]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia6.cxx
<http://savannah.cern.ch/bugs/?102190>
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia6.cxx
CommitLineData
39d810c8 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id: AliPythia.cxx,v 1.40 2007/10/09 08:43:24 morsch Exp $ */
17
18#include "AliPythia6.h"
19#include "AliStack.h"
20#include "AliPythiaRndm.h"
21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
23
24#include "TVector3.h"
25#include "TParticle.h"
26#include "PyquenCommon.h"
27
28ClassImp(AliPythia6)
29
30#ifndef WIN32
31# define pyclus pyclus_
32# define pycell pycell_
33# define pyshow pyshow_
f3cbba5f 34# define pyshowq pyshowq_
39d810c8 35# define pyrobo pyrobo_
36# define pyquen pyquen_
37# define pyevnw pyevnw_
8b9bb87a 38# define pyjoin pyjoin_
f3cbba5f 39# define qpygin0 qpygin0_
39d810c8 40# define type_of_call
41#else
42# define pyclus PYCLUS
43# define pycell PYCELL
f3cbba5f 44# define pyshow PYSHOW
45# define pyshowq PYSHOWQ
39d810c8 46# define pyrobo PYROBO
47# define pyquen PYQUEN
48# define pyevnw PYEVNW
8b9bb87a 49# define pyjoin PYJOIN
f3cbba5f 50# define qpygin0 QPYGIN0
39d810c8 51# define type_of_call _stdcall
52#endif
53
8b9bb87a 54extern "C" void type_of_call pyjoin(Int_t &, Int_t * );
39d810c8 55extern "C" void type_of_call pyclus(Int_t & );
56extern "C" void type_of_call pycell(Int_t & );
57extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
f3cbba5f 58extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
59extern "C" void type_of_call qpygin0();
39d810c8 60extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
61extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
62extern "C" void type_of_call pyevnw();
63
64
65//_____________________________________________________________________________
66
67AliPythia6* AliPythia6::fgAliPythia=NULL;
68
69AliPythia6::AliPythia6():
70 TPythia6(),
71 AliPythiaBase(),
72 fProcess(kPyMb),
73 fEcms(0.),
74 fStrucFunc(kCTEQ5L),
e28ccdaf 75 fProjectile("p"),
76 fTarget("p"),
39d810c8 77 fXJet(0.),
78 fYJet(0.),
79 fNGmax(30),
80 fZmax(0.97),
81 fGlauber(0),
82 fQuenchingWeights(0)
83{
84// Default Constructor
85//
86// Set random number
a23e397a 87 Int_t i;
88 for (i = 0; i < 501; i++) fDefMDCY[i] = 0;
89 for (i = 0; i < 2001; i++) fDefMDME[i] = 0;
90 for (i = 0; i < 4; i++) fZQuench[i] = 0;
91
39d810c8 92 if (!AliPythiaRndm::GetPythiaRandom())
93 AliPythiaRndm::SetPythiaRandom(GetRandom());
94 fGlauber = 0;
95 fQuenchingWeights = 0;
96}
97
98AliPythia6::AliPythia6(const AliPythia6& pythia):
99 TPythia6(),
100 AliPythiaBase(),
101 fProcess(kPyMb),
102 fEcms(0.),
103 fStrucFunc(kCTEQ5L),
e28ccdaf 104 fProjectile("p"),
105 fTarget("p"),
39d810c8 106 fXJet(0.),
107 fYJet(0.),
108 fNGmax(30),
109 fZmax(0.97),
110 fGlauber(0),
111 fQuenchingWeights(0)
112{
113 // Copy Constructor
a23e397a 114 Int_t i;
115 for (i = 0; i < 501; i++) fDefMDCY[i] = 0;
116 for (i = 0; i < 2001; i++) fDefMDME[i] = 0;
117 for (i = 0; i < 4; i++) fZQuench[i] = 0;
39d810c8 118 pythia.Copy(*this);
119}
120
75d4f39e 121void AliPythia6::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t /*tune*/)
39d810c8 122{
123// Initialise the process to generate
124 if (!AliPythiaRndm::GetPythiaRandom())
125 AliPythiaRndm::SetPythiaRandom(GetRandom());
126
127 fProcess = process;
128 fEcms = energy;
129 fStrucFunc = strucfunc;
130//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
131 SetMDCY(Pycomp(111) ,1,0);
132 SetMDCY(Pycomp(310) ,1,0);
133 SetMDCY(Pycomp(3122),1,0);
134 SetMDCY(Pycomp(3112),1,0);
135 SetMDCY(Pycomp(3212),1,0);
136 SetMDCY(Pycomp(3222),1,0);
137 SetMDCY(Pycomp(3312),1,0);
138 SetMDCY(Pycomp(3322),1,0);
139 SetMDCY(Pycomp(3334),1,0);
140 // Select structure function
141 SetMSTP(52,2);
142 SetMSTP(51,AliStructFuncType::PDFsetIndex(strucfunc));
143 // Particles produced in string fragmentation point directly to either of the two endpoints
144 // of the string (depending in the side they were generated from).
145 SetMSTU(16,2);
146
147//
148// Pythia initialisation for selected processes//
149//
150// Make MSEL clean
151//
152 for (Int_t i=1; i<= 200; i++) {
153 SetMSUB(i,0);
154 }
155// select charm production
156 switch (process)
157 {
158 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.25);
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldUEQ2ordered2:
180// Old underlying events with Q2 ordered QCD processes
181// Multiple interactions on.
182 SetMSTP(81,1);
183// Double Gaussian matter distribution.
184 SetMSTP(82,4);
185 SetPARP(83,0.5);
186 SetPARP(84,0.4);
187// pT0.
188 SetPARP(82,2.0);
189// Reference energy for pT0 and energy rescaling pace.
190 SetPARP(89,1800);
191 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
192// String drawing almost completely minimizes string length.
193 SetPARP(85,0.9);
194 SetPARP(86,0.95);
195// ISR and FSR activity.
196 SetPARP(67,4);
197 SetPARP(71,4);
198// Lambda_FSR scale.
