Minor changes
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
0f482ae4 21#include "../FASTSIM/AliFastGlauber.h"
22#include "../FASTSIM/AliQuenchingWeights.h"
23#include "TVector3.h"
8d2cd130 24
25ClassImp(AliPythia)
26
27#ifndef WIN32
28# define pyclus pyclus_
29# define pycell pycell_
452af8c7 30# define pyshow pyshow_
31# define pyrobo pyrobo_
992f2843 32# define pyquen pyquen_
16a82508 33# define pyevnw pyevnw_
8d2cd130 34# define type_of_call
35#else
36# define pyclus PYCLUS
37# define pycell PYCELL
452af8c7 38# define pyrobo PYROBO
992f2843 39# define pyquen PYQUEN
16a82508 40# define pyevnw PYEVNW
8d2cd130 41# define type_of_call _stdcall
42#endif
43
44extern "C" void type_of_call pyclus(Int_t & );
45extern "C" void type_of_call pycell(Int_t & );
452af8c7 46extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
47extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 48extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 49extern "C" void type_of_call pyevnw(){;}
8d2cd130 50
51//_____________________________________________________________________________
52
53AliPythia* AliPythia::fgAliPythia=NULL;
54
e8a8adcd 55AliPythia::AliPythia():
56 fProcess(kPyMb),
57 fEcms(0.),
58 fStrucFunc(kCTEQ5L),
59 fXJet(0.),
60 fYJet(0.),
32c8e463 61 fNGmax(30),
62 fZmax(0.97),
e8a8adcd 63 fGlauber(0),
64 fQuenchingWeights(0)
8d2cd130 65{
66// Default Constructor
67//
68// Set random number
7cdba479 69 if (!AliPythiaRndm::GetPythiaRandom())
70 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 71 fGlauber = 0;
72 fQuenchingWeights = 0;
8d2cd130 73}
74
e8a8adcd 75AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 76 TPythia6(pythia),
77 AliRndm(pythia),
e8a8adcd 78 fProcess(kPyMb),
79 fEcms(0.),
80 fStrucFunc(kCTEQ5L),
81 fXJet(0.),
82 fYJet(0.),
32c8e463 83 fNGmax(30),
84 fZmax(0.97),
e8a8adcd 85 fGlauber(0),
86 fQuenchingWeights(0)
87{
88 // Copy Constructor
89 pythia.Copy(*this);
90}
91
8d2cd130 92void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
93{
94// Initialise the process to generate
7cdba479 95 if (!AliPythiaRndm::GetPythiaRandom())
96 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 97
98 fProcess = process;
99 fEcms = energy;
100 fStrucFunc = strucfunc;
1d5b1b20 101//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
102 SetMDCY(Pycomp(111) ,1,0);
103 SetMDCY(Pycomp(310) ,1,0);
104 SetMDCY(Pycomp(3122),1,0);
105 SetMDCY(Pycomp(3112),1,0);
106 SetMDCY(Pycomp(3212),1,0);
107 SetMDCY(Pycomp(3222),1,0);
108 SetMDCY(Pycomp(3312),1,0);
109 SetMDCY(Pycomp(3322),1,0);
110 SetMDCY(Pycomp(3334),1,0);
1c50ec12 111 // Select structure function
8d2cd130 112 SetMSTP(52,2);
113 SetMSTP(51,strucfunc);
1c50ec12 114 // Particles produced in string fragmentation point directly to either of the two endpoints
115 // of the string (depending in the side they were generated from).
116 SetMSTU(16,2);
117
8d2cd130 118//
119// Pythia initialisation for selected processes//
120//
121// Make MSEL clean
122//
123 for (Int_t i=1; i<= 200; i++) {
124 SetMSUB(i,0);
125 }
126// select charm production
127 switch (process)
128 {
65f2626c 129 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
130// Multiple interactions on.
131 SetMSTP(81,1);
132// Double Gaussian matter distribution.
133 SetMSTP(82,4);
134 SetPARP(83,0.5);
135 SetPARP(84,0.4);
136// pT0.
137 SetPARP(82,2.0);
138// Reference energy for pT0 and energy rescaling pace.
139 SetPARP(89,1800);
140 SetPARP(90,0.25);
141// String drawing almost completely minimizes string length.
142 SetPARP(85,0.9);
143 SetPARP(86,0.95);
144// ISR and FSR activity.
145 SetPARP(67,4);
146 SetPARP(71,4);
147// Lambda_FSR scale.
148 SetPARJ(81,0.29);
149 break;
150 case kPyOldUEQ2ordered2:
151// Old underlying events with Q2 ordered QCD processes
152// Multiple interactions on.
153 SetMSTP(81,1);
154// Double Gaussian matter distribution.
155 SetMSTP(82,4);
156 SetPARP(83,0.5);
157 SetPARP(84,0.4);
158// pT0.
159 SetPARP(82,2.0);
160// Reference energy for pT0 and energy rescaling pace.
161 SetPARP(89,1800);
162 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
163// String drawing almost completely minimizes string length.
164 SetPARP(85,0.9);
165 SetPARP(86,0.95);
166// ISR and FSR activity.
167 SetPARP(67,4);
168 SetPARP(71,4);
169// Lambda_FSR scale.
