Missing setter for fItune added.
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia.cxx
CommitLineData
6b435cde 1
8d2cd130 2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
7cdba479 17/* $Id$ */
8d2cd130 18
19#include "AliPythia.h"
7cdba479 20#include "AliPythiaRndm.h"
12cb0bc0 21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
0f482ae4 23#include "TVector3.h"
12cb0bc0 24#include "PyquenCommon.h"
8d2cd130 25
26ClassImp(AliPythia)
27
28#ifndef WIN32
29# define pyclus pyclus_
30# define pycell pycell_
452af8c7 31# define pyshow pyshow_
32# define pyrobo pyrobo_
992f2843 33# define pyquen pyquen_
16a82508 34# define pyevnw pyevnw_
cd07c39b 35# define pyshowq pyshowq_
694b39f9 36# define pytune pytune_
8d2cd130 37# define type_of_call
38#else
39# define pyclus PYCLUS
40# define pycell PYCELL
452af8c7 41# define pyrobo PYROBO
992f2843 42# define pyquen PYQUEN
16a82508 43# define pyevnw PYEVNW
cd07c39b 44# define pyshowq PYSHOWQ
694b39f9 45# define PYTUNE PYTUNE
8d2cd130 46# define type_of_call _stdcall
47#endif
48
49extern "C" void type_of_call pyclus(Int_t & );
50extern "C" void type_of_call pycell(Int_t & );
452af8c7 51extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
52extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
992f2843 53extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
0a2cfc0a 54extern "C" void type_of_call pyevnw(){;}
cd07c39b 55extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
694b39f9 56extern "C" void type_of_call pytune(Int_t &);
8d2cd130 57
58//_____________________________________________________________________________
59
60AliPythia* AliPythia::fgAliPythia=NULL;
61
e8a8adcd 62AliPythia::AliPythia():
63 fProcess(kPyMb),
64 fEcms(0.),
65 fStrucFunc(kCTEQ5L),
66 fXJet(0.),
67 fYJet(0.),
32c8e463 68 fNGmax(30),
69 fZmax(0.97),
e8a8adcd 70 fGlauber(0),
71 fQuenchingWeights(0)
8d2cd130 72{
73// Default Constructor
74//
75// Set random number
7cdba479 76 if (!AliPythiaRndm::GetPythiaRandom())
77 AliPythiaRndm::SetPythiaRandom(GetRandom());
0f482ae4 78 fGlauber = 0;
79 fQuenchingWeights = 0;
8d2cd130 80}
81
e8a8adcd 82AliPythia::AliPythia(const AliPythia& pythia):
6b435cde 83 TPythia6(pythia),
84 AliRndm(pythia),
e8a8adcd 85 fProcess(kPyMb),
86 fEcms(0.),
87 fStrucFunc(kCTEQ5L),
88 fXJet(0.),
89 fYJet(0.),
32c8e463 90 fNGmax(30),
91 fZmax(0.97),
e8a8adcd 92 fGlauber(0),
93 fQuenchingWeights(0)
94{
95 // Copy Constructor
96 pythia.Copy(*this);
97}
98
efe3b1cd 99void AliPythia::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t itune)
8d2cd130 100{
101// Initialise the process to generate
7cdba479 102 if (!AliPythiaRndm::GetPythiaRandom())
103 AliPythiaRndm::SetPythiaRandom(GetRandom());
8d2cd130 104
105 fProcess = process;
106 fEcms = energy;
107 fStrucFunc = strucfunc;
1d5b1b20 108//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
e2de0ce1 109 SetMDCY(Pycomp(111) ,1,0); // pi0
110 SetMDCY(Pycomp(310) ,1,0); // K0S
111 SetMDCY(Pycomp(3122),1,0); // kLambda
112 SetMDCY(Pycomp(3112),1,0); // sigma -
113 SetMDCY(Pycomp(3212),1,0); // sigma 0
114 SetMDCY(Pycomp(3222),1,0); // sigma +
115 SetMDCY(Pycomp(3312),1,0); // xi -
116 SetMDCY(Pycomp(3322),1,0); // xi 0
117 SetMDCY(Pycomp(3334),1,0); // omega-
1c50ec12 118 // Select structure function
8d2cd130 119 SetMSTP(52,2);
e2de0ce1 120 SetMSTP(51, AliStructFuncType::PDFsetIndex(strucfunc));
1c50ec12 121 // Particles produced in string fragmentation point directly to either of the two endpoints
122 // of the string (depending in the side they were generated from).
123 SetMSTU(16,2);
124
8d2cd130 125//
126// Pythia initialisation for selected processes//
127//
128// Make MSEL clean
129//
130 for (Int_t i=1; i<= 200; i++) {
131 SetMSUB(i,0);
132 }
133// select charm production
134 switch (process)
135 {
65f2626c 136 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
137// Multiple interactions on.
138 SetMSTP(81,1);
139// Double Gaussian matter distribution.
140 SetMSTP(82,4);
141 SetPARP(83,0.5);
142 SetPARP(84,0.4);
143// pT0.
144 SetPARP(82,2.0);
145// Reference energy for pT0 and energy rescaling pace.
146 SetPARP(89,1800);
147 SetPARP(90,0.25);
148// String drawing almost completely minimizes string length.
149 SetPARP(85,0.9);
150 SetPARP(86,0.95);
151// ISR and FSR activity.
152 SetPARP(67,4);
153 SetPARP(71,4);
154// Lambda_FSR scale.