199 SetPARJ(81,0.29);
200 break;
201 case kPyOldPopcorn:
202// Old production mechanism: Old Popcorn
203 SetMSEL(1);
204 SetMSTJ(12,3);
205// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
206 SetMSTP(88,2);
207// (D=1)see can be used to form baryons (BARYON JUNCTION)
208 SetMSTJ(1,1);
209 AtlasTuning();
210 break;
211 case kPyCharm:
212 SetMSEL(4);
213// heavy quark masses
214
215 SetPMAS(4,1,1.2);
216//
217// primordial pT
218 SetMSTP(91,1);
219 SetPARP(91,1.);
220 SetPARP(93,5.);
221//
222 break;
223 case kPyBeauty:
224 SetMSEL(5);
225 SetPMAS(5,1,4.75);
226 break;
227 case kPyJpsi:
228 SetMSEL(0);
229// gg->J/Psi g
230 SetMSUB(86,1);
231 break;
232 case kPyJpsiChi:
233 SetMSEL(0);
234// gg->J/Psi g
235 SetMSUB(86,1);
236// gg-> chi_0c g
237 SetMSUB(87,1);
238// gg-> chi_1c g
239 SetMSUB(88,1);
240// gg-> chi_2c g
241 SetMSUB(89,1);
242 break;
243 case kPyCharmUnforced:
244 SetMSEL(0);
245// gq->qg
246 SetMSUB(28,1);
247// gg->qq
248 SetMSUB(53,1);
249// gg->gg
250 SetMSUB(68,1);
251 break;
252 case kPyBeautyUnforced:
253 SetMSEL(0);
254// gq->qg
255 SetMSUB(28,1);
256// gg->qq
257 SetMSUB(53,1);
258// gg->gg
259 SetMSUB(68,1);
260 break;
261 case kPyMb:
262// Minimum Bias pp-Collisions
263//
264//
265// select Pythia min. bias model
266 SetMSEL(0);
267 SetMSUB(92,1); // single diffraction AB-->XB
268 SetMSUB(93,1); // single diffraction AB-->AX
269 SetMSUB(94,1); // double diffraction
270 SetMSUB(95,1); // low pt production
271
272 AtlasTuning();
273 break;
67b7bb0e 274 case kPyMbAtlasTuneMC09:
275// Minimum Bias pp-Collisions
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
b4d68b2a 285 AtlasTuningMC09();
67b7bb0e 286 break;
04081a91 287
288 case kPyMbWithDirectPhoton:
289// Minimum Bias pp-Collisions with direct photon processes added
290//
291//
292// select Pythia min. bias model
293 SetMSEL(0);
294 SetMSUB(92,1); // single diffraction AB-->XB
295 SetMSUB(93,1); // single diffraction AB-->AX
296 SetMSUB(94,1); // double diffraction
297 SetMSUB(95,1); // low pt production
298
299 SetMSUB(14,1); //
300 SetMSUB(18,1); //
301 SetMSUB(29,1); //
302 SetMSUB(114,1); //
303 SetMSUB(115,1); //
304
305
306 AtlasTuning();
307 break;
308
39d810c8 309 case kPyMbDefault:
310// Minimum Bias pp-Collisions
311//
312//
313// select Pythia min. bias model
314 SetMSEL(0);
315 SetMSUB(92,1); // single diffraction AB-->XB
316 SetMSUB(93,1); // single diffraction AB-->AX
317 SetMSUB(94,1); // double diffraction
318 SetMSUB(95,1); // low pt production
319
320 break;
321 case kPyLhwgMb:
322// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
323// -> Pythia 6.3 or above is needed
324//
325 SetMSEL(0);
326 SetMSUB(92,1); // single diffraction AB-->XB
327 SetMSUB(93,1); // single diffraction AB-->AX
328 SetMSUB(94,1); // double diffraction
329 SetMSUB(95,1); // low pt production
330 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll));
331 SetMSTP(52,2);
332 SetMSTP(68,1);
333 SetMSTP(70,2);
334 SetMSTP(81,1); // Multiple Interactions ON
335 SetMSTP(82,4); // Double Gaussian Model
336 SetMSTP(88,1);
337
338 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
339 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
340 SetPARP(84,0.5); // Core radius
341 SetPARP(85,0.9); // Regulates gluon prod. mechanism
342 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
343
344 break;
345 case kPyMbNonDiffr:
346// Minimum Bias pp-Collisions
347//
348//
349// select Pythia min. bias model
350 SetMSEL(0);
351 SetMSUB(95,1); // low pt production
352
353 AtlasTuning();
354 break;
355 case kPyMbMSEL1:
356 ConfigHeavyFlavor();
357// Intrinsic <kT^2>
358 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
359 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
360 SetPARP(93,5.); // Upper cut-off
361// Set Q-quark mass
362 SetPMAS(4,1,1.2); // Charm quark mass
363 SetPMAS(5,1,4.78); // Beauty quark mass
364 SetPARP(71,4.); // Defaut value
365// Atlas Tuning
366 AtlasTuning();
367 break;
368 case kPyJets:
369//
370// QCD Jets
371//
372 SetMSEL(1);
373 // Pythia Tune A (CDF)
374 //
375 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
376 SetMSTP(82,4); // Double Gaussian Model
377 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
378 SetPARP(84,0.4); // Core radius
379 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
380 SetPARP(86,0.95); // Regulates gluon prod. mechanism
381 SetPARP(89,1800.); // [GeV] Ref. energy
382 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
383 break;
384 case kPyDirectGamma:
385 SetMSEL(10);
386 break;
387 case kPyCharmPbPbMNR:
388 case kPyD0PbPbMNR:
389 case kPyDPlusPbPbMNR:
390 case kPyDPlusStrangePbPbMNR:
391 // Tuning of Pythia parameters aimed to get a resonable agreement
392 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
393 // c-cbar single inclusive and double differential distributions.
394 // This parameter settings are meant to work with Pb-Pb collisions
395 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
396 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
397 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
398 ConfigHeavyFlavor();
399 // Intrinsic <kT>
400 SetMSTP(91,1);
401 SetPARP(91,1.304);
402 SetPARP(93,6.52);
403 // Set c-quark mass
404 SetPMAS(4,1,1.2);
405 break;
406 case kPyCharmpPbMNR:
407 case kPyD0pPbMNR:
408 case kPyDPluspPbMNR:
409 case kPyDPlusStrangepPbMNR:
410 // Tuning of Pythia parameters aimed to get a resonable agreement
411 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
412 // c-cbar single inclusive and double differential distributions.
