.98;
1061 printf("zHeavy lowered to %f\n", zHeavy);
1062 if (zHeavy < 0.01) {
1063 printf("No success ! \n");
1064 icount = 0;
1065 quenched[isys] = kFALSE;
1066 break;
1067 }
4e383037 1068 */
1069 } // iteration on z (while)
1070
6e90ad26 1071// Update event record
1072 for (Int_t k = 0; k < icount; k++) {
1073// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1074 fPyjets->P[0][kNew[k]] = pNew[k][0];
1075 fPyjets->P[1][kNew[k]] = pNew[k][1];
1076 fPyjets->P[2][kNew[k]] = pNew[k][2];
1077 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1078 }
4e383037 1079 //
1080 // Add the gluons
1081 //
1082 Int_t ish = 0;
1837e95c 1083 Int_t iGlu;
4e383037 1084 if (!quenched[isys]) continue;
0f482ae4 1085//
1086// Last parton from shower i
4e383037 1087 Int_t in = klast[isys];
0f482ae4 1088//
1089// Continue if no parton in shower i selected
1090 if (in == -1) continue;
1091//
1092// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1093 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1094//
1095// Starting index
452af8c7 1096
4e383037 1097// jmin = in - 1;
0f482ae4 1098// How many additional gluons will be generated
1099 ish = 1;
4e383037 1100 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1101//
1102// Position of gluons
4e383037 1103 iGlu = numpart;
1104 if (iglu == 0) igMin = iGlu;
1105 igMax = iGlu;
0f482ae4 1106 numpart += ish;
1107 (fPyjets->N) += ish;
4e383037 1108
0f482ae4 1109 if (ish == 1) {
4e383037 1110 fPyjets->P[0][iGlu] = p2[isys][0];
1111 fPyjets->P[1][iGlu] = p2[isys][1];
1112 fPyjets->P[2][iGlu] = p2[isys][2];
1113 fPyjets->P[3][iGlu] = p2[isys][3];
1114 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1115
4e383037 1116 fPyjets->K[0][iGlu] = 1;
1117 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1118 fPyjets->K[1][iGlu] = 21;
4e383037 1119 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1120 fPyjets->K[3][iGlu] = -1;
1121 fPyjets->K[4][iGlu] = -1;
4e383037 1122
1123 pg[0] += p2[isys][0];
1124 pg[1] += p2[isys][1];
1125 pg[2] += p2[isys][2];
1126 pg[3] += p2[isys][3];
0f482ae4 1127 } else {
1128 //
1129 // Split gluon in rest frame.
1130 //
4e383037 1131 Double_t bx = p2[isys][0] / p2[isys][3];
1132 Double_t by = p2[isys][1] / p2[isys][3];
1133 Double_t bz = p2[isys][2] / p2[isys][3];
1134 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1135 //
1136 // Isotropic decay ????
1137 Double_t cost = 2. * gRandom->Rndm() - 1.;
1138 Double_t sint = TMath::Sqrt(1. - cost * cost);
1139 Double_t phi = 2. * TMath::Pi() * gRandom->Rndm();
1140
1141 Double_t pz1 = pst * cost;
1142 Double_t pz2 = -pst * cost;
1143 Double_t pt1 = pst * sint;
1144 Double_t pt2 = -pst * sint;
1145 Double_t px1 = pt1 * TMath::Cos(phi);
1146 Double_t py1 = pt1 * TMath::Sin(phi);
1147 Double_t px2 = pt2 * TMath::Cos(phi);
1148 Double_t py2 = pt2 * TMath::Sin(phi);
1149
1150 fPyjets->P[0][iGlu] = px1;
1151 fPyjets->P[1][iGlu] = py1;
1152 fPyjets->P[2][iGlu] = pz1;
1153 fPyjets->P[3][iGlu] = pst;
1154 fPyjets->P[4][iGlu] = 0.;
1155
4e383037 1156 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1157 fPyjets->K[1][iGlu] = 21;
4e383037 1158 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1159 fPyjets->K[3][iGlu] = -1;
1160 fPyjets->K[4][iGlu] = -1;
1161
1162 fPyjets->P[0][iGlu+1] = px2;
1163 fPyjets->P[1][iGlu+1] = py2;
1164 fPyjets->P[2][iGlu+1] = pz2;
1165 fPyjets->P[3][iGlu+1] = pst;
1166 fPyjets->P[4][iGlu+1] = 0.;
1167
4e383037 1168 fPyjets->K[0][iGlu+1] = 1;
1169 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1170 fPyjets->K[1][iGlu+1] = 21;
4e383037 1171 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1172 fPyjets->K[3][iGlu+1] = -1;
1173 fPyjets->K[4][iGlu+1] = -1;
1174 SetMSTU(1,0);
1175 SetMSTU(2,0);
1176 //
1177 // Boost back
1178 //
1179 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1180 }
4e383037 1181/*
1182 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1183 Double_t px, py, pz;
1184 px = fPyjets->P[0][ig];
1185 py = fPyjets->P[1][ig];
1186 pz = fPyjets->P[2][ig];
1187 TVector3 v(px, py, pz);
1188 v.RotateZ(-phiq[isys]);
1189 v.RotateY(-thetaq[isys]);
1190 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1191 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1192 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1193 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1194 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1195 pxs += jtKick * TMath::Cos(phiKick);
1196 pys += jtKick * TMath::Sin(phiKick);
1197 TVector3 w(pxs, pys, pzs);
1198 w.RotateY(thetaq[isys]);
1199 w.RotateZ(phiq[isys]);
1200 fPyjets->P[0][ig] = w.X();
1201 fPyjets->P[1][ig] = w.Y();
1202 fPyjets->P[2][ig] = w.Z();
1203 fPyjets->P[2][ig] = w.Mag();
1204 }
1205*/
1206 } // kGluon
1207
6e90ad26 1208
4e383037 1209 // Check energy conservation
0f482ae4 1210 Double_t pxs = 0.;
1211 Double_t pys = 0.;
1212 Double_t pzs = 0.;
1213 Double_t es = 14000.;
1214
1215 for (Int_t i = 0; i < numpart; i++)
1216 {
1217 kst = fPyjets->K[0][i];
1218 if (kst != 1 && kst != 2) continue;
1219 pxs += fPyjets->P[0][i];
1220 pys += fPyjets->P[1][i];
1221 pzs += fPyjets->P[2][i];
1222 es -= fPyjets->P[3][i];
1223 }
1224 if (TMath::Abs(pxs) > 1.e-2 ||
1225 TMath::Abs(pys) > 1.e-2 ||
1226 TMath::Abs(pzs) > 1.e-1) {
1227 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1228// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1229 }
4e383037 1230
1231 } // end quenching loop (systems)
6e90ad26 1232// Clean-up
0f482ae4 1233 for (Int_t i = 0; i < numpart; i++)
1234 {
4e383037 1235 imo = fPyjets->K[2][i];
1236 if (imo > 1000) {
1237 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1238 }
0f482ae4 1239 }
4e383037 1240// this->Pylist(1);
0f482ae4 1241} // end quench
90d7b703 1242
992f2843 1243
1244void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1245{
1246 // Igor Lokthine's quenching routine
1247 pyquen(a, ibf, b);
1248}
b280c4cc 1249
1250void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1251{
1252 // Return event specific quenching parameters
1253 xp = fXJet;
1254 yp = fYJet;
1255 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1256
1257}
1258