155 SetPARJ(81,0.29);
156 break;
157 case kPyOldUEQ2ordered2:
158// Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldPopcorn:
180// Old production mechanism: Old Popcorn
181 SetMSEL(1);
182 SetMSTJ(12,3);
183// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
184 SetMSTP(88,2);
185// (D=1)see can be used to form baryons (BARYON JUNCTION)
186 SetMSTJ(1,1);
e0e89f40 187 AtlasTuning();
65f2626c 188 break;
8d2cd130 189 case kPyCharm:
190 SetMSEL(4);
8d2cd130 191// heavy quark masses
192
193 SetPMAS(4,1,1.2);
8d2cd130 194//
195// primordial pT
196 SetMSTP(91,1);
197 SetPARP(91,1.);
198 SetPARP(93,5.);
199//
200 break;
201 case kPyBeauty:
202 SetMSEL(5);
203 SetPMAS(5,1,4.75);
8d2cd130 204 break;
205 case kPyJpsi:
206 SetMSEL(0);
207// gg->J/Psi g
208 SetMSUB(86,1);
209 break;
210 case kPyJpsiChi:
211 SetMSEL(0);
212// gg->J/Psi g
213 SetMSUB(86,1);
214// gg-> chi_0c g
215 SetMSUB(87,1);
216// gg-> chi_1c g
217 SetMSUB(88,1);
218// gg-> chi_2c g
219 SetMSUB(89,1);
220 break;
221 case kPyCharmUnforced:
222 SetMSEL(0);
223// gq->qg
224 SetMSUB(28,1);
225// gg->qq
226 SetMSUB(53,1);
227// gg->gg
228 SetMSUB(68,1);
229 break;
230 case kPyBeautyUnforced:
231 SetMSEL(0);
232// gq->qg
233 SetMSUB(28,1);
234// gg->qq
235 SetMSUB(53,1);
236// gg->gg
237 SetMSUB(68,1);
238 break;
239 case kPyMb:
240// Minimum Bias pp-Collisions
241//
242//
243// select Pythia min. bias model
244 SetMSEL(0);
511db649 245 SetMSUB(92,1); // single diffraction AB-->XB
246 SetMSUB(93,1); // single diffraction AB-->AX
247 SetMSUB(94,1); // double diffraction
248 SetMSUB(95,1); // low pt production
249
e0e89f40 250 AtlasTuning();
511db649 251 break;
04081a91 252
253 case kPyMbWithDirectPhoton:
254// Minimum Bias pp-Collisions with direct photon processes added
255//
256//
257// select Pythia min. bias model
258 SetMSEL(0);
259 SetMSUB(92,1); // single diffraction AB-->XB
260 SetMSUB(93,1); // single diffraction AB-->AX
261 SetMSUB(94,1); // double diffraction
262 SetMSUB(95,1); // low pt production
263
264 SetMSUB(14,1); //
265 SetMSUB(18,1); //
266 SetMSUB(29,1); //
267 SetMSUB(114,1); //
268 SetMSUB(115,1); //
269
270
271 AtlasTuning();
272 break;
273
f529e69b 274 case kPyMbDefault:
275// Minimum Bias pp-Collisions
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
285 break;
0a0cbcfd 286 case kPyLhwgMb:
287// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
288// -> Pythia 6.3 or above is needed
289//
290 SetMSEL(0);
291 SetMSUB(92,1); // single diffraction AB-->XB
292 SetMSUB(93,1); // single diffraction AB-->AX
293 SetMSUB(94,1); // double diffraction
294 SetMSUB(95,1); // low pt production
295
e2de0ce1 296 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll)); // CTEQ6ll pdf
0a0cbcfd 297 SetMSTP(52,2);
298 SetMSTP(68,1);
299 SetMSTP(70,2);
300 SetMSTP(81,1); // Multiple Interactions ON
301 SetMSTP(82,4); // Double Gaussian Model
302 SetMSTP(88,1);
303
304 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
305 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
306 SetPARP(84,0.5); // Core radius
307 SetPARP(85,0.9); // Regulates gluon prod. mechanism
308 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
309
310 break;
8d2cd130 311 case kPyMbNonDiffr:
312// Minimum Bias pp-Collisions
313//
314//
315// select Pythia min. bias model
316 SetMSEL(0);
511db649 317 SetMSUB(95,1); // low pt production
0f482ae4 318
e0e89f40 319 AtlasTuning();
8d2cd130 320 break;
d7de4a67 321 case kPyMbMSEL1:
322 ConfigHeavyFlavor();
323// Intrinsic <kT^2>
324 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
325 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
326 SetPARP(93,5.); // Upper cut-off
327// Set Q-quark mass
328 SetPMAS(4,1,1.2); // Charm quark mass
329 SetPMAS(5,1,4.78); // Beauty quark mass
330 SetPARP(71,4.); // Defaut value
331// Atlas Tuning
332 AtlasTuning();
333 break;
8d2cd130 334 case kPyJets:
335//
336// QCD Jets
337//
338 SetMSEL(1);
65f2626c 339 // Pythia Tune A (CDF)
340 //
4167b79f 341 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
65f2626c 342 SetMSTP(82,4); // Double Gaussian Model
343 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
344 SetPARP(84,0.4); // Core radius
345 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
346 SetPARP(86,0.95); // Regulates gluon prod. mechanism
347 SetPARP(89,1800.); // [GeV] Ref. energy
348 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
349 break;
8d2cd130 350 case kPyDirectGamma:
351 SetMSEL(10);
352 break;
adf4d898 353 case kPyCharmPbPbMNR:
354 case kPyD0PbPbMNR:
90d7b703 355 case kPyDPlusPbPbMNR:
e0e89f40 356 case kPyDPlusStrangePbPbMNR:
90d7b703 357 // Tuning of Pythia parameters aimed to get a resonable agreement
358 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
359 // c-cbar single inclusive and double differential distributions.