170 SetPARJ(81,0.29);
171 break;
172 case kPyOldPopcorn:
173// Old production mechanism: Old Popcorn
174 SetMSEL(1);
175 SetMSTJ(12,3);
176// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
177 SetMSTP(88,2);
178// (D=1)see can be used to form baryons (BARYON JUNCTION)
179 SetMSTJ(1,1);
e0e89f40 180 AtlasTuning();
65f2626c 181 break;
8d2cd130 182 case kPyCharm:
183 SetMSEL(4);
8d2cd130 184// heavy quark masses
185
186 SetPMAS(4,1,1.2);
8d2cd130 187//
188// primordial pT
189 SetMSTP(91,1);
190 SetPARP(91,1.);
191 SetPARP(93,5.);
192//
193 break;
194 case kPyBeauty:
195 SetMSEL(5);
196 SetPMAS(5,1,4.75);
8d2cd130 197 break;
198 case kPyJpsi:
199 SetMSEL(0);
200// gg->J/Psi g
201 SetMSUB(86,1);
202 break;
203 case kPyJpsiChi:
204 SetMSEL(0);
205// gg->J/Psi g
206 SetMSUB(86,1);
207// gg-> chi_0c g
208 SetMSUB(87,1);
209// gg-> chi_1c g
210 SetMSUB(88,1);
211// gg-> chi_2c g
212 SetMSUB(89,1);
213 break;
214 case kPyCharmUnforced:
215 SetMSEL(0);
216// gq->qg
217 SetMSUB(28,1);
218// gg->qq
219 SetMSUB(53,1);
220// gg->gg
221 SetMSUB(68,1);
222 break;
223 case kPyBeautyUnforced:
224 SetMSEL(0);
225// gq->qg
226 SetMSUB(28,1);
227// gg->qq
228 SetMSUB(53,1);
229// gg->gg
230 SetMSUB(68,1);
231 break;
232 case kPyMb:
233// Minimum Bias pp-Collisions
234//
235//
236// select Pythia min. bias model
237 SetMSEL(0);
511db649 238 SetMSUB(92,1); // single diffraction AB-->XB
239 SetMSUB(93,1); // single diffraction AB-->AX
240 SetMSUB(94,1); // double diffraction
241 SetMSUB(95,1); // low pt production
242
e0e89f40 243 AtlasTuning();
511db649 244 break;
f529e69b 245 case kPyMbDefault:
246// Minimum Bias pp-Collisions
247//
248//
249// select Pythia min. bias model
250 SetMSEL(0);
251 SetMSUB(92,1); // single diffraction AB-->XB
252 SetMSUB(93,1); // single diffraction AB-->AX
253 SetMSUB(94,1); // double diffraction
254 SetMSUB(95,1); // low pt production
255
256 break;
0a0cbcfd 257 case kPyLhwgMb:
258// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
259// -> Pythia 6.3 or above is needed
260//
261 SetMSEL(0);
262 SetMSUB(92,1); // single diffraction AB-->XB
263 SetMSUB(93,1); // single diffraction AB-->AX
264 SetMSUB(94,1); // double diffraction
265 SetMSUB(95,1); // low pt production
266
267 SetMSTP(51,kCTEQ6ll); // CTEQ6ll pdf
268 SetMSTP(52,2);
269 SetMSTP(68,1);
270 SetMSTP(70,2);
271 SetMSTP(81,1); // Multiple Interactions ON
272 SetMSTP(82,4); // Double Gaussian Model
273 SetMSTP(88,1);
274
275 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
276 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
277 SetPARP(84,0.5); // Core radius
278 SetPARP(85,0.9); // Regulates gluon prod. mechanism
279 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
280
281 break;
8d2cd130 282 case kPyMbNonDiffr:
283// Minimum Bias pp-Collisions
284//
285//
286// select Pythia min. bias model
287 SetMSEL(0);
511db649 288 SetMSUB(95,1); // low pt production
0f482ae4 289
e0e89f40 290 AtlasTuning();
8d2cd130 291 break;
d7de4a67 292 case kPyMbMSEL1:
293 ConfigHeavyFlavor();
294// Intrinsic <kT^2>
295 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
296 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
297 SetPARP(93,5.); // Upper cut-off
298// Set Q-quark mass
299 SetPMAS(4,1,1.2); // Charm quark mass
300 SetPMAS(5,1,4.78); // Beauty quark mass
301 SetPARP(71,4.); // Defaut value
302// Atlas Tuning
303 AtlasTuning();
304 break;
8d2cd130 305 case kPyJets:
306//
307// QCD Jets
308//
309 SetMSEL(1);
65f2626c 310 // Pythia Tune A (CDF)
311 //
4167b79f 312 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 313 SetMSTP(82,4); // Double Gaussian Model
314 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
315 SetPARP(84,0.4); // Core radius
316 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
317 SetPARP(86,0.95); // Regulates gluon prod. mechanism
318 SetPARP(89,1800.); // [GeV] Ref. energy
319 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
320 break;
8d2cd130 321 case kPyDirectGamma:
322 SetMSEL(10);
323 break;
adf4d898 324 case kPyCharmPbPbMNR:
325 case kPyD0PbPbMNR:
90d7b703 326 case kPyDPlusPbPbMNR:
e0e89f40 327 case kPyDPlusStrangePbPbMNR:
90d7b703 328 // Tuning of Pythia parameters aimed to get a resonable agreement
329 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
330 // c-cbar single inclusive and double differential distributions.