413 // This parameter settings are meant to work with p-Pb collisions
414 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
415 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
416 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
417 ConfigHeavyFlavor();
418 // Intrinsic <kT>
419 SetMSTP(91,1);
420 SetPARP(91,1.16);
421 SetPARP(93,5.8);
422
423 // Set c-quark mass
424 SetPMAS(4,1,1.2);
425 break;
426 case kPyCharmppMNR:
427 case kPyD0ppMNR:
428 case kPyDPlusppMNR:
429 case kPyDPlusStrangeppMNR:
68504d42 430 case kPyLambdacppMNR:
39d810c8 431 // Tuning of Pythia parameters aimed to get a resonable agreement
432 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
433 // c-cbar single inclusive and double differential distributions.
434 // This parameter settings are meant to work with pp collisions
435 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
436 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
437 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
438 ConfigHeavyFlavor();
439 // Intrinsic <kT^2>
440 SetMSTP(91,1);
441 SetPARP(91,1.);
442 SetPARP(93,5.);
443
444 // Set c-quark mass
445 SetPMAS(4,1,1.2);
446 break;
447 case kPyCharmppMNRwmi:
448 // Tuning of Pythia parameters aimed to get a resonable agreement
449 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
450 // c-cbar single inclusive and double differential distributions.
451 // This parameter settings are meant to work with pp collisions
452 // and with kCTEQ5L PDFs.
453 // Added multiple interactions according to ATLAS tune settings.
454 // To get a "reasonable" agreement with MNR results, events have to be
455 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
456 // set to 2.76 GeV.
457 // To get a "perfect" agreement with MNR results, events have to be
458 // generated in four ptHard bins with the following relative
459 // normalizations:
460 // 2.76-3 GeV: 25%
461 // 3-4 GeV: 40%
462 // 4-8 GeV: 29%
463 // >8 GeV: 6%
464 ConfigHeavyFlavor();
465 // Intrinsic <kT^2>
466 SetMSTP(91,1);
467 SetPARP(91,1.);
468 SetPARP(93,5.);
469
470 // Set c-quark mass
471 SetPMAS(4,1,1.2);
472 AtlasTuning();
473 break;
474 case kPyBeautyPbPbMNR:
475 // Tuning of Pythia parameters aimed to get a resonable agreement
476 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
477 // b-bbar single inclusive and double differential distributions.
478 // This parameter settings are meant to work with Pb-Pb collisions
479 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
480 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
481 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
482 ConfigHeavyFlavor();
483 // QCD scales
484 SetPARP(67,1.0);
485 SetPARP(71,1.0);
486 // Intrinsic <kT>
487 SetMSTP(91,1);
488 SetPARP(91,2.035);
489 SetPARP(93,10.17);
490 // Set b-quark mass
491 SetPMAS(5,1,4.75);
492 break;
493 case kPyBeautypPbMNR:
494 // Tuning of Pythia parameters aimed to get a resonable agreement
495 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
496 // b-bbar single inclusive and double differential distributions.
497 // This parameter settings are meant to work with p-Pb collisions
498 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
499 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
500 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
501 ConfigHeavyFlavor();
502 // QCD scales
503 SetPARP(67,1.0);
504 SetPARP(71,1.0);
505 // Intrinsic <kT>
506 SetMSTP(91,1);
507 SetPARP(91,1.60);
508 SetPARP(93,8.00);
509 // Set b-quark mass
510 SetPMAS(5,1,4.75);
511 break;
512 case kPyBeautyppMNR:
513 // Tuning of Pythia parameters aimed to get a resonable agreement
514 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
515 // b-bbar single inclusive and double differential distributions.
516 // This parameter settings are meant to work with pp collisions
517 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
518 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
519 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
520 ConfigHeavyFlavor();
521 // QCD scales
522 SetPARP(67,1.0);
523 SetPARP(71,1.0);
524
525 // Intrinsic <kT>
526 SetMSTP(91,1);
527 SetPARP(91,1.);
528 SetPARP(93,5.);
529
530 // Set b-quark mass
531 SetPMAS(5,1,4.75);
532 break;
70574ff8 533 case kPyBeautyJets:
39d810c8 534 case kPyBeautyppMNRwmi:
535 // Tuning of Pythia parameters aimed to get a resonable agreement
536 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
537 // b-bbar single inclusive and double differential distributions.
538 // This parameter settings are meant to work with pp collisions
539 // and with kCTEQ5L PDFs.
540 // Added multiple interactions according to ATLAS tune settings.
541 // To get a "reasonable" agreement with MNR results, events have to be
542 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
543 // set to 2.76 GeV.
544 // To get a "perfect" agreement with MNR results, events have to be
545 // generated in four ptHard bins with the following relative
546 // normalizations:
547 // 2.76-4 GeV: 5%
548 // 4-6 GeV: 31%
549 // 6-8 GeV: 28%
550 // >8 GeV: 36%
551 ConfigHeavyFlavor();
552 // QCD scales
553 SetPARP(67,1.0);
554 SetPARP(71,1.0);
555
556 // Intrinsic <kT>
557 SetMSTP(91,1);
558 SetPARP(91,1.);
559 SetPARP(93,5.);
560
561 // Set b-quark mass
562 SetPMAS(5,1,4.75);
563
564 AtlasTuning();
565 break;
566 case kPyW:
567
568 //Inclusive production of W+/-
569 SetMSEL(0);
570 //f fbar -> W+
571 SetMSUB(2,1);
572 // //f fbar -> g W+
573 // SetMSUB(16,1);
574 // //f fbar -> gamma W+
575 // SetMSUB(20,1);
576 // //f g -> f W+
577 // SetMSUB(31,1);
578 // //f gamma -> f W+
579 // SetMSUB(36,1);
580
581 // Initial/final parton shower on (Pythia default)
582 // With parton showers on we are generating "W inclusive process"
583 SetMSTP(61,1); //Initial QCD & QED showers on
584 SetMSTP(71,1); //Final QCD & QED showers on
585
586 break;
587
588 case kPyZ:
589
590 //Inclusive production of Z
591 SetMSEL(0);
592 //f fbar -> Z/gamma
593 SetMSUB(1,1);
594
595 // // f fbar -> g Z/gamma
596 // SetMSUB(15,1);
597 // // f fbar -> gamma Z/gamma
598 // SetMSUB(19,1);
599 // // f g -> f Z/gamma
600 // SetMSUB(30,1);
601 // // f gamma -> f Z/gamma
602 // SetMSUB(35,1);
603
604 //only Z included, not gamma
605 SetMSTP(43,2);
606
607 // Initial/final parton shower on (Pythia default)
608 // With parton showers on we are generating "Z inclusive process"
609 SetMSTP(61,1); //Initial QCD & QED showers on
610 SetMSTP(71,1); //Final QCD & QED showers on
9a8774a1 611 break;
612 case kPyMBRSingleDiffraction:
613 case kPyMBRDoubleDiffraction:
614 case kPyMBRCentralDiffraction:
39d810c8 615 break;
64da86aa 616 case kPyJetsPWHG:
617 // N.B.