360 // This parameter settings are meant to work with Pb-Pb collisions
361 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
362 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
363 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 364 ConfigHeavyFlavor();
90d7b703 365 // Intrinsic <kT>
366 SetMSTP(91,1);
367 SetPARP(91,1.304);
368 SetPARP(93,6.52);
90d7b703 369 // Set c-quark mass
370 SetPMAS(4,1,1.2);
90d7b703 371 break;
adf4d898 372 case kPyCharmpPbMNR:
373 case kPyD0pPbMNR:
90d7b703 374 case kPyDPluspPbMNR:
e0e89f40 375 case kPyDPlusStrangepPbMNR:
90d7b703 376 // Tuning of Pythia parameters aimed to get a resonable agreement
377 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
378 // c-cbar single inclusive and double differential distributions.
379 // This parameter settings are meant to work with p-Pb collisions
380 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
381 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
382 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 383 ConfigHeavyFlavor();
90d7b703 384 // Intrinsic <kT>
3dc3ec94 385 SetMSTP(91,1);
386 SetPARP(91,1.16);
387 SetPARP(93,5.8);
388
90d7b703 389 // Set c-quark mass
3dc3ec94 390 SetPMAS(4,1,1.2);
90d7b703 391 break;
adf4d898 392 case kPyCharmppMNR:
393 case kPyD0ppMNR:
90d7b703 394 case kPyDPlusppMNR:
e0e89f40 395 case kPyDPlusStrangeppMNR:
90d7b703 396 // Tuning of Pythia parameters aimed to get a resonable agreement
397 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
398 // c-cbar single inclusive and double differential distributions.
399 // This parameter settings are meant to work with pp collisions
400 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
401 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
402 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
3dc3ec94 403 ConfigHeavyFlavor();
90d7b703 404 // Intrinsic <kT^2>
3dc3ec94 405 SetMSTP(91,1);
406 SetPARP(91,1.);
407 SetPARP(93,5.);
408
90d7b703 409 // Set c-quark mass
3dc3ec94 410 SetPMAS(4,1,1.2);
90d7b703 411 break;
e0e89f40 412 case kPyCharmppMNRwmi:
413 // Tuning of Pythia parameters aimed to get a resonable agreement
414 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
415 // c-cbar single inclusive and double differential distributions.
416 // This parameter settings are meant to work with pp collisions
417 // and with kCTEQ5L PDFs.
418 // Added multiple interactions according to ATLAS tune settings.
419 // To get a "reasonable" agreement with MNR results, events have to be
420 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
421 // set to 2.76 GeV.
422 // To get a "perfect" agreement with MNR results, events have to be
423 // generated in four ptHard bins with the following relative
424 // normalizations:
425 // 2.76-3 GeV: 25%
426 // 3-4 GeV: 40%
427 // 4-8 GeV: 29%
428 // >8 GeV: 6%
429 ConfigHeavyFlavor();
430 // Intrinsic <kT^2>
431 SetMSTP(91,1);
432 SetPARP(91,1.);
433 SetPARP(93,5.);
434
435 // Set c-quark mass
436 SetPMAS(4,1,1.2);
437 AtlasTuning();
438 break;
adf4d898 439 case kPyBeautyPbPbMNR:
8d2cd130 440 // Tuning of Pythia parameters aimed to get a resonable agreement
441 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
442 // b-bbar single inclusive and double differential distributions.
443 // This parameter settings are meant to work with Pb-Pb collisions
444 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
445 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
446 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 447 ConfigHeavyFlavor();
8d2cd130 448 // QCD scales
3dc3ec94 449 SetPARP(67,1.0);
450 SetPARP(71,1.0);
adf4d898 451 // Intrinsic <kT>
3dc3ec94 452 SetMSTP(91,1);
453 SetPARP(91,2.035);
454 SetPARP(93,10.17);
8d2cd130 455 // Set b-quark mass
3dc3ec94 456 SetPMAS(5,1,4.75);
8d2cd130 457 break;
adf4d898 458 case kPyBeautypPbMNR:
459 // Tuning of Pythia parameters aimed to get a resonable agreement
460 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
461 // b-bbar single inclusive and double differential distributions.
462 // This parameter settings are meant to work with p-Pb collisions
463 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
464 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
465 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 466 ConfigHeavyFlavor();
adf4d898 467 // QCD scales
3dc3ec94 468 SetPARP(67,1.0);
469 SetPARP(71,1.0);
adf4d898 470 // Intrinsic <kT>
3dc3ec94 471 SetMSTP(91,1);
472 SetPARP(91,1.60);
473 SetPARP(93,8.00);
adf4d898 474 // Set b-quark mass
3dc3ec94 475 SetPMAS(5,1,4.75);
adf4d898 476 break;
477 case kPyBeautyppMNR:
478 // Tuning of Pythia parameters aimed to get a resonable agreement
479 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
480 // b-bbar single inclusive and double differential distributions.
481 // This parameter settings are meant to work with pp collisions
482 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
483 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
484 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
3dc3ec94 485 ConfigHeavyFlavor();
adf4d898 486 // QCD scales
3dc3ec94 487 SetPARP(67,1.0);
488 SetPARP(71,1.0);
489
490 // Intrinsic <kT>
491 SetMSTP(91,1);
492 SetPARP(91,1.);
493 SetPARP(93,5.);
494
495 // Set b-quark mass
496 SetPMAS(5,1,4.75);
adf4d898 497 break;
9dfe63b3 498 case kPyBeautyJets:
e0e89f40 499 case kPyBeautyppMNRwmi:
500 // Tuning of Pythia parameters aimed to get a resonable agreement
501 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
502 // b-bbar single inclusive and double differential distributions.
503 // This parameter settings are meant to work with pp collisions
504 // and with kCTEQ5L PDFs.
505 // Added multiple interactions according to ATLAS tune settings.