331 // This parameter settings are meant to work with Pb-Pb collisions
332 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
333 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
334 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 335 ConfigHeavyFlavor();
90d7b703 336 // Intrinsic <kT>
337 SetMSTP(91,1);
338 SetPARP(91,1.304);
339 SetPARP(93,6.52);
90d7b703 340 // Set c-quark mass
341 SetPMAS(4,1,1.2);
90d7b703 342 break;
adf4d898 343 case kPyCharmpPbMNR:
344 case kPyD0pPbMNR:
90d7b703 345 case kPyDPluspPbMNR:
e0e89f40 346 case kPyDPlusStrangepPbMNR:
90d7b703 347 // Tuning of Pythia parameters aimed to get a resonable agreement
348 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
349 // c-cbar single inclusive and double differential distributions.
350 // This parameter settings are meant to work with p-Pb collisions
351 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
352 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
353 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 354 ConfigHeavyFlavor();
90d7b703 355 // Intrinsic <kT>
3dc3ec94 356 SetMSTP(91,1);
357 SetPARP(91,1.16);
358 SetPARP(93,5.8);
359
90d7b703 360 // Set c-quark mass
3dc3ec94 361 SetPMAS(4,1,1.2);
90d7b703 362 break;
adf4d898 363 case kPyCharmppMNR:
364 case kPyD0ppMNR:
90d7b703 365 case kPyDPlusppMNR:
e0e89f40 366 case kPyDPlusStrangeppMNR:
90d7b703 367 // Tuning of Pythia parameters aimed to get a resonable agreement
368 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
369 // c-cbar single inclusive and double differential distributions.
370 // This parameter settings are meant to work with pp collisions
371 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
372 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
373 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 374 ConfigHeavyFlavor();
90d7b703 375 // Intrinsic <kT^2>
3dc3ec94 376 SetMSTP(91,1);
377 SetPARP(91,1.);
378 SetPARP(93,5.);
379
90d7b703 380 // Set c-quark mass
3dc3ec94 381 SetPMAS(4,1,1.2);
90d7b703 382 break;
e0e89f40 383 case kPyCharmppMNRwmi:
384 // Tuning of Pythia parameters aimed to get a resonable agreement
385 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
386 // c-cbar single inclusive and double differential distributions.
387 // This parameter settings are meant to work with pp collisions
388 // and with kCTEQ5L PDFs.
389 // Added multiple interactions according to ATLAS tune settings.
390 // To get a "reasonable" agreement with MNR results, events have to be
391 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
392 // set to 2.76 GeV.
393 // To get a "perfect" agreement with MNR results, events have to be
394 // generated in four ptHard bins with the following relative
395 // normalizations:
396 // 2.76-3 GeV: 25%
397 // 3-4 GeV: 40%
398 // 4-8 GeV: 29%
399 // >8 GeV: 6%
400 ConfigHeavyFlavor();
401 // Intrinsic <kT^2>
402 SetMSTP(91,1);
403 SetPARP(91,1.);
404 SetPARP(93,5.);
405
406 // Set c-quark mass
407 SetPMAS(4,1,1.2);
408 AtlasTuning();
409 break;
adf4d898 410 case kPyBeautyPbPbMNR:
8d2cd130 411 // Tuning of Pythia parameters aimed to get a resonable agreement
412 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
413 // b-bbar single inclusive and double differential distributions.
414 // This parameter settings are meant to work with Pb-Pb collisions
415 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
416 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
417 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 418 ConfigHeavyFlavor();
8d2cd130 419 // QCD scales
3dc3ec94 420 SetPARP(67,1.0);
421 SetPARP(71,1.0);
adf4d898 422 // Intrinsic <kT>
3dc3ec94 423 SetMSTP(91,1);
424 SetPARP(91,2.035);
425 SetPARP(93,10.17);
8d2cd130 426 // Set b-quark mass
3dc3ec94 427 SetPMAS(5,1,4.75);
8d2cd130 428 break;
adf4d898 429 case kPyBeautypPbMNR:
430 // Tuning of Pythia parameters aimed to get a resonable agreement
431 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
432 // b-bbar single inclusive and double differential distributions.
433 // This parameter settings are meant to work with p-Pb collisions
434 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
435 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
436 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 437 ConfigHeavyFlavor();
adf4d898 438 // QCD scales
3dc3ec94 439 SetPARP(67,1.0);
440 SetPARP(71,1.0);
adf4d898 441 // Intrinsic <kT>
3dc3ec94 442 SetMSTP(91,1);
443 SetPARP(91,1.60);
444 SetPARP(93,8.00);
adf4d898 445 // Set b-quark mass
3dc3ec94 446 SetPMAS(5,1,4.75);
adf4d898 447 break;
448 case kPyBeautyppMNR:
449 // Tuning of Pythia parameters aimed to get a resonable agreement
450 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
451 // b-bbar single inclusive and double differential distributions.