618 // ====
619 // For the case of jet production the following parameter setting
620 // limits the transverse momentum of secondary scatterings, due
621 // to multiple parton interactions, to be less than that of the
622 // primary interaction (see POWHEG Dijet paper arXiv:1012.3380
623 // [hep-ph] sec. 4.1 and also the PYTHIA Manual).
624 SetMSTP(86,1);
625 // maximum number of errors before pythia aborts (def=10)
626 SetMSTU(22,10);
627 // number of warnings printed on the shell
628 SetMSTU(26,20);
629 break;
39d810c8 630 }
631//
632// Initialize PYTHIA
633 SetMSTP(41,1); // all resonance decays switched on
64da86aa 634 if (process == kPyJetsPWHG || process == kPyCharmPWHG || process == kPyBeautyPWHG) {
635 Initialize("USER","","",0.);
636 } else {
637 Initialize("CMS",fProjectile,fTarget,fEcms);
638 }
39d810c8 639}
640
641Int_t AliPythia6::CheckedLuComp(Int_t kf)
642{
643// Check Lund particle code (for debugging)
644 Int_t kc=Pycomp(kf);
645 return kc;
646}
647
648void AliPythia6::SetNuclei(Int_t a1, Int_t a2)
649{
650// Treat protons as inside nuclei with mass numbers a1 and a2
651// The MSTP array in the PYPARS common block is used to enable and
652// select the nuclear structure functions.
653// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
654// =1: internal PYTHIA acording to MSTP(51)
655// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
656// If the following mass number both not equal zero, nuclear corrections of the stf are used.
657// MSTP(192) : Mass number of nucleus side 1
658// MSTP(193) : Mass number of nucleus side 2
659 SetMSTP(52,2);
660 SetMSTP(192, a1);
661 SetMSTP(193, a2);
662}
663
664
665AliPythia6* AliPythia6::Instance()
666{
667// Set random number generator
668 if (fgAliPythia) {
669 return fgAliPythia;
670 } else {
671 fgAliPythia = new AliPythia6();
672 return fgAliPythia;
673 }
674}
675
676void AliPythia6::PrintParticles()
677{
678// Print list of particl properties
679 Int_t np = 0;
680 char* name = new char[16];
681 for (Int_t kf=0; kf<1000000; kf++) {
682 for (Int_t c = 1; c > -2; c-=2) {
683 Int_t kc = Pycomp(c*kf);
684 if (kc) {
685 Float_t mass = GetPMAS(kc,1);
686 Float_t width = GetPMAS(kc,2);
687 Float_t tau = GetPMAS(kc,4);
688
689 Pyname(kf,name);
690
691 np++;
692
693 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
694 c*kf, name, mass, width, tau);
695 }
696 }
697 }
698 printf("\n Number of particles %d \n \n", np);
699}
700
701void AliPythia6::ResetDecayTable()
702{
703// Set default values for pythia decay switches
704 Int_t i;
705 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
706 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
707}
708
709void AliPythia6::SetDecayTable()
710{
711// Set default values for pythia decay switches
712//
713 Int_t i;
714 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
715 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
716}
717
8b9bb87a 718void AliPythia6::Pyjoin(Int_t& npart, Int_t *ipart)
719{
720// Call Pythia join alogorithm to set up a string between
721// npart partons, given by indices in array ipart[npart]
722//
723 pyjoin(npart, ipart);
724}
725
f3cbba5f 726void AliPythia6::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
727{
728// Call qPythia showering
729//
730 pyshowq(ip1, ip2, qmax);
731}
732
733void AliPythia6::Qpygin0()
734{
735 //position of the hard scattering in the nuclear overlapping area.
736 //just for qpythia.
737 qpygin0();
738}
739
39d810c8 740void AliPythia6::Pyclus(Int_t& njet)
741{
742// Call Pythia clustering algorithm
743//
744 pyclus(njet);
745}
746
747void AliPythia6::Pycell(Int_t& njet)
748{
749// Call Pythia jet reconstruction algorithm
750//
751 pycell(njet);
752}
753
754void AliPythia6::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
755{
756 // Get jet number i
757 Int_t n = GetN();
758 px = GetPyjets()->P[0][n+i];
759 py = GetPyjets()->P[1][n+i];
760 pz = GetPyjets()->P[2][n+i];
761 e = GetPyjets()->P[3][n+i];
762}
763
764void AliPythia6::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
765{
766// Call Pythia showering
767//
768 pyshow(ip1, ip2, qmax);
769}
770
771void AliPythia6::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
772{
773 pyrobo(imi, ima, the, phi, bex, bey, bez);
774}
775
776
777
778void AliPythia6::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
779{
780// Initializes
781// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
782// (2) The nuclear geometry using the Glauber Model
783//
784
18b7a4a1 785 fGlauber = AliFastGlauber::Instance();
39d810c8 786 fGlauber->Init(2);
787 fGlauber->SetCentralityClass(cMin, cMax);
788
789 fQuenchingWeights = new AliQuenchingWeights();
790 fQuenchingWeights->InitMult();
791 fQuenchingWeights->SetK(k);
792 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
793 fNGmax = ngmax;
794 fZmax = zmax;
795
796}
797
798
799void AliPythia6::Quench()
800{
801//
802//
803// Simple Jet Quenching routine:
804// =============================
805// The jet formed by all final state partons radiated by the parton created
806// in the hard collisions is quenched by a factor (1-z) using light cone variables in
807// the initial parton reference frame:
808// (E + p_z)new = (1-z) (E + p_z)old
809//
810//
811//
812//
813// The lost momentum is first balanced by one gluon with virtuality > 0.
814// Subsequently the gluon splits to yield two gluons with E = p.