506 // To get a "reasonable" agreement with MNR results, events have to be
507 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
508 // set to 2.76 GeV.
509 // To get a "perfect" agreement with MNR results, events have to be
510 // generated in four ptHard bins with the following relative
511 // normalizations:
512 // 2.76-4 GeV: 5%
513 // 4-6 GeV: 31%
514 // 6-8 GeV: 28%
515 // >8 GeV: 36%
516 ConfigHeavyFlavor();
517 // QCD scales
518 SetPARP(67,1.0);
519 SetPARP(71,1.0);
520
521 // Intrinsic <kT>
522 SetMSTP(91,1);
523 SetPARP(91,1.);
524 SetPARP(93,5.);
525
526 // Set b-quark mass
527 SetPMAS(5,1,4.75);
528
529 AtlasTuning();
530 break;
589380c6 531 case kPyW:
532
533 //Inclusive production of W+/-
534 SetMSEL(0);
535 //f fbar -> W+
536 SetMSUB(2,1);
537 // //f fbar -> g W+
538 // SetMSUB(16,1);
539 // //f fbar -> gamma W+
540 // SetMSUB(20,1);
541 // //f g -> f W+
542 // SetMSUB(31,1);
543 // //f gamma -> f W+
544 // SetMSUB(36,1);
545
546 // Initial/final parton shower on (Pythia default)
547 // With parton showers on we are generating "W inclusive process"
548 SetMSTP(61,1); //Initial QCD & QED showers on
549 SetMSTP(71,1); //Final QCD & QED showers on
550
551 break;
0f6ee828 552
553 case kPyZ:
554
555 //Inclusive production of Z
556 SetMSEL(0);
557 //f fbar -> Z/gamma
558 SetMSUB(1,1);
559
560 // // f fbar -> g Z/gamma
561 // SetMSUB(15,1);
562 // // f fbar -> gamma Z/gamma
563 // SetMSUB(19,1);
564 // // f g -> f Z/gamma
565 // SetMSUB(30,1);
566 // // f gamma -> f Z/gamma
567 // SetMSUB(35,1);
568
569 //only Z included, not gamma
570 SetMSTP(43,2);
571
572 // Initial/final parton shower on (Pythia default)
573 // With parton showers on we are generating "Z inclusive process"
574 SetMSTP(61,1); //Initial QCD & QED showers on
575 SetMSTP(71,1); //Final QCD & QED showers on
576
577 break;
578
8d2cd130 579 }
580//
581// Initialize PYTHIA
efe3b1cd 582//
583// Select the tune
584 if (itune > -1) Pytune(itune);
585
586//
8d2cd130 587 SetMSTP(41,1); // all resonance decays switched on
8d2cd130 588 Initialize("CMS","p","p",fEcms);
4167b79f 589
8d2cd130 590}
591
592Int_t AliPythia::CheckedLuComp(Int_t kf)
593{
594// Check Lund particle code (for debugging)
595 Int_t kc=Pycomp(kf);
596 printf("\n Lucomp kf,kc %d %d",kf,kc);
597 return kc;
598}
599
20e47f08 600void AliPythia::SetNuclei(Int_t a1, Int_t a2, Int_t pdf)
8d2cd130 601{
602// Treat protons as inside nuclei with mass numbers a1 and a2
603// The MSTP array in the PYPARS common block is used to enable and
604// select the nuclear structure functions.
605// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
606// =1: internal PYTHIA acording to MSTP(51)
607// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
608// If the following mass number both not equal zero, nuclear corrections of the stf are used.
609// MSTP(192) : Mass number of nucleus side 1
610// MSTP(193) : Mass number of nucleus side 2
20e47f08 611// MSTP(194) : Nuclear structure function: 0: EKS98 1:EPS08
8d2cd130 612 SetMSTP(52,2);
613 SetMSTP(192, a1);
20e47f08 614 SetMSTP(193, a2);
615 SetMSTP(194, pdf);
8d2cd130 616}
617
618
619AliPythia* AliPythia::Instance()
620{
621// Set random number generator
622 if (fgAliPythia) {
623 return fgAliPythia;
624 } else {
625 fgAliPythia = new AliPythia();
626 return fgAliPythia;
627 }
628}
629
630void AliPythia::PrintParticles()
631{
632// Print list of particl properties
633 Int_t np = 0;
c31f1d37 634 char* name = new char[16];
8d2cd130 635 for (Int_t kf=0; kf<1000000; kf++) {
636 for (Int_t c = 1; c > -2; c-=2) {
8d2cd130 637 Int_t kc = Pycomp(c*kf);
638 if (kc) {
639 Float_t mass = GetPMAS(kc,1);
640 Float_t width = GetPMAS(kc,2);
641 Float_t tau = GetPMAS(kc,4);
c31f1d37 642
8d2cd130 643 Pyname(kf,name);
644
645 np++;
646
647 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
648 c*kf, name, mass, width, tau);
649 }
650 }
651 }
652 printf("\n Number of particles %d \n \n", np);
653}
654
655void AliPythia::ResetDecayTable()
656{
657// Set default values for pythia decay switches
658 Int_t i;
659 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
660 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
661}
662
663void AliPythia::SetDecayTable()
664{
665// Set default values for pythia decay switches
666//
667 Int_t i;
668 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
669 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
670}
671
672void AliPythia::Pyclus(Int_t& njet)
673{
674// Call Pythia clustering algorithm
675//
676 pyclus(njet);
677}
678
679void AliPythia::Pycell(Int_t& njet)
680{
681// Call Pythia jet reconstruction algorithm
682//
683 pycell(njet);
684}
685
452af8c7 686void AliPythia::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
687{
688// Call Pythia jet reconstruction algorithm
689//
452af8c7 690 pyshow(ip1, ip2, qmax);
691}
692
693void AliPythia::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
694{
695 pyrobo(imi, ima, the, phi, bex, bey, bez);
696}
697
694b39f9 698void AliPythia::Pytune(Int_t itune)
699{
700 pytune(itune);
701}
702
452af8c7 703
704
32c8e463 705void AliPythia::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
0f482ae4 706{
707// Initializes
708// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
709// (2) The nuclear geometry using the Glauber Model
710//
6b435cde 711
18b7a4a1 712 fGlauber = AliFastGlauber::Instance();
0f482ae4 713 fGlauber->Init(2);
714 fGlauber->SetCentralityClass(cMin, cMax);
715
716 fQuenchingWeights = new AliQuenchingWeights();
717 fQuenchingWeights->InitMult();
86b6ad68 718 fQuenchingWeights->SetK(k);
0f482ae4 719 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
32c8e463 720 fNGmax = ngmax;
721 fZmax = zmax;
722
0f482ae4 723}
724
725
452af8c7 726void AliPythia::Quench()
727{
728//
729//
730// Simple Jet Quenching routine:
731// =============================
732// The jet formed by all final state partons radiated by the parton created
0f482ae4 733// in the hard collisions is quenched by a factor (1-z) using light cone variables in
734// the initial parton reference frame:
452af8c7 735// (E + p_z)new = (1-z) (E + p_z)old
736//
0f482ae4 737//
738//
739//
452af8c7 740// The lost momentum is first balanced by one gluon with virtuality > 0.
