re-add the ocdb storage to the QAtrain_duo.C - why did it disappear
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia6.cxx
CommitLineData
39d810c8 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id: AliPythia.cxx,v 1.40 2007/10/09 08:43:24 morsch Exp $ */
17
18#include "AliPythia6.h"
19#include "AliStack.h"
20#include "AliPythiaRndm.h"
21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
23
24#include "TVector3.h"
25#include "TParticle.h"
26#include "PyquenCommon.h"
27
28ClassImp(AliPythia6)
29
30#ifndef WIN32
31# define pyclus pyclus_
32# define pycell pycell_
33# define pyshow pyshow_
f3cbba5f 34# define pyshowq pyshowq_
39d810c8 35# define pyrobo pyrobo_
36# define pyquen pyquen_
37# define pyevnw pyevnw_
8b9bb87a 38# define pyjoin pyjoin_
f3cbba5f 39# define qpygin0 qpygin0_
39d810c8 40# define type_of_call
41#else
42# define pyclus PYCLUS
43# define pycell PYCELL
f3cbba5f 44# define pyshow PYSHOW
45# define pyshowq PYSHOWQ
39d810c8 46# define pyrobo PYROBO
47# define pyquen PYQUEN
48# define pyevnw PYEVNW
8b9bb87a 49# define pyjoin PYJOIN
f3cbba5f 50# define qpygin0 QPYGIN0
39d810c8 51# define type_of_call _stdcall
52#endif
53
8b9bb87a 54extern "C" void type_of_call pyjoin(Int_t &, Int_t * );
39d810c8 55extern "C" void type_of_call pyclus(Int_t & );
56extern "C" void type_of_call pycell(Int_t & );
57extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
f3cbba5f 58extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
59extern "C" void type_of_call qpygin0();
39d810c8 60extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
61extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
62extern "C" void type_of_call pyevnw();
63
64
65//_____________________________________________________________________________
66
67AliPythia6* AliPythia6::fgAliPythia=NULL;
68
69AliPythia6::AliPythia6():
70 TPythia6(),
71 AliPythiaBase(),
72 fProcess(kPyMb),
73 fEcms(0.),
74 fStrucFunc(kCTEQ5L),
e28ccdaf 75 fProjectile("p"),
76 fTarget("p"),
39d810c8 77 fXJet(0.),
78 fYJet(0.),
79 fNGmax(30),
80 fZmax(0.97),
81 fGlauber(0),
82 fQuenchingWeights(0)
83{
84// Default Constructor
85//
86// Set random number
a23e397a 87 Int_t i;
88 for (i = 0; i < 501; i++) fDefMDCY[i] = 0;
89 for (i = 0; i < 2001; i++) fDefMDME[i] = 0;
90 for (i = 0; i < 4; i++) fZQuench[i] = 0;
91
39d810c8 92 if (!AliPythiaRndm::GetPythiaRandom())
93 AliPythiaRndm::SetPythiaRandom(GetRandom());
94 fGlauber = 0;
95 fQuenchingWeights = 0;
96}
97
98AliPythia6::AliPythia6(const AliPythia6& pythia):
99 TPythia6(),
100 AliPythiaBase(),
101 fProcess(kPyMb),
102 fEcms(0.),
103 fStrucFunc(kCTEQ5L),
e28ccdaf 104 fProjectile("p"),
105 fTarget("p"),
39d810c8 106 fXJet(0.),
107 fYJet(0.),
108 fNGmax(30),
109 fZmax(0.97),
110 fGlauber(0),
111 fQuenchingWeights(0)
112{
113 // Copy Constructor
a23e397a 114 Int_t i;
115 for (i = 0; i < 501; i++) fDefMDCY[i] = 0;
116 for (i = 0; i < 2001; i++) fDefMDME[i] = 0;
117 for (i = 0; i < 4; i++) fZQuench[i] = 0;
39d810c8 118 pythia.Copy(*this);
119}
120
75d4f39e 121void AliPythia6::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t /*tune*/)
39d810c8 122{
123// Initialise the process to generate
124 if (!AliPythiaRndm::GetPythiaRandom())
125 AliPythiaRndm::SetPythiaRandom(GetRandom());
126
127 fProcess = process;
128 fEcms = energy;
129 fStrucFunc = strucfunc;
130//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
131 SetMDCY(Pycomp(111) ,1,0);
132 SetMDCY(Pycomp(310) ,1,0);
133 SetMDCY(Pycomp(3122),1,0);
134 SetMDCY(Pycomp(3112),1,0);
135 SetMDCY(Pycomp(3212),1,0);
136 SetMDCY(Pycomp(3222),1,0);
137 SetMDCY(Pycomp(3312),1,0);
138 SetMDCY(Pycomp(3322),1,0);
139 SetMDCY(Pycomp(3334),1,0);
140 // Select structure function
141 SetMSTP(52,2);
142 SetMSTP(51,AliStructFuncType::PDFsetIndex(strucfunc));
143 // Particles produced in string fragmentation point directly to either of the two endpoints
144 // of the string (depending in the side they were generated from).