815//
816//
817//
818 static Float_t eMean = 0.;
819 static Int_t icall = 0;
820
821 Double_t p0[4][5];
822 Double_t p1[4][5];
823 Double_t p2[4][5];
824 Int_t klast[4] = {-1, -1, -1, -1};
825
826 Int_t numpart = fPyjets->N;
827 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
828 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
829 Bool_t quenched[4];
a23e397a 830 Double_t wjtKick[4] = {0., 0., 0., 0.};
39d810c8 831 Int_t nGluon[4];
832 Int_t qPdg[4];
833 Int_t imo, kst, pdg;
834
835//
836// Sore information about Primary partons
837//
838// j =
839// 0, 1 partons from hard scattering
840// 2, 3 partons from initial state radiation
841//
842 for (Int_t i = 2; i <= 7; i++) {
843 Int_t j = 0;
844 // Skip gluons that participate in hard scattering
845 if (i == 4 || i == 5) continue;
846 // Gluons from hard Scattering
847 if (i == 6 || i == 7) {
848 j = i - 6;
849 pxq[j] = fPyjets->P[0][i];
850 pyq[j] = fPyjets->P[1][i];
851 pzq[j] = fPyjets->P[2][i];
852 eq[j] = fPyjets->P[3][i];
853 mq[j] = fPyjets->P[4][i];
854 } else {
855 // Gluons from initial state radiation
856 //
857 // Obtain 4-momentum vector from difference between original parton and parton after gluon
858 // radiation. Energy is calculated independently because initial state radition does not
859 // conserve strictly momentum and energy for each partonic system independently.
860 //
861 // Not very clean. Should be improved !
862 //
863 //
864 j = i;
865 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
866 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
867 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
868 mq[j] = fPyjets->P[4][i];
869 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
870 }
871//
872// Calculate some kinematic variables
873//
874 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
875 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
876 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
877 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
878 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
879 qPdg[j] = fPyjets->K[1][i];
880 }
881
882 Double_t int0[4];
883 Double_t int1[4];
884
885 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
886
887 for (Int_t j = 0; j < 4; j++) {
888 //
889 // Quench only central jets and with E > 10.
890 //
891
892
893 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
5c843db7 894 // Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
895 Double_t eloss = fQuenchingWeights->GetELossRandomK(itype, int0[j], int1[j], eq[j]);
39d810c8 896
897 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
898 fZQuench[j] = 0.;
899 } else {
900 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
901 icall ++;
902 eMean += eloss;
903 }
904 //
905 // Extra pt
906 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
907 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
908 //
909 // Fractional energy loss
910 fZQuench[j] = eloss / eq[j];
911 //
912 // Avoid complete loss
913 //
1044c4d8 914 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
39d810c8 915 //
916 // Some debug printing
917
918
919// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
920// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
921
922// fZQuench[j] = 0.8;
923// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
924 }
925
926 quenched[j] = (fZQuench[j] > 0.01);
927 } // primary partons
928
929
930
931 Double_t pNew[1000][4];
932 Int_t kNew[1000];
933 Int_t icount = 0;
934 Double_t zquench[4];
935
936//
937// System Loop
938 for (Int_t isys = 0; isys < 4; isys++) {
939// Skip to next system if not quenched.
940 if (!quenched[isys]) continue;
941
942 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
943 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
944 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
945 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
946
947
948
949 Int_t igMin = -1;
950 Int_t igMax = -1;
951 Double_t pg[4] = {0., 0., 0., 0.};
952
953//
954// Loop on radiation events
955
956 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
957 while (1) {
958 icount = 0;
959 for (Int_t k = 0; k < 4; k++)
960 {
961 p0[isys][k] = 0.;
962 p1[isys][k] = 0.;
963 p2[isys][k] = 0.;
964 }
965// Loop over partons
966 for (Int_t i = 0; i < numpart; i++)
967 {
968 imo = fPyjets->K[2][i];
969 kst = fPyjets->K[0][i];
970 pdg = fPyjets->K[1][i];
971
972
973
974// Quarks and gluons only
975 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
976// Particles from hard scattering only
977
978 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
979 Int_t imom = imo % 1000;
980 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
981 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
982
983
984// Skip comment lines
985 if (kst != 1 && kst != 2) continue;
986//
987// Parton kinematic
988 px = fPyjets->P[0][i];
989 py = fPyjets->P[1][i];
990 pz = fPyjets->P[2][i];
991 e = fPyjets->P[3][i];
992 m = fPyjets->P[4][i];
993 pt = TMath::Sqrt(px * px + py * py);
994 p = TMath::Sqrt(px * px + py * py + pz * pz);
995 phi = TMath::Pi() + TMath::ATan2(-py, -px);
996 theta = TMath::ATan2(pt, pz);
997
998//
999// Save 4-momentum sum for balancing
1000 Int_t index = isys;
1001
1002 p0[index][0] += px;
1003 p0[index][1] += py;
1004 p0[index][2] += pz;
1005 p0[index][3] += e;
1006
1007 klast[index] = i;
1008
1009//
1010// Fractional energy loss
1011 Double_t z = zquench[index];
1012
1013
1014// Don't fully quench radiated gluons
1015//
1016 if (imo > 1000) {
1017// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
1018//
1019
1020 z = 0.02;
1021 }
1022// printf("z: %d %f\n", imo, z);
1023
1024
1025//
1026
1027 //
1028 //
1029 // Transform into frame in which initial parton is along z-axis
1030 //
1031 TVector3 v(px, py, pz);
1032 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
1033 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
1034
1035 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
1036 Double_t mt2 = jt * jt + m * m;
1037 Double_t zmax = 1.;
1038 //
1039 // Kinematic limit on z
1040 //
1041 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
1042 //
1043 // Change light-cone kinematics rel. to initial parton
1044 //
1045 Double_t eppzOld = e + pl;
1046 Double_t empzOld = e - pl;
1047
1048 Double_t eppzNew = (1. - z) * eppzOld;
1049 Double_t empzNew = empzOld - mt2 * z / eppzOld;
1050 Double_t eNew = 0.5 * (eppzNew + empzNew);
1051 Double_t plNew = 0.5 * (eppzNew - empzNew);
1052
1053 Double_t jtNew;
1054 //
1055 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
1056 Double_t mt2New = eppzNew * empzNew;
1057 if (mt2New < 1.e-8) mt2New = 0.;
1058 if (z < zmax) {
1059 if (m * m > mt2New) {
1060 //
1061 // This should not happen
1062 //
1063 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1064 jtNew = 0;
1065 } else {
1066 jtNew = TMath::Sqrt(mt2New - m * m);
1067 }
1068 } else {
1069 // If pT is to small (probably a leading massive particle) we scale only the energy
1070 // This can cause negative masses of the radiated gluon
1071 // Let's hope for the best ...