741// Subsequently the gluon splits to yield two gluons with E = p.
742//
0f482ae4 743//
744//
4e383037 745 static Float_t eMean = 0.;
746 static Int_t icall = 0;
0f482ae4 747
c2c598a3 748 Double_t p0[4][5];
749 Double_t p1[4][5];
750 Double_t p2[4][5];
751 Int_t klast[4] = {-1, -1, -1, -1};
452af8c7 752
753 Int_t numpart = fPyjets->N;
86b6ad68 754 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
c2c598a3 755 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
756 Bool_t quenched[4];
b280c4cc 757 Double_t wjtKick[4];
c2c598a3 758 Int_t nGluon[4];
86b6ad68 759 Int_t qPdg[4];
0f482ae4 760 Int_t imo, kst, pdg;
b280c4cc 761
511db649 762//
c2c598a3 763// Sore information about Primary partons
764//
765// j =
766// 0, 1 partons from hard scattering
767// 2, 3 partons from initial state radiation
768//
769 for (Int_t i = 2; i <= 7; i++) {
770 Int_t j = 0;
771 // Skip gluons that participate in hard scattering
772 if (i == 4 || i == 5) continue;
773 // Gluons from hard Scattering
774 if (i == 6 || i == 7) {
775 j = i - 6;
776 pxq[j] = fPyjets->P[0][i];
777 pyq[j] = fPyjets->P[1][i];
778 pzq[j] = fPyjets->P[2][i];
779 eq[j] = fPyjets->P[3][i];
780 mq[j] = fPyjets->P[4][i];
781 } else {
782 // Gluons from initial state radiation
783 //
784 // Obtain 4-momentum vector from difference between original parton and parton after gluon
785 // radiation. Energy is calculated independently because initial state radition does not
786 // conserve strictly momentum and energy for each partonic system independently.
787 //
788 // Not very clean. Should be improved !
789 //
790 //
791 j = i;
792 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
793 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
794 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
795 mq[j] = fPyjets->P[4][i];
796 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
797 }
798//
799// Calculate some kinematic variables
511db649 800//
4e383037 801 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
0f482ae4 802 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
803 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
804 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
805 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
86b6ad68 806 qPdg[j] = fPyjets->K[1][i];
807 }
808
809 Double_t int0[4];
810 Double_t int1[4];
86b6ad68 811
b280c4cc 812 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
813
86b6ad68 814 for (Int_t j = 0; j < 4; j++) {
c2c598a3 815 //
816 // Quench only central jets and with E > 10.
817 //
86b6ad68 818
819
820 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
821 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
822
c2c598a3 823 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
b280c4cc 824 fZQuench[j] = 0.;
0f482ae4 825 } else {
c2c598a3 826 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
4e383037 827 icall ++;
828 eMean += eloss;
829 }
0f482ae4 830 //
831 // Extra pt
86b6ad68 832 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
833 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
0f482ae4 834 //
835 // Fractional energy loss
b280c4cc 836 fZQuench[j] = eloss / eq[j];
0f482ae4 837 //
838 // Avoid complete loss
839 //
1044c4d8 840 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
0f482ae4 841 //
842 // Some debug printing
86b6ad68 843
844
bf9bb016 845// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
846// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
4e383037 847
b280c4cc 848// fZQuench[j] = 0.8;
849// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
0f482ae4 850 }
4e383037 851
b280c4cc 852 quenched[j] = (fZQuench[j] > 0.01);
4e383037 853 } // primary partons
c2c598a3 854
b280c4cc 855
856
6e90ad26 857 Double_t pNew[1000][4];
858 Int_t kNew[1000];
859 Int_t icount = 0;
b280c4cc 860 Double_t zquench[4];
861
6e90ad26 862//
4e383037 863// System Loop
c2c598a3 864 for (Int_t isys = 0; isys < 4; isys++) {
6e90ad26 865// Skip to next system if not quenched.