452 // This parameter settings are meant to work with pp collisions
453 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
454 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
455 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 456 ConfigHeavyFlavor();
adf4d898 457 // QCD scales
3dc3ec94 458 SetPARP(67,1.0);
459 SetPARP(71,1.0);
460
461 // Intrinsic <kT>
462 SetMSTP(91,1);
463 SetPARP(91,1.);
464 SetPARP(93,5.);
465
466 // Set b-quark mass
467 SetPMAS(5,1,4.75);
adf4d898 468 break;
e0e89f40 469 case kPyBeautyppMNRwmi:
470 // Tuning of Pythia parameters aimed to get a resonable agreement
471 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
472 // b-bbar single inclusive and double differential distributions.
473 // This parameter settings are meant to work with pp collisions
474 // and with kCTEQ5L PDFs.
475 // Added multiple interactions according to ATLAS tune settings.
476 // To get a "reasonable" agreement with MNR results, events have to be
477 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
478 // set to 2.76 GeV.
479 // To get a "perfect" agreement with MNR results, events have to be
480 // generated in four ptHard bins with the following relative
481 // normalizations:
482 // 2.76-4 GeV: 5%
483 // 4-6 GeV: 31%
484 // 6-8 GeV: 28%
485 // >8 GeV: 36%
486 ConfigHeavyFlavor();
487 // QCD scales
488 SetPARP(67,1.0);
489 SetPARP(71,1.0);
490
491 // Intrinsic <kT>
492 SetMSTP(91,1);
493 SetPARP(91,1.);
494 SetPARP(93,5.);
495
496 // Set b-quark mass
497 SetPMAS(5,1,4.75);
498
499 AtlasTuning();
500 break;
589380c6 501 case kPyW:
502
503 //Inclusive production of W+/-
504 SetMSEL(0);
505 //f fbar -> W+
506 SetMSUB(2,1);
507 // //f fbar -> g W+
508 // SetMSUB(16,1);
509 // //f fbar -> gamma W+
510 // SetMSUB(20,1);
511 // //f g -> f W+
512 // SetMSUB(31,1);
513 // //f gamma -> f W+
514 // SetMSUB(36,1);
515
516 // Initial/final parton shower on (Pythia default)
517 // With parton showers on we are generating "W inclusive process"
518 SetMSTP(61,1); //Initial QCD & QED showers on
519 SetMSTP(71,1); //Final QCD & QED showers on
520
521 break;
0f6ee828 522
523 case kPyZ:
524
525 //Inclusive production of Z
526 SetMSEL(0);
527 //f fbar -> Z/gamma
528 SetMSUB(1,1);
529
530 // // f fbar -> g Z/gamma
531 // SetMSUB(15,1);
532 // // f fbar -> gamma Z/gamma
533 // SetMSUB(19,1);
534 // // f g -> f Z/gamma
535 // SetMSUB(30,1);
536 // // f gamma -> f Z/gamma
537 // SetMSUB(35,1);
538
539 //only Z included, not gamma
540 SetMSTP(43,2);
541
542 // Initial/final parton shower on (Pythia default)
543 // With parton showers on we are generating "Z inclusive process"
544 SetMSTP(61,1); //Initial QCD & QED showers on
545 SetMSTP(71,1); //Final QCD & QED showers on
546
547 break;
548
8d2cd130 549 }
550//
551// Initialize PYTHIA
552 SetMSTP(41,1); // all resonance decays switched on
8d2cd130 553 Initialize("CMS","p","p",fEcms);
4167b79f 554
8d2cd130 555}
556
557Int_t AliPythia::CheckedLuComp(Int_t kf)
558{
559// Check Lund particle code (for debugging)
560 Int_t kc=Pycomp(kf);
561 printf("\n Lucomp kf,kc %d %d",kf,kc);
562 return kc;
563}
564
565void AliPythia::SetNuclei(Int_t a1, Int_t a2)
566{
567// Treat protons as inside nuclei with mass numbers a1 and a2
568// The MSTP array in the PYPARS common block is used to enable and
569// select the nuclear structure functions.
570// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
571// =1: internal PYTHIA acording to MSTP(51)
572// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
573// If the following mass number both not equal zero, nuclear corrections of the stf are used.