145 SetMSTU(16,2);
146
147//
148// Pythia initialisation for selected processes//
149//
150// Make MSEL clean
151//
152 for (Int_t i=1; i<= 200; i++) {
153 SetMSUB(i,0);
154 }
155// select charm production
156 switch (process)
157 {
158 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.25);
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldUEQ2ordered2:
180// Old underlying events with Q2 ordered QCD processes
181// Multiple interactions on.
182 SetMSTP(81,1);
183// Double Gaussian matter distribution.
184 SetMSTP(82,4);
185 SetPARP(83,0.5);
186 SetPARP(84,0.4);
187// pT0.
188 SetPARP(82,2.0);
189// Reference energy for pT0 and energy rescaling pace.
190 SetPARP(89,1800);
191 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
192// String drawing almost completely minimizes string length.
193 SetPARP(85,0.9);
194 SetPARP(86,0.95);
195// ISR and FSR activity.
196 SetPARP(67,4);
197 SetPARP(71,4);
198// Lambda_FSR scale.
199 SetPARJ(81,0.29);
200 break;
201 case kPyOldPopcorn:
202// Old production mechanism: Old Popcorn
203 SetMSEL(1);
204 SetMSTJ(12,3);
205// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
206 SetMSTP(88,2);
207// (D=1)see can be used to form baryons (BARYON JUNCTION)
208 SetMSTJ(1,1);
209 AtlasTuning();
210 break;
211 case kPyCharm:
212 SetMSEL(4);
213// heavy quark masses
214
215 SetPMAS(4,1,1.2);
216//
217// primordial pT
218 SetMSTP(91,1);
219 SetPARP(91,1.);
220 SetPARP(93,5.);
221//
222 break;
223 case kPyBeauty:
224 SetMSEL(5);
225 SetPMAS(5,1,4.75);
226 break;
227 case kPyJpsi:
228 SetMSEL(0);
229// gg->J/Psi g
230 SetMSUB(86,1);
231 break;
232 case kPyJpsiChi:
233 SetMSEL(0);
234// gg->J/Psi g
235 SetMSUB(86,1);
236// gg-> chi_0c g
237 SetMSUB(87,1);
238// gg-> chi_1c g
239 SetMSUB(88,1);
240// gg-> chi_2c g
241 SetMSUB(89,1);
242 break;
243 case kPyCharmUnforced:
244 SetMSEL(0);
245// gq->qg
246 SetMSUB(28,1);
247// gg->qq
248 SetMSUB(53,1);
249// gg->gg
250 SetMSUB(68,1);
251 break;
252 case kPyBeautyUnforced:
253 SetMSEL(0);
254// gq->qg
255 SetMSUB(28,1);
256// gg->qq
257 SetMSUB(53,1);
258// gg->gg
259 SetMSUB(68,1);
260 break;
261 case kPyMb:
262// Minimum Bias pp-Collisions
263//
264//
265// select Pythia min. bias model
266 SetMSEL(0);
267 SetMSUB(92,1); // single diffraction AB-->XB
268 SetMSUB(93,1); // single diffraction AB-->AX
269 SetMSUB(94,1); // double diffraction
270 SetMSUB(95,1); // low pt production
271
272 AtlasTuning();
273 break;
67b7bb0e 274 case kPyMbAtlasTuneMC09:
275// Minimum Bias pp-Collisions
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
b4d68b2a 285 AtlasTuningMC09();
67b7bb0e 286 break;
04081a91 287
288 case kPyMbWithDirectPhoton:
289// Minimum Bias pp-Collisions with direct photon processes added
290//
291//
292// select Pythia min. bias model
293 SetMSEL(0);
294 SetMSUB(92,1); // single diffraction AB-->XB
295 SetMSUB(93,1); // single diffraction AB-->AX
296 SetMSUB(94,1); // double diffraction
297 SetMSUB(95,1); // low pt production
298
299 SetMSUB(14,1); //
300 SetMSUB(18,1); //
301 SetMSUB(29,1); //
302 SetMSUB(114,1); //
303 SetMSUB(115,1); //
304
305
306 AtlasTuning();
307 break;
308
39d810c8 309 case kPyMbDefault:
310// Minimum Bias pp-Collisions
311//
312//
313// select Pythia min. bias model
314 SetMSEL(0);
315 SetMSUB(92,1); // single diffraction AB-->XB
316 SetMSUB(93,1); // single diffraction AB-->AX
317 SetMSUB(94,1); // double diffraction
318 SetMSUB(95,1); // low pt production
319
320 break;
321 case kPyLhwgMb:
322// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
323// -> Pythia 6.3 or above is needed
324//
325 SetMSEL(0);
326 SetMSUB(92,1); // single diffraction AB-->XB