4e383037 866 if (!quenched[isys]) continue;
867
b280c4cc 868 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
32c8e463 869 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
b280c4cc 870 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
4e383037 871 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
0f482ae4 872
4e383037 873
874
875 Int_t igMin = -1;
876 Int_t igMax = -1;
877 Double_t pg[4] = {0., 0., 0., 0.};
878
879//
880// Loop on radiation events
881
882 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
6e90ad26 883 while (1) {
884 icount = 0;
885 for (Int_t k = 0; k < 4; k++)
886 {
887 p0[isys][k] = 0.;
888 p1[isys][k] = 0.;
889 p2[isys][k] = 0.;
890 }
891// Loop over partons
892 for (Int_t i = 0; i < numpart; i++)
893 {
894 imo = fPyjets->K[2][i];
895 kst = fPyjets->K[0][i];
896 pdg = fPyjets->K[1][i];
897
898
899
0f482ae4 900// Quarks and gluons only
6e90ad26 901 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
0f482ae4 902// Particles from hard scattering only
c2c598a3 903
6e90ad26 904 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
c2c598a3 905 Int_t imom = imo % 1000;
906 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
907 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
908
6e90ad26 909
0f482ae4 910// Skip comment lines
6e90ad26 911 if (kst != 1 && kst != 2) continue;
0f482ae4 912//
913// Parton kinematic
6e90ad26 914 px = fPyjets->P[0][i];
915 py = fPyjets->P[1][i];
916 pz = fPyjets->P[2][i];
917 e = fPyjets->P[3][i];
918 m = fPyjets->P[4][i];
919 pt = TMath::Sqrt(px * px + py * py);
920 p = TMath::Sqrt(px * px + py * py + pz * pz);
921 phi = TMath::Pi() + TMath::ATan2(-py, -px);
922 theta = TMath::ATan2(pt, pz);
923
0f482ae4 924//
c2c598a3 925// Save 4-momentum sum for balancing
926 Int_t index = isys;
6e90ad26 927
928 p0[index][0] += px;
929 p0[index][1] += py;
930 p0[index][2] += pz;
931 p0[index][3] += e;
6e90ad26 932
933 klast[index] = i;
934
0f482ae4 935//
936// Fractional energy loss
b280c4cc 937 Double_t z = zquench[index];
4e383037 938
c2c598a3 939
4e383037 940// Don't fully quench radiated gluons
941//
942 if (imo > 1000) {
943// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
944//
945
c2c598a3 946 z = 0.02;
4e383037 947 }
c2c598a3 948// printf("z: %d %f\n", imo, z);
949
4e383037 950
951//
6e90ad26 952
953 //
954 //
955 // Transform into frame in which initial parton is along z-axis
956 //
957 TVector3 v(px, py, pz);
958 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
959 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
960
961 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
962 Double_t mt2 = jt * jt + m * m;
963 Double_t zmax = 1.;
964 //
965 // Kinematic limit on z
966 //
4e383037 967 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
6e90ad26 968 //
969 // Change light-cone kinematics rel. to initial parton
970 //
971 Double_t eppzOld = e + pl;
972 Double_t empzOld = e - pl;
973
974 Double_t eppzNew = (1. - z) * eppzOld;
975 Double_t empzNew = empzOld - mt2 * z / eppzOld;
976 Double_t eNew = 0.5 * (eppzNew + empzNew);
977 Double_t plNew = 0.5 * (eppzNew - empzNew);
978
979 Double_t jtNew;
980 //
981 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
982 Double_t mt2New = eppzNew * empzNew;
983 if (mt2New < 1.e-8) mt2New = 0.;
4e383037 984 if (z < zmax) {
985 if (m * m > mt2New) {
986 //
987 // This should not happen
988 //
989 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
990 jtNew = 0;
991 } else {
992 jtNew = TMath::Sqrt(mt2New - m * m);
993 }
6e90ad26 994 } else {
4e383037 995 // If pT is to small (probably a leading massive particle) we scale only the energy
996 // This can cause negative masses of the radiated gluon
997 // Let's hope for the best ...
998 jtNew = jt;
999 eNew = TMath::Sqrt(plNew * plNew + mt2);
1000
6e90ad26 1001 }
6e90ad26 1002 //
1003 // Calculate new px, py
1004 //
b07be423 1005 Double_t pxNew = 0;
1006 Double_t pyNew = 0;
6e90ad26 1007
b07be423 1008 if (jt>0) {
6b118b3c 1009 pxNew = jtNew / jt * pxs;
1010 pyNew = jtNew / jt * pys;
b07be423 1011 }
6e90ad26 1012// Double_t dpx = pxs - pxNew;
1013// Double_t dpy = pys - pyNew;
1014// Double_t dpz = pl - plNew;
1015// Double_t de = e - eNew;
1016// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1017// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1018// printf("New mass (2) %e %e \n", pxNew, pyNew);
1019 //
1020 // Rotate back
1021 //
1022 TVector3 w(pxNew, pyNew, plNew);
1023 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1024 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1025
1026 p1[index][0] += pxNew;
1027 p1[index][1] += pyNew;
1028 p1[index][2] += plNew;
1029 p1[index][3] += eNew;
1030 //
1031 // Updated 4-momentum vectors
1032 //
1033 pNew[icount][0] = pxNew;
1034 pNew[icount][1] = pyNew;
1035 pNew[icount][2] = plNew;