574// MSTP(192) : Mass number of nucleus side 1
575// MSTP(193) : Mass number of nucleus side 2
576 SetMSTP(52,2);
577 SetMSTP(192, a1);
578 SetMSTP(193, a2);
579}
580
581
582AliPythia* AliPythia::Instance()
583{
584// Set random number generator
585 if (fgAliPythia) {
586 return fgAliPythia;
587 } else {
588 fgAliPythia = new AliPythia();
589 return fgAliPythia;
590 }
591}
592
593void AliPythia::PrintParticles()
594{
595// Print list of particl properties
596 Int_t np = 0;
c31f1d37 597 char* name = new char[16];
8d2cd130 598 for (Int_t kf=0; kf<1000000; kf++) {
599 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 600 Int_t kc = Pycomp(c*kf);
601 if (kc) {
602 Float_t mass = GetPMAS(kc,1);
603 Float_t width = GetPMAS(kc,2);
604 Float_t tau = GetPMAS(kc,4);
c31f1d37 605
8d2cd130 606 Pyname(kf,name);
607
608 np++;
609
610 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
611 c*kf, name, mass, width, tau);
612 }
613 }
614 }
615 printf("\n Number of particles %d \n \n", np);
616}
617
618void AliPythia::ResetDecayTable()
619{
620// Set default values for pythia decay switches
621 Int_t i;
622 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
623 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
624}
625
626void AliPythia::SetDecayTable()
627{
628// Set default values for pythia decay switches
629//
630 Int_t i;
631 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
632 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
633}
634
635void AliPythia::Pyclus(Int_t& njet)
636{
637// Call Pythia clustering algorithm
638//
639 pyclus(njet);
640}
641
642void AliPythia::Pycell(Int_t& njet)
643{
644// Call Pythia jet reconstruction algorithm
645//
646 pycell(njet);
647}
648
452af8c7 649void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
650{
651// Call Pythia jet reconstruction algorithm
652//
452af8c7 653 pyshow(ip1, ip2, qmax);
654}
655
656void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
657{
658 pyrobo(imi, ima, the, phi, bex, bey, bez);
659}
660
661
662
32c8e463 663void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 664{
665// Initializes
666// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
667// (2) The nuclear geometry using the Glauber Model
668//
6b435cde 669
0f482ae4 670 fGlauber = new AliFastGlauber();
671 fGlauber->Init(2);
672 fGlauber->SetCentralityClass(cMin, cMax);
673
674 fQuenchingWeights = new AliQuenchingWeights();
675 fQuenchingWeights->InitMult();
86b6ad68 676 fQuenchingWeights->SetK(k);
0f482ae4 677 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 678 fNGmax = ngmax;
679 fZmax = zmax;
680
0f482ae4 681}
682
683
452af8c7 684void AliPythia::Quench()
685{
686//
687//
688// Simple Jet Quenching routine:
689// =============================
690// The jet formed by all final state partons radiated by the parton created
0f482ae4 691// in the hard collisions is quenched by a factor (1-z) using light cone variables in
692// the initial parton reference frame:
452af8c7 693// (E + p_z)new = (1-z) (E + p_z)old
694//
0f482ae4 695//
696//
697//
452af8c7 698// The lost momentum is first balanced by one gluon with virtuality > 0.
699// Subsequently the gluon splits to yield two gluons with E = p.
700//
0f482ae4 701//
702//
4e383037 703 static Float_t eMean = 0.;
704 static Int_t icall = 0;
0f482ae4 705
c2c598a3 706 Double_t p0[4][5];
707 Double_t p1[4][5];
708 Double_t p2[4][5];
709 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 710
711 Int_t numpart = fPyjets->N;
86b6ad68 712 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 713 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
714 Bool_t quenched[4];
b280c4cc 715 Double_t wjtKick[4];
c2c598a3 716 Int_t nGluon[4];
86b6ad68 717 Int_t qPdg[4];
0f482ae4 718 Int_t imo, kst, pdg;
b280c4cc 719
511db649 720//
c2c598a3 721// Sore information about Primary partons
722//
723// j =
724// 0, 1 partons from hard scattering
725// 2, 3 partons from initial state radiation
726//
727 for (Int_t i = 2; i <= 7; i++) {
728 Int_t j = 0;
729 // Skip gluons that participate in hard scattering
730 if (i == 4 || i == 5) continue;
731 // Gluons from hard Scattering
732 if (i == 6 || i == 7) {
733 j = i - 6;
734 pxq[j] = fPyjets->P[0][i];
735 pyq[j] = fPyjets->P[1][i];
736 pzq[j] = fPyjets->P[2][i];
737 eq[j] = fPyjets->P[3][i];
738 mq[j] = fPyjets->P[4][i];
739 } else {
740 // Gluons from initial state radiation
741 //
742 // Obtain 4-momentum vector from difference between original parton and parton after gluon
743 // radiation. Energy is calculated independently because initial state radition does not
744 // conserve strictly momentum and energy for each partonic system independently.
745 //
746 // Not very clean. Should be improved !
747 //
748 //
749 j = i;
750 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
751 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
752 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
753 mq[j] = fPyjets->P[4][i];
754 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
755 }
756//
757// Calculate some kinematic variables
511db649 758//
4e383037 759 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 760 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
761 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
762 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
763 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 764 qPdg[j] = fPyjets->K[1][i];
765 }
766
767 Double_t int0[4];
768 Double_t int1[4];
86b6ad68 769
b280c4cc 770 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
771
86b6ad68 772 for (Int_t j = 0; j < 4; j++) {
c2c598a3 773 //
774 // Quench only central jets and with E > 10.
775 //
86b6ad68 776
777
778 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
779 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
780
c2c598a3 781 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 782 fZQuench[j] = 0.;
0f482ae4 783 } else {
c2c598a3 784 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 785 icall ++;
786 eMean += eloss;
787 }
0f482ae4 788 //
789 // Extra pt
86b6ad68 790 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
791 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 792 //
793 // Fractional energy loss
b280c4cc 794 fZQuench[j] = eloss / eq[j];
0f482ae4 795 //
796 // Avoid complete loss
797 //
32c8e463 798 if (fZQuench[j] == 1.) fZQuench[j] = fZmax;
0f482ae4 799 //
800 // Some debug printing
86b6ad68 801
802
bf9bb016 803// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
804// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 805
b280c4cc 806// fZQuench[j] = 0.8;
807// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 808 }
4e383037 809
b280c4cc 810 quenched[j] = (fZQuench[j] > 0.01);
4e383037 811 } // primary partons
c2c598a3 812
b280c4cc 813
814
6e90ad26 815 Double_t pNew[1000][4];
816 Int_t kNew[1000];
817 Int_t icount = 0;
b280c4cc 818 Double_t zquench[4];
819
6e90ad26 820//
4e383037 821// System Loop
c2c598a3 822 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 823// Skip to next system if not quenched.