1072 jtNew = jt;
1073 eNew = TMath::Sqrt(plNew * plNew + mt2);
1074
1075 }
1076 //
1077 // Calculate new px, py
1078 //
1044c4d8 1079 Double_t pxNew = 0;
1080 Double_t pyNew = 0;
1081
1082 if (jt > 0.) {
1083 pxNew = jtNew / jt * pxs;
1084 pyNew = jtNew / jt * pys;
1085 }
39d810c8 1086
1087// Double_t dpx = pxs - pxNew;
1088// Double_t dpy = pys - pyNew;
1089// Double_t dpz = pl - plNew;
1090// Double_t de = e - eNew;
1091// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1092// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1093// printf("New mass (2) %e %e \n", pxNew, pyNew);
1094 //
1095 // Rotate back
1096 //
1097 TVector3 w(pxNew, pyNew, plNew);
1098 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1099 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1100
1101 p1[index][0] += pxNew;
1102 p1[index][1] += pyNew;
1103 p1[index][2] += plNew;
1104 p1[index][3] += eNew;
1105 //
1106 // Updated 4-momentum vectors
1107 //
1108 pNew[icount][0] = pxNew;
1109 pNew[icount][1] = pyNew;
1110 pNew[icount][2] = plNew;
1111 pNew[icount][3] = eNew;
1112 kNew[icount] = i;
1113 icount++;
1114 } // parton loop
1115 //
1116 // Check if there was phase-space for quenching
1117 //
1118
1119 if (icount == 0) quenched[isys] = kFALSE;
1120 if (!quenched[isys]) break;
1121
1122 for (Int_t j = 0; j < 4; j++)
1123 {
1124 p2[isys][j] = p0[isys][j] - p1[isys][j];
1125 }
1126 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
1127 if (p2[isys][4] > 0.) {
1128 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1129 break;
1130 } else {
1131 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
1132 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
1133 if (p2[isys][4] < -0.01) {
1134 printf("Negative mass squared !\n");
1135 // Here we have to put the gluon back to mass shell
1136 // This will lead to a small energy imbalance
1137 p2[isys][4] = 0.;
1138 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1139 break;
1140 } else {
1141 p2[isys][4] = 0.;
1142 break;
1143 }
1144 }
1145 /*
1146 zHeavy *= 0.98;
1147 printf("zHeavy lowered to %f\n", zHeavy);
1148 if (zHeavy < 0.01) {
1149 printf("No success ! \n");
1150 icount = 0;
1151 quenched[isys] = kFALSE;
1152 break;
1153 }
1154 */
1155 } // iteration on z (while)
1156
1157// Update event record
1158 for (Int_t k = 0; k < icount; k++) {
1159// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1160 fPyjets->P[0][kNew[k]] = pNew[k][0];
1161 fPyjets->P[1][kNew[k]] = pNew[k][1];
1162 fPyjets->P[2][kNew[k]] = pNew[k][2];
1163 fPyjets->P[3][kNew[k]] = pNew[k][3];
1164 }
1165 //
1166 // Add the gluons
1167 //
1168 Int_t ish = 0;
1169 Int_t iGlu;
1170 if (!quenched[isys]) continue;
1171//
1172// Last parton from shower i
1173 Int_t in = klast[isys];
1174//
1175// Continue if no parton in shower i selected
1176 if (in == -1) continue;
1177//
1178// If this is the second initial parton and it is behind the first move pointer by previous ish
1179 if (isys == 1 && klast[1] > klast[0]) in += ish;
1180//
1181// Starting index
1182
1183// jmin = in - 1;
1184// How many additional gluons will be generated
1185 ish = 1;
1186 if (p2[isys][4] > 0.05) ish = 2;
1187//
1188// Position of gluons
1189 iGlu = numpart;
1190 if (iglu == 0) igMin = iGlu;
1191 igMax = iGlu;
1192 numpart += ish;
1193 (fPyjets->N) += ish;
1194
1195 if (ish == 1) {
1196 fPyjets->P[0][iGlu] = p2[isys][0];
1197 fPyjets->P[1][iGlu] = p2[isys][1];
1198 fPyjets->P[2][iGlu] = p2[isys][2];
1199 fPyjets->P[3][iGlu] = p2[isys][3];
1200 fPyjets->P[4][iGlu] = p2[isys][4];
1201
1202 fPyjets->K[0][iGlu] = 1;
1203 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
1204 fPyjets->K[1][iGlu] = 21;
1205 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1206 fPyjets->K[3][iGlu] = -1;
1207 fPyjets->K[4][iGlu] = -1;
1208
1209 pg[0] += p2[isys][0];
1210 pg[1] += p2[isys][1];
1211 pg[2] += p2[isys][2];
1212 pg[3] += p2[isys][3];
1213 } else {
1214 //
1215 // Split gluon in rest frame.
1216 //
1217 Double_t bx = p2[isys][0] / p2[isys][3];
1218 Double_t by = p2[isys][1] / p2[isys][3];
1219 Double_t bz = p2[isys][2] / p2[isys][3];
1220 Double_t pst = p2[isys][4] / 2.;
1221 //
1222 // Isotropic decay ????