1036 pNew[icount][3] = eNew;
1037 kNew[icount] = i;
1038 icount++;
1039 } // parton loop
0f482ae4 1040 //
6e90ad26 1041 // Check if there was phase-space for quenching
0f482ae4 1042 //
0f482ae4 1043
6e90ad26 1044 if (icount == 0) quenched[isys] = kFALSE;
1045 if (!quenched[isys]) break;
1046
1047 for (Int_t j = 0; j < 4; j++)
1048 {
1049 p2[isys][j] = p0[isys][j] - p1[isys][j];
1050 }
1051 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
6e90ad26 1052 if (p2[isys][4] > 0.) {
1053 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1054 break;
1055 } else {
b280c4cc 1056 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
4e383037 1057 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
6e90ad26 1058 if (p2[isys][4] < -0.01) {
4e383037 1059 printf("Negative mass squared !\n");
1060 // Here we have to put the gluon back to mass shell
1061 // This will lead to a small energy imbalance
1062 p2[isys][4] = 0.;
1063 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1064 break;
6e90ad26 1065 } else {
1066 p2[isys][4] = 0.;
1067 break;
1068 }
1069 }
6e90ad26 1070 /*
6e90ad26 1071 zHeavy *= 0.98;
1072 printf("zHeavy lowered to %f\n", zHeavy);
1073 if (zHeavy < 0.01) {
1074 printf("No success ! \n");
1075 icount = 0;
1076 quenched[isys] = kFALSE;
1077 break;
1078 }
4e383037 1079 */
1080 } // iteration on z (while)
1081
6e90ad26 1082// Update event record
1083 for (Int_t k = 0; k < icount; k++) {
1084// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1085 fPyjets->P[0][kNew[k]] = pNew[k][0];
1086 fPyjets->P[1][kNew[k]] = pNew[k][1];
1087 fPyjets->P[2][kNew[k]] = pNew[k][2];
1088 fPyjets->P[3][kNew[k]] = pNew[k][3];
0f482ae4 1089 }
4e383037 1090 //
1091 // Add the gluons
1092 //
1093 Int_t ish = 0;
1837e95c 1094 Int_t iGlu;
4e383037 1095 if (!quenched[isys]) continue;
0f482ae4 1096//
1097// Last parton from shower i
4e383037 1098 Int_t in = klast[isys];
0f482ae4 1099//
1100// Continue if no parton in shower i selected
1101 if (in == -1) continue;
1102//
1103// If this is the second initial parton and it is behind the first move pointer by previous ish
4e383037 1104 if (isys == 1 && klast[1] > klast[0]) in += ish;
0f482ae4 1105//
1106// Starting index
452af8c7 1107
4e383037 1108// jmin = in - 1;
0f482ae4 1109// How many additional gluons will be generated
1110 ish = 1;
4e383037 1111 if (p2[isys][4] > 0.05) ish = 2;
0f482ae4 1112//
1113// Position of gluons
4e383037 1114 iGlu = numpart;
1115 if (iglu == 0) igMin = iGlu;
1116 igMax = iGlu;
0f482ae4 1117 numpart += ish;
1118 (fPyjets->N) += ish;
4e383037 1119
0f482ae4 1120 if (ish == 1) {
4e383037 1121 fPyjets->P[0][iGlu] = p2[isys][0];
1122 fPyjets->P[1][iGlu] = p2[isys][1];
1123 fPyjets->P[2][iGlu] = p2[isys][2];
1124 fPyjets->P[3][iGlu] = p2[isys][3];
1125 fPyjets->P[4][iGlu] = p2[isys][4];
0f482ae4 1126
4e383037 1127 fPyjets->K[0][iGlu] = 1;
1128 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
0f482ae4 1129 fPyjets->K[1][iGlu] = 21;
4e383037 1130 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1131 fPyjets->K[3][iGlu] = -1;
1132 fPyjets->K[4][iGlu] = -1;
4e383037 1133
1134 pg[0] += p2[isys][0];
1135 pg[1] += p2[isys][1];
1136 pg[2] += p2[isys][2];
1137 pg[3] += p2[isys][3];
0f482ae4 1138 } else {
1139 //
1140 // Split gluon in rest frame.
1141 //
4e383037 1142 Double_t bx = p2[isys][0] / p2[isys][3];
1143 Double_t by = p2[isys][1] / p2[isys][3];
1144 Double_t bz = p2[isys][2] / p2[isys][3];
1145 Double_t pst = p2[isys][4] / 2.;
0f482ae4 1146 //
1147 // Isotropic decay ????
1148 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1149 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1150 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
0f482ae4 1151
1152 Double_t pz1 = pst * cost;
1153 Double_t pz2 = -pst * cost;
1154 Double_t pt1 = pst * sint;
1155 Double_t pt2 = -pst * sint;
2ab330c9 1156 Double_t px1 = pt1 * TMath::Cos(phis);
1157 Double_t py1 = pt1 * TMath::Sin(phis);
1158 Double_t px2 = pt2 * TMath::Cos(phis);
1159 Double_t py2 = pt2 * TMath::Sin(phis);
0f482ae4 1160
1161 fPyjets->P[0][iGlu] = px1;
1162 fPyjets->P[1][iGlu] = py1;
1163 fPyjets->P[2][iGlu] = pz1;
1164 fPyjets->P[3][iGlu] = pst;
1165 fPyjets->P[4][iGlu] = 0.;
1166
4e383037 1167 fPyjets->K[0][iGlu] = 1 ;
0f482ae4 1168 fPyjets->K[1][iGlu] = 21;
4e383037 1169 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
0f482ae4 1170 fPyjets->K[3][iGlu] = -1;
1171 fPyjets->K[4][iGlu] = -1;
1172
1173 fPyjets->P[0][iGlu+1] = px2;
1174 fPyjets->P[1][iGlu+1] = py2;
1175 fPyjets->P[2][iGlu+1] = pz2;
1176 fPyjets->P[3][iGlu+1] = pst;
1177 fPyjets->P[4][iGlu+1] = 0.;
1178
4e383037 1179 fPyjets->K[0][iGlu+1] = 1;
1180 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
0f482ae4 1181 fPyjets->K[1][iGlu+1] = 21;
4e383037 1182 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
0f482ae4 1183 fPyjets->K[3][iGlu+1] = -1;