4e383037 824 if (!quenched[isys]) continue;
825
b280c4cc 826 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 827 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 828 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 829 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 830
4e383037 831
832
833 Int_t igMin = -1;
834 Int_t igMax = -1;
835 Double_t pg[4] = {0., 0., 0., 0.};
836
837//
838// Loop on radiation events
839
840 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 841 while (1) {
842 icount = 0;
843 for (Int_t k = 0; k < 4; k++)
844 {
845 p0[isys][k] = 0.;
846 p1[isys][k] = 0.;
847 p2[isys][k] = 0.;
848 }
849// Loop over partons
850 for (Int_t i = 0; i < numpart; i++)
851 {
852 imo = fPyjets->K[2][i];
853 kst = fPyjets->K[0][i];
854 pdg = fPyjets->K[1][i];
855
856
857
0f482ae4 858// Quarks and gluons only
6e90ad26 859 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 860// Particles from hard scattering only
c2c598a3 861
6e90ad26 862 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 863 Int_t imom = imo % 1000;
864 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
865 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
866
6e90ad26 867
0f482ae4 868// Skip comment lines
6e90ad26 869 if (kst != 1 && kst != 2) continue;
0f482ae4 870//
871// Parton kinematic
6e90ad26 872 px = fPyjets->P[0][i];
873 py = fPyjets->P[1][i];
874 pz = fPyjets->P[2][i];
875 e = fPyjets->P[3][i];
876 m = fPyjets->P[4][i];
877 pt = TMath::Sqrt(px * px + py * py);
878 p = TMath::Sqrt(px * px + py * py + pz * pz);
879 phi = TMath::Pi() + TMath::ATan2(-py, -px);
880 theta = TMath::ATan2(pt, pz);
881
0f482ae4 882//
c2c598a3 883// Save 4-momentum sum for balancing
884 Int_t index = isys;
6e90ad26 885
886 p0[index][0] += px;
887 p0[index][1] += py;
888 p0[index][2] += pz;
889 p0[index][3] += e;
6e90ad26 890
891 klast[index] = i;
892
0f482ae4 893//
894// Fractional energy loss
b280c4cc 895 Double_t z = zquench[index];
4e383037 896
c2c598a3 897
4e383037 898// Don't fully quench radiated gluons
899//
900 if (imo > 1000) {
901// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
902//
903
c2c598a3 904 z = 0.02;
4e383037 905 }
c2c598a3 906// printf("z: %d %f\n", imo, z);
907
4e383037 908
909//
6e90ad26 910
911 //
912 //
913 // Transform into frame in which initial parton is along z-axis
914 //
915 TVector3 v(px, py, pz);
916 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
917 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
918
919 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
920 Double_t mt2 = jt * jt + m * m;
921 Double_t zmax = 1.;
922 //
923 // Kinematic limit on z
924 //
4e383037 925 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 926 //
927 // Change light-cone kinematics rel. to initial parton
928 //
929 Double_t eppzOld = e + pl;
930 Double_t empzOld = e - pl;
931
932 Double_t eppzNew = (1. - z) * eppzOld;
933 Double_t empzNew = empzOld - mt2 * z / eppzOld;
934 Double_t eNew = 0.5 * (eppzNew + empzNew);
935 Double_t plNew = 0.5 * (eppzNew - empzNew);
936
937 Double_t jtNew;
938 //
939 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
940 Double_t mt2New = eppzNew * empzNew;
941 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 942 if (z < zmax) {
943 if (m * m > mt2New) {
944 //
945 // This should not happen
946 //
947 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
948 jtNew = 0;
949 } else {
950 jtNew = TMath::Sqrt(mt2New - m * m);
951 }
6e90ad26 952 } else {
4e383037 953 // If pT is to small (probably a leading massive particle) we scale only the energy
954 // This can cause negative masses of the radiated gluon
955 // Let's hope for the best ...