327 SetMSUB(93,1); // single diffraction AB-->AX
328 SetMSUB(94,1); // double diffraction
329 SetMSUB(95,1); // low pt production
330 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll));
331 SetMSTP(52,2);
332 SetMSTP(68,1);
333 SetMSTP(70,2);
334 SetMSTP(81,1); // Multiple Interactions ON
335 SetMSTP(82,4); // Double Gaussian Model
336 SetMSTP(88,1);
337
338 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
339 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
340 SetPARP(84,0.5); // Core radius
341 SetPARP(85,0.9); // Regulates gluon prod. mechanism
342 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
343
344 break;
345 case kPyMbNonDiffr:
346// Minimum Bias pp-Collisions
347//
348//
349// select Pythia min. bias model
350 SetMSEL(0);
351 SetMSUB(95,1); // low pt production
352
353 AtlasTuning();
354 break;
355 case kPyMbMSEL1:
356 ConfigHeavyFlavor();
357// Intrinsic <kT^2>
358 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
359 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
360 SetPARP(93,5.); // Upper cut-off
361// Set Q-quark mass
362 SetPMAS(4,1,1.2); // Charm quark mass
363 SetPMAS(5,1,4.78); // Beauty quark mass
364 SetPARP(71,4.); // Defaut value
365// Atlas Tuning
366 AtlasTuning();
367 break;
368 case kPyJets:
369//
370// QCD Jets
371//
372 SetMSEL(1);
373 // Pythia Tune A (CDF)
374 //
375 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
376 SetMSTP(82,4); // Double Gaussian Model
377 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
378 SetPARP(84,0.4); // Core radius
379 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
380 SetPARP(86,0.95); // Regulates gluon prod. mechanism
381 SetPARP(89,1800.); // [GeV] Ref. energy
382 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
383 break;
384 case kPyDirectGamma:
385 SetMSEL(10);
386 break;
387 case kPyCharmPbPbMNR:
388 case kPyD0PbPbMNR:
389 case kPyDPlusPbPbMNR:
390 case kPyDPlusStrangePbPbMNR:
391 // Tuning of Pythia parameters aimed to get a resonable agreement
392 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
393 // c-cbar single inclusive and double differential distributions.
394 // This parameter settings are meant to work with Pb-Pb collisions
395 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
396 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
397 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
398 ConfigHeavyFlavor();
399 // Intrinsic <kT>
400 SetMSTP(91,1);
401 SetPARP(91,1.304);
402 SetPARP(93,6.52);
403 // Set c-quark mass
404 SetPMAS(4,1,1.2);
405 break;
406 case kPyCharmpPbMNR:
407 case kPyD0pPbMNR:
408 case kPyDPluspPbMNR:
409 case kPyDPlusStrangepPbMNR:
410 // Tuning of Pythia parameters aimed to get a resonable agreement
411 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
412 // c-cbar single inclusive and double differential distributions.
413 // This parameter settings are meant to work with p-Pb collisions
414 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
415 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
416 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
417 ConfigHeavyFlavor();
418 // Intrinsic <kT>
419 SetMSTP(91,1);
420 SetPARP(91,1.16);
421 SetPARP(93,5.8);
422
423 // Set c-quark mass
424 SetPMAS(4,1,1.2);
425 break;
426 case kPyCharmppMNR:
427 case kPyD0ppMNR:
428 case kPyDPlusppMNR:
429 case kPyDPlusStrangeppMNR:
68504d42 430 case kPyLambdacppMNR:
39d810c8 431 // Tuning of Pythia parameters aimed to get a resonable agreement
432 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
433 // c-cbar single inclusive and double differential distributions.