1184 fPyjets->K[4][iGlu+1] = -1;
1185 SetMSTU(1,0);
1186 SetMSTU(2,0);
1187 //
1188 // Boost back
1189 //
1190 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1191 }
4e383037 1192/*
1193 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1194 Double_t px, py, pz;
1195 px = fPyjets->P[0][ig];
1196 py = fPyjets->P[1][ig];
1197 pz = fPyjets->P[2][ig];
1198 TVector3 v(px, py, pz);
1199 v.RotateZ(-phiq[isys]);
1200 v.RotateY(-thetaq[isys]);
1201 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1202 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1203 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1204 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1205 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1206 pxs += jtKick * TMath::Cos(phiKick);
1207 pys += jtKick * TMath::Sin(phiKick);
1208 TVector3 w(pxs, pys, pzs);
1209 w.RotateY(thetaq[isys]);
1210 w.RotateZ(phiq[isys]);
1211 fPyjets->P[0][ig] = w.X();
1212 fPyjets->P[1][ig] = w.Y();
1213 fPyjets->P[2][ig] = w.Z();
1214 fPyjets->P[2][ig] = w.Mag();
1215 }
1216*/
1217 } // kGluon
1218
6e90ad26 1219
4e383037 1220 // Check energy conservation
0f482ae4 1221 Double_t pxs = 0.;
1222 Double_t pys = 0.;
1223 Double_t pzs = 0.;
1224 Double_t es = 14000.;
1225
1226 for (Int_t i = 0; i < numpart; i++)
1227 {
1228 kst = fPyjets->K[0][i];
1229 if (kst != 1 && kst != 2) continue;
1230 pxs += fPyjets->P[0][i];
1231 pys += fPyjets->P[1][i];
1232 pzs += fPyjets->P[2][i];
1233 es -= fPyjets->P[3][i];
1234 }
1235 if (TMath::Abs(pxs) > 1.e-2 ||
1236 TMath::Abs(pys) > 1.e-2 ||
1237 TMath::Abs(pzs) > 1.e-1) {
1238 printf("%e %e %e %e\n", pxs, pys, pzs, es);
4e383037 1239// Fatal("Quench()", "4-Momentum non-conservation");
452af8c7 1240 }
4e383037 1241
1242 } // end quenching loop (systems)
6e90ad26 1243// Clean-up
0f482ae4 1244 for (Int_t i = 0; i < numpart; i++)
1245 {
4e383037 1246 imo = fPyjets->K[2][i];
1247 if (imo > 1000) {
1248 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1249 }
0f482ae4 1250 }
4e383037 1251// this->Pylist(1);
0f482ae4 1252} // end quench
90d7b703 1253
992f2843 1254
1255void AliPythia::Pyquen(Double_t a, Int_t ibf, Double_t b)
1256{
1257 // Igor Lokthine's quenching routine
12cb0bc0 1258 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1259
992f2843 1260 pyquen(a, ibf, b);
1261}
b280c4cc 1262
12cb0bc0 1263void AliPythia::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1264{
1265 // Set the parameters for the PYQUEN package.
1266 // See comments in PyquenCommon.h
1267
1268
1269 PYQPAR.t0 = t0;
1270 PYQPAR.tau0 = tau0;
1271 PYQPAR.nf = nf;
1272 PYQPAR.iengl = iengl;
1273 PYQPAR.iangl = iangl;
1274}
1275
1276
16a82508 1277void AliPythia::Pyevnw()
1278{
1279 // New multiple interaction scenario
1280 pyevnw();
1281}
1282
cd07c39b 1283void AliPythia::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
1284{
1285 // Call medium-modified Pythia jet reconstruction algorithm
1286 //
1287 pyshowq(ip1, ip2, qmax);
1288}
1289
b280c4cc 1290void AliPythia::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1291{
1292 // Return event specific quenching parameters
1293 xp = fXJet;
1294 yp = fYJet;
1295 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1296
1297}
1298
3dc3ec94 1299void AliPythia::ConfigHeavyFlavor()
1300{
1301 //
1302 // Default configuration for Heavy Flavor production
1303 //
1304 // All QCD processes
1305 //
1306 SetMSEL(1);
1307
1308 // No multiple interactions
1309 SetMSTP(81,0);
39c2e610 1310 SetPARP(81, 0.);
1311 SetPARP(82, 0.);
3dc3ec94 1312 // Initial/final parton shower on (Pythia default)
1313 SetMSTP(61,1);
1314 SetMSTP(71,1);
1315
1316 // 2nd order alpha_s
1317 SetMSTP(2,2);
1318
1319 // QCD scales
1320 SetMSTP(32,2);
1321 SetPARP(34,1.0);
1322}
e0e89f40 1323
1324void AliPythia::AtlasTuning()
1325{
1326 //
1327 // Configuration for the ATLAS tuning
e2de0ce1 1328 SetMSTP(51, AliStructFuncType::PDFsetIndex(kCTEQ5L)); // CTEQ5L pdf
e0e89f40 1329 SetMSTP(81,1); // Multiple Interactions ON
1330 SetMSTP(82,4); // Double Gaussian Model
39c2e610 1331 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
e0e89f40 1332 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1333 SetPARP(89,1000.); // [GeV] Ref. energy
1334 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1335 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1336 SetPARP(84,0.5); // Core radius
1337 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1338 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1339 SetPARP(67,1); // Regulates Initial State Radiation
1340}
e8a8adcd 1341
1342AliPythia& AliPythia::operator=(const AliPythia& rhs)
1343{
1344// Assignment operator
1345 rhs.Copy(*this);
1346 return *this;
1347}
1348
1349 void AliPythia::Copy(TObject&) const
1350{
1351 //
1352 // Copy
1353 //
1354 Fatal("Copy","Not implemented!\n");
1355}
cd07c39b 1356