956 jtNew = jt;
957 eNew = TMath::Sqrt(plNew * plNew + mt2);
958
6e90ad26 959 }
6e90ad26 960 //
961 // Calculate new px, py
962 //
963 Double_t pxNew = jtNew / jt * pxs;
964 Double_t pyNew = jtNew / jt * pys;
965
966// Double_t dpx = pxs - pxNew;
967// Double_t dpy = pys - pyNew;
968// Double_t dpz = pl - plNew;
969// Double_t de = e - eNew;
970// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
971// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
972// printf("New mass (2) %e %e \n", pxNew, pyNew);
973 //
974 // Rotate back
975 //
976 TVector3 w(pxNew, pyNew, plNew);
977 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
978 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
979
980 p1[index][0] += pxNew;
981 p1[index][1] += pyNew;
982 p1[index][2] += plNew;
983 p1[index][3] += eNew;
984 //
985 // Updated 4-momentum vectors
986 //
987 pNew[icount][0] = pxNew;
988 pNew[icount][1] = pyNew;
989 pNew[icount][2] = plNew;
990 pNew[icount][3] = eNew;
991 kNew[icount] = i;
992 icount++;
993 } // parton loop
0f482ae4 994 //
6e90ad26 995 // Check if there was phase-space for quenching
0f482ae4 996 //
0f482ae4 997
6e90ad26 998 if (icount == 0) quenched[isys] = kFALSE;
999 if (!quenched[isys]) break;
1000
1001 for (Int_t j = 0; j < 4; j++)
1002 {
1003 p2[isys][j] = p0[isys][j] - p1[isys][j];
1004 }
1005 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1006 if (p2[isys][4] > 0.) {
1007 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1008 break;
1009 } else {
b280c4cc 1010 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1011 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1012 if (p2[isys][4] < -0.01) {
4e383037 1013 printf("Negative mass squared !\n");
1014 // Here we have to put the gluon back to mass shell
1015 // This will lead to a small energy imbalance
1016 p2[isys][4] = 0.;
1017 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1018 break;
6e90ad26 1019 } else {
1020 p2[isys][4] = 0.;
1021 break;
1022 }
1023 }
6e90ad26 1024 /*
6e90ad26 1025 zHeavy *= 0.98;
1026 printf("zHeavy lowered to %f\n", zHeavy);
1027 if (zHeavy < 0.01) {
1028 printf("No success ! \n");
1029 icount = 0;
1030 quenched[isys] = kFALSE;
1031 break;
1032 }
4e383037 1033 */
1034 } // iteration on z (while)
1035
6e90ad26 1036// Update event record
1037 for (Int_t k = 0; k < icount; k++) {
1038// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1039 fPyjets->P[0][kNew[k]] = pNew[k][0];
1040 fPyjets->P[1][kNew[k]] = pNew[k][1];
1041 fPyjets->P[2][kNew[k]] = pNew[k][2];
1042 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1043 }
4e383037 1044 //
1045 // Add the gluons
1046 //
1047 Int_t ish = 0;
1837e95c 1048 Int_t iGlu;
4e383037 1049 if (!quenched[isys]) continue;
0f482ae4 1050//
1051// Last parton from shower i
4e383037 1052 Int_t in = klast[isys];
0f482ae4 1053//
1054// Continue if no parton in shower i selected
1055 if (in == -1) continue;
1056//
1057// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1058 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1059//
1060// Starting index
452af8c7 1061
4e383037 1062// jmin = in - 1;
0f482ae4 1063// How many additional gluons will be generated
1064 ish = 1;
4e383037 1065 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1066//
1067// Position of gluons
4e383037 1068 iGlu = numpart;
1069 if (iglu == 0) igMin = iGlu;
1070 igMax = iGlu;
0f482ae4 1071 numpart += ish;
1072 (fPyjets->N) += ish;
4e383037 1073
0f482ae4 1074 if (ish == 1) {
4e383037 1075 fPyjets->P[0][iGlu] = p2[isys][0];
1076 fPyjets->P[1][iGlu] = p2[isys][1];
1077 fPyjets->P[2][iGlu] = p2[isys][2];
1078 fPyjets->P[3][iGlu] = p2[isys][3];
1079 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1080
4e383037 1081 fPyjets->K[0][iGlu] = 1;
1082 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1083 fPyjets->K[1][iGlu] = 21;
4e383037 1084 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1085 fPyjets->K[3][iGlu] = -1;
1086 fPyjets->K[4][iGlu] = -1;
4e383037 1087
1088 pg[0] += p2[isys][0];
1089 pg[1] += p2[isys][1];
1090 pg[2] += p2[isys][2];
1091 pg[3] += p2[isys][3];
0f482ae4 1092 } else {
1093 //
1094 // Split gluon in rest frame.
1095 //
4e383037 1096 Double_t bx = p2[isys][0] / p2[isys][3];
1097 Double_t by = p2[isys][1] / p2[isys][3];
1098 Double_t bz = p2[isys][2] / p2[isys][3];
1099 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1100 //
1101 // Isotropic decay ????