1223 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1224 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1225 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
39d810c8 1226
1227 Double_t pz1 = pst * cost;
1228 Double_t pz2 = -pst * cost;
1229 Double_t pt1 = pst * sint;
1230 Double_t pt2 = -pst * sint;
2ab330c9 1231 Double_t px1 = pt1 * TMath::Cos(phis);
1232 Double_t py1 = pt1 * TMath::Sin(phis);
1233 Double_t px2 = pt2 * TMath::Cos(phis);
1234 Double_t py2 = pt2 * TMath::Sin(phis);
39d810c8 1235
1236 fPyjets->P[0][iGlu] = px1;
1237 fPyjets->P[1][iGlu] = py1;
1238 fPyjets->P[2][iGlu] = pz1;
1239 fPyjets->P[3][iGlu] = pst;
1240 fPyjets->P[4][iGlu] = 0.;
1241
1242 fPyjets->K[0][iGlu] = 1 ;
1243 fPyjets->K[1][iGlu] = 21;
1244 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1245 fPyjets->K[3][iGlu] = -1;
1246 fPyjets->K[4][iGlu] = -1;
1247
1248 fPyjets->P[0][iGlu+1] = px2;
1249 fPyjets->P[1][iGlu+1] = py2;
1250 fPyjets->P[2][iGlu+1] = pz2;
1251 fPyjets->P[3][iGlu+1] = pst;
1252 fPyjets->P[4][iGlu+1] = 0.;
1253
1254 fPyjets->K[0][iGlu+1] = 1;
1255 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
1256 fPyjets->K[1][iGlu+1] = 21;
1257 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
1258 fPyjets->K[3][iGlu+1] = -1;
1259 fPyjets->K[4][iGlu+1] = -1;
1260 SetMSTU(1,0);
1261 SetMSTU(2,0);
1262 //
1263 // Boost back
1264 //
1265 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1266 }
1267/*
1268 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1269 Double_t px, py, pz;
1270 px = fPyjets->P[0][ig];
1271 py = fPyjets->P[1][ig];
1272 pz = fPyjets->P[2][ig];
1273 TVector3 v(px, py, pz);
1274 v.RotateZ(-phiq[isys]);
1275 v.RotateY(-thetaq[isys]);
1276 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1277 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1278 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1279 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1280 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1281 pxs += jtKick * TMath::Cos(phiKick);
1282 pys += jtKick * TMath::Sin(phiKick);
1283 TVector3 w(pxs, pys, pzs);
1284 w.RotateY(thetaq[isys]);
1285 w.RotateZ(phiq[isys]);
1286 fPyjets->P[0][ig] = w.X();
1287 fPyjets->P[1][ig] = w.Y();
1288 fPyjets->P[2][ig] = w.Z();
1289 fPyjets->P[2][ig] = w.Mag();
1290 }
1291*/
1292 } // kGluon
1293
1294
1295 // Check energy conservation
1296 Double_t pxs = 0.;
1297 Double_t pys = 0.;
1298 Double_t pzs = 0.;
1299 Double_t es = 14000.;
1300
1301 for (Int_t i = 0; i < numpart; i++)
1302 {
1303 kst = fPyjets->K[0][i];
1304 if (kst != 1 && kst != 2) continue;
1305 pxs += fPyjets->P[0][i];
1306 pys += fPyjets->P[1][i];
1307 pzs += fPyjets->P[2][i];
1308 es -= fPyjets->P[3][i];
1309 }
1310 if (TMath::Abs(pxs) > 1.e-2 ||
1311 TMath::Abs(pys) > 1.e-2 ||
1312 TMath::Abs(pzs) > 1.e-1) {
1313 printf("%e %e %e %e\n", pxs, pys, pzs, es);
1314// Fatal("Quench()", "4-Momentum non-conservation");
1315 }
1316
1317 } // end quenching loop (systems)
1318// Clean-up
1319 for (Int_t i = 0; i < numpart; i++)
1320 {
1321 imo = fPyjets->K[2][i];
1322 if (imo > 1000) {
1323 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1324 }
1325 }
1326// this->Pylist(1);
1327} // end quench
1328
1329
1330void AliPythia6::Pyquen(Double_t a, Int_t ibf, Double_t b)
1331{
1332 // Igor Lokthine's quenching routine
1333 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1334
1335 pyquen(a, ibf, b);
1336}
1337
1338void AliPythia6::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1339{
1340 // Set the parameters for the PYQUEN package.
1341 // See comments in PyquenCommon.h
1342
1343
1344 PYQPAR.t0 = t0;
1345 PYQPAR.tau0 = tau0;
1346 PYQPAR.nf = nf;
1347 PYQPAR.iengl = iengl;
1348 PYQPAR.iangl = iangl;
1349}
1350
1351void AliPythia6::LoadEvent(AliStack* stack, Int_t flag, Int_t reHadr)
1352{
1353//
1354// Load event into Pythia Common Block
1355//
1356
1357 Int_t npart = stack -> GetNprimary();
1358 Int_t n0 = 0;
1359
1360 if (!flag) {
1361 GetPyjets()->N = npart;
1362 } else {
1363 n0 = GetPyjets()->N;
1364 GetPyjets()->N = n0 + npart;
1365 }
1366
1367
1368 for (Int_t part = 0; part < npart; part++) {
1369 TParticle *mPart = stack->Particle(part);
1370
1371 Int_t kf = mPart->GetPdgCode();
1372 Int_t ks = mPart->GetStatusCode();
1373 Int_t idf = mPart->GetFirstDaughter();
1374 Int_t idl = mPart->GetLastDaughter();
1375
1376 if (reHadr) {
1377 if (ks == 11 || ks == 12) {
1378 ks -= 10;
1379 idf = -1;
1380 idl = -1;
1381 }
1382 }
1383
1384 Float_t px = mPart->Px();
1385 Float_t py = mPart->Py();
1386 Float_t pz = mPart->Pz();
1387 Float_t e = mPart->Energy();
1388 Float_t m = mPart->GetCalcMass();
1389
1390
1391 (GetPyjets())->P[0][part+n0] = px;
1392 (GetPyjets())->P[1][part+n0] = py;
1393 (GetPyjets())->P[2][part+n0] = pz;
1394 (GetPyjets())->P[3][part+n0] = e;
1395 (GetPyjets())->P[4][part+n0] = m;
1396
1397 (GetPyjets())->K[1][part+n0] = kf;
1398 (GetPyjets())->K[0][part+n0] = ks;
1399 (GetPyjets())->K[3][part+n0] = idf + 1;
1400 (GetPyjets())->K[4][part+n0] = idl + 1;
1401 (GetPyjets())->K[2][part+n0] = mPart->GetFirstMother() + 1;
1402 }
1403}
1404
1405
1406void AliPythia6::Pyevnw()
1407{
1408 // New multiple interaction scenario
1409 pyevnw();
1410}
1411
1412void AliPythia6::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1413{
1414 // Return event specific quenching parameters
1415 xp = fXJet;
1416 yp = fYJet;
1417 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1418
1419}
1420
1421void AliPythia6::ConfigHeavyFlavor()
1422{
1423 //
1424 // Default configuration for Heavy Flavor production
1425 //
1426 // All QCD processes