1102 Double_t cost = 2. * gRandom->Rndm() - 1.;
1103 Double_t sint = TMath::Sqrt(1. - cost * cost);
1104 Double_t phi = 2. * TMath::Pi() * gRandom->Rndm();
1105
1106 Double_t pz1 = pst * cost;
1107 Double_t pz2 = -pst * cost;
1108 Double_t pt1 = pst * sint;
1109 Double_t pt2 = -pst * sint;
1110 Double_t px1 = pt1 * TMath::Cos(phi);
1111 Double_t py1 = pt1 * TMath::Sin(phi);
1112 Double_t px2 = pt2 * TMath::Cos(phi);
1113 Double_t py2 = pt2 * TMath::Sin(phi);
1114
1115 fPyjets->P[0][iGlu] = px1;
1116 fPyjets->P[1][iGlu] = py1;
1117 fPyjets->P[2][iGlu] = pz1;
1118 fPyjets->P[3][iGlu] = pst;
1119 fPyjets->P[4][iGlu] = 0.;
1120
4e383037 1121 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1122 fPyjets->K[1][iGlu] = 21;
4e383037 1123 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1124 fPyjets->K[3][iGlu] = -1;
1125 fPyjets->K[4][iGlu] = -1;
1126
1127 fPyjets->P[0][iGlu+1] = px2;
1128 fPyjets->P[1][iGlu+1] = py2;
1129 fPyjets->P[2][iGlu+1] = pz2;
1130 fPyjets->P[3][iGlu+1] = pst;
1131 fPyjets->P[4][iGlu+1] = 0.;
1132
4e383037 1133 fPyjets->K[0][iGlu+1] = 1;
1134 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1135 fPyjets->K[1][iGlu+1] = 21;
4e383037 1136 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1137 fPyjets->K[3][iGlu+1] = -1;
1138 fPyjets->K[4][iGlu+1] = -1;
1139 SetMSTU(1,0);
1140 SetMSTU(2,0);
1141 //
1142 // Boost back
1143 //
1144 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1145 }
4e383037 1146/*
1147 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1148 Double_t px, py, pz;
1149 px = fPyjets->P[0][ig];
1150 py = fPyjets->P[1][ig];
1151 pz = fPyjets->P[2][ig];
1152 TVector3 v(px, py, pz);
1153 v.RotateZ(-phiq[isys]);
1154 v.RotateY(-thetaq[isys]);
1155 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1156 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1157 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1158 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1159 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1160 pxs += jtKick * TMath::Cos(phiKick);
1161 pys += jtKick * TMath::Sin(phiKick);
1162 TVector3 w(pxs, pys, pzs);
1163 w.RotateY(thetaq[isys]);
1164 w.RotateZ(phiq[isys]);
1165 fPyjets->P[0][ig] = w.X();
1166 fPyjets->P[1][ig] = w.Y();
1167 fPyjets->P[2][ig] = w.Z();
1168 fPyjets->P[2][ig] = w.Mag();
1169 }
1170*/
1171 } // kGluon
1172
6e90ad26 1173
4e383037 1174 // Check energy conservation
0f482ae4 1175 Double_t pxs = 0.;
1176 Double_t pys = 0.;
1177 Double_t pzs = 0.;
1178 Double_t es = 14000.;
1179
1180 for (Int_t i = 0; i < numpart; i++)
1181 {
1182 kst = fPyjets->K[0][i];
1183 if (kst != 1 && kst != 2) continue;
1184 pxs += fPyjets->P[0][i];
1185 pys += fPyjets->P[1][i];
1186 pzs += fPyjets->P[2][i];
1187 es -= fPyjets->P[3][i];
1188 }
1189 if (TMath::Abs(pxs) > 1.e-2 ||
1190 TMath::Abs(pys) > 1.e-2 ||
1191 TMath::Abs(pzs) > 1.e-1) {
1192 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1193// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1194 }
4e383037 1195
1196 } // end quenching loop (systems)
6e90ad26 1197// Clean-up
0f482ae4 1198 for (Int_t i = 0; i < numpart; i++)
1199 {
4e383037 1200 imo = fPyjets->K[2][i];
1201 if (imo > 1000) {
1202 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1203 }
0f482ae4 1204 }
4e383037 1205// this->Pylist(1);
0f482ae4 1206} // end quench
90d7b703 1207
992f2843 1208
1209void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1210{
1211 // Igor Lokthine's quenching routine
1212 pyquen(a, ibf, b);
1213}
b280c4cc 1214
16a82508 1215void AliPythia::Pyevnw()
1216{
1217 // New multiple interaction scenario
1218 pyevnw();
1219}
1220
b280c4cc 1221void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1222{
1223 // Return event specific quenching parameters
1224 xp = fXJet;
1225 yp = fYJet;
1226 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1227
1228}
1229
3dc3ec94 1230void AliPythia::ConfigHeavyFlavor()
1231{
1232 //
1233 // Default configuration for Heavy Flavor production
1234 //
1235 // All QCD processes
1236 //
1237 SetMSEL(1);
1238
1239 // No multiple interactions
1240 SetMSTP(81,0);
39c2e610 1241 SetPARP(81, 0.);
1242 SetPARP(82, 0.);
3dc3ec94 1243 // Initial/final parton shower on (Pythia default)
1244 SetMSTP(61,1);
1245 SetMSTP(71,1);
1246
1247 // 2nd order alpha_s
1248 SetMSTP(2,2);
1249
1250 // QCD scales
1251 SetMSTP(32,2);
1252 SetPARP(34,1.0);
1253}
e0e89f40 1254
1255void AliPythia::AtlasTuning()
1256{
1257 //
1258 // Configuration for the ATLAS tuning
1259 SetMSTP(51, kCTEQ5L); // CTEQ5L pdf
1260 SetMSTP(81,1); // Multiple Interactions ON
1261 SetMSTP(82,4); // Double Gaussian Model
39c2e610 1262 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
e0e89f40 1263 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1264 SetPARP(89,1000.); // [GeV] Ref. energy
1265 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1266 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1267 SetPARP(84,0.5); // Core radius
1268 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1269 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1270 SetPARP(67,1); // Regulates Initial State Radiation
1271}
e8a8adcd 1272
1273AliPythia& AliPythia::operator=(const AliPythia& rhs)
1274{
1275// Assignment operator
1276 rhs.Copy(*this);
1277 return *this;
1278}
1279
1280 void AliPythia::Copy(TObject&) const
1281{
1282 //
1283 // Copy
1284 //
1285 Fatal("Copy","Not implemented!\n");
1286}