1427 //
1428 SetMSEL(1);
1429
1430 // No multiple interactions
1431 SetMSTP(81,0);
1432 SetPARP(81, 0.);
1433 SetPARP(82, 0.);
1434 // Initial/final parton shower on (Pythia default)
1435 SetMSTP(61,1);
1436 SetMSTP(71,1);
1437
1438 // 2nd order alpha_s
1439 SetMSTP(2,2);
1440
1441 // QCD scales
1442 SetMSTP(32,2);
1443 SetPARP(34,1.0);
1444}
1445
1446void AliPythia6::AtlasTuning()
1447{
1448 //
1449 // Configuration for the ATLAS tuning
1450 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ5L));
1451 SetMSTP(81,1); // Multiple Interactions ON
1452 SetMSTP(82,4); // Double Gaussian Model
1453 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1454 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1455 SetPARP(89,1000.); // [GeV] Ref. energy
1456 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1457 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1458 SetPARP(84,0.5); // Core radius
1459 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1460 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1461 SetPARP(67,1); // Regulates Initial State Radiation
1462}
1463
b4d68b2a 1464void AliPythia6::AtlasTuningMC09()
67b7bb0e 1465{
1466 //
1467 // Configuration for the ATLAS tuning
1468 printf("ATLAS New TUNE MC09\n");
1469 SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model
1470 SetMSTP(82, 4); // Double Gaussian Model
1471 SetMSTP(52, 2); // External PDF
1472 SetMSTP(51, 20650); // MRST LO*
1473
1474
1475 SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR
1476 SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR
1477 SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant
1478 SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT
1479
1480 SetPARP(78, 0.3); // the amount of color reconnection in the final state
1481 SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant
1482 SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy
1483 SetPARP(83, 0.8); // Core density in proton matter distribution (def.value)
1484 SetPARP(84, 0.7); // Core radius
1485 SetPARP(90, 0.25); // 2*epsilon (exponent in power law)
1486 SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers
1487
1488 SetMSTP(95, 6);
1489 SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF
1490 SetPARJ(42, 0.58);
1491 SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks
1492 SetPARP(89,1800.); // [GeV] Ref. energy
1493}
1494
39d810c8 1495void AliPythia6::SetPtHardRange(Float_t ptmin, Float_t ptmax)
1496{
1497 // Set the pt hard range
1498 SetCKIN(3, ptmin);
1499 SetCKIN(4, ptmax);
1500}
1501
1502void AliPythia6::SetYHardRange(Float_t ymin, Float_t ymax)
1503{
1504 // Set the y hard range
1505 SetCKIN(7, ymin);
1506 SetCKIN(8, ymax);
1507}
1508
1509
1510void AliPythia6::SetFragmentation(Int_t flag)
1511{
1512 // Switch fragmentation on/off
1513 SetMSTP(111, flag);
1514}
1515
1516void AliPythia6::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
1517{
1518// initial state radiation
1519 SetMSTP(61, flag1);
1520// final state radiation
1521 SetMSTP(71, flag2);
1522}
1523
1524void AliPythia6::SetIntrinsicKt(Float_t kt)
1525{
1526 // Set the inreinsic kt
1527 if (kt > 0.) {
1528 SetMSTP(91,1);
1529 SetPARP(91,kt);
1530 SetPARP(93, 4. * kt);
1531 } else {
1532 SetMSTP(91,0);
1533 }
1534}
1535
1536void AliPythia6::SwitchHFOff()
1537{
1538 // Switch off heavy flavor
1539 // Maximum number of quark flavours used in pdf
1540 SetMSTP(58, 3);
1541 // Maximum number of flavors that can be used in showers
1542 SetMSTJ(45, 3);
1543}
1544
1545void AliPythia6::SetPycellParameters(Float_t etamax, Int_t neta, Int_t nphi,
1546 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
1547{
1548// Set pycell parameters
1549 SetPARU(51, etamax);
1550 SetMSTU(51, neta);
1551 SetMSTU(52, nphi);
1552 SetPARU(58, thresh);
1553 SetPARU(52, etseed);
1554 SetPARU(53, minet);
1555 SetPARU(54, r);
1556 SetMSTU(54, 2);
1557}
1558
1559void AliPythia6::ModifiedSplitting()
1560{
1561 // Modified splitting probability as a model for quenching
1562 SetPARJ(200, 0.8);
1563 SetMSTJ(41, 1); // QCD radiation only
1564 SetMSTJ(42, 2); // angular ordering
1565 SetMSTJ(44, 2); // option to run alpha_s
1566 SetMSTJ(47, 0); // No correction back to hard scattering element
1567 SetMSTJ(50, 0); // No coherence in first branching
1568 SetPARJ(82, 1.); // Cut off for parton showers
1569}
1570
1571void AliPythia6::SwitchHadronisationOff()
1572{
1573 // Switch off hadronisarion
1574 SetMSTJ(1, 0);
1575}
1576
1577void AliPythia6::SwitchHadronisationOn()
1578{
1579 // Switch on hadronisarion
1580 SetMSTJ(1, 1);
1581}
1582
1583
1584void AliPythia6::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
1585{
1586 // Get x1, x2 and Q for this event
1587
1588 q = GetVINT(51);
1589 x1 = GetVINT(41);
1590 x2 = GetVINT(42);
1591}
1592
1593Float_t AliPythia6::GetXSection()
1594{
1595 // Get the total cross-section
1596 return (GetPARI(1));
1597}
1598
1599Float_t AliPythia6::GetPtHard()
1600{
1601 // Get the pT hard for this event
1602 return GetVINT(47);
1603}
1604
1605Int_t AliPythia6::ProcessCode()
1606{
1607 // Get the subprocess code
1608 return GetMSTI(1);
1609}
1610
1611void AliPythia6::PrintStatistics()
1612{
1613 // End of run statistics
1614 Pystat(1);
1615}
1616
1617void AliPythia6::EventListing()
1618{
1619 // End of run statistics
1620 Pylist(2);
1621}
1622
1623AliPythia6& AliPythia6::operator=(const AliPythia6& rhs)
1624{
1625// Assignment operator
1626 rhs.Copy(*this);
1627 return *this;
1628}
1629
1630 void AliPythia6::Copy(TObject&) const
1631{
1632 //
1633 // Copy
1634 //
1635 Fatal("Copy","Not implemented!\n");
1636}