434 // This parameter settings are meant to work with pp collisions
435 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
436 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
437 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
438 ConfigHeavyFlavor();
439 // Intrinsic <kT^2>
440 SetMSTP(91,1);
441 SetPARP(91,1.);
442 SetPARP(93,5.);
443
444 // Set c-quark mass
445 SetPMAS(4,1,1.2);
446 break;
447 case kPyCharmppMNRwmi:
448 // Tuning of Pythia parameters aimed to get a resonable agreement
449 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
450 // c-cbar single inclusive and double differential distributions.
451 // This parameter settings are meant to work with pp collisions
452 // and with kCTEQ5L PDFs.
453 // Added multiple interactions according to ATLAS tune settings.
454 // To get a "reasonable" agreement with MNR results, events have to be
455 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
456 // set to 2.76 GeV.
457 // To get a "perfect" agreement with MNR results, events have to be
458 // generated in four ptHard bins with the following relative
459 // normalizations:
460 // 2.76-3 GeV: 25%
461 // 3-4 GeV: 40%
462 // 4-8 GeV: 29%
463 // >8 GeV: 6%
464 ConfigHeavyFlavor();
465 // Intrinsic <kT^2>
466 SetMSTP(91,1);
467 SetPARP(91,1.);
468 SetPARP(93,5.);
469
470 // Set c-quark mass
471 SetPMAS(4,1,1.2);
472 AtlasTuning();
473 break;
474 case kPyBeautyPbPbMNR:
475 // Tuning of Pythia parameters aimed to get a resonable agreement
476 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
477 // b-bbar single inclusive and double differential distributions.
478 // This parameter settings are meant to work with Pb-Pb collisions
479 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
480 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
481 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
482 ConfigHeavyFlavor();
483 // QCD scales
484 SetPARP(67,1.0);
485 SetPARP(71,1.0);
486 // Intrinsic <kT>
487 SetMSTP(91,1);
488 SetPARP(91,2.035);
489 SetPARP(93,10.17);
490 // Set b-quark mass
491 SetPMAS(5,1,4.75);
492 break;
493 case kPyBeautypPbMNR:
494 // Tuning of Pythia parameters aimed to get a resonable agreement
495 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
496 // b-bbar single inclusive and double differential distributions.
497 // This parameter settings are meant to work with p-Pb collisions
498 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
499 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
500 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
501 ConfigHeavyFlavor();
502 // QCD scales
503 SetPARP(67,1.0);
504 SetPARP(71,1.0);
505 // Intrinsic <kT>
506 SetMSTP(91,1);
507 SetPARP(91,1.60);
508 SetPARP(93,8.00);
509 // Set b-quark mass
510 SetPMAS(5,1,4.75);
511 break;
512 case kPyBeautyppMNR:
513 // Tuning of Pythia parameters aimed to get a resonable agreement
514 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
515 // b-bbar single inclusive and double differential distributions.
516 // This parameter settings are meant to work with pp collisions
517 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
518 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
519 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
520 ConfigHeavyFlavor();
521 // QCD scales
522 SetPARP(67,1.0);
523 SetPARP(71,1.0);
524
525 // Intrinsic <kT>
526 SetMSTP(91,1);
527 SetPARP(91,1.);
528 SetPARP(93,5.);
529
530 // Set b-quark mass
531 SetPMAS(5,1,4.75);
532 break;
70574ff8 533 case kPyBeautyJets:
39d810c8 534 case kPyBeautyppMNRwmi:
535 // Tuning of Pythia parameters aimed to get a resonable agreement
536 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
537 // b-bbar single inclusive and double differential distributions.
538 // This parameter settings are meant to work with pp collisions
539 // and with kCTEQ5L PDFs.
540 // Added multiple interactions according to ATLAS tune settings.
541 // To get a "reasonable" agreement with MNR results, events have to be
542 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
543 // set to 2.76 GeV.
544 // To get a "perfect" agreement with MNR results, events have to be
545 // generated in four ptHard bins with the following relative
546 // normalizations:
547 // 2.76-4 GeV: 5%
548 // 4-6 GeV: 31%
549 // 6-8 GeV: 28%
550 // >8 GeV: 36%
551 ConfigHeavyFlavor();
552 // QCD scales
553 SetPARP(67,1.0);
554 SetPARP(71,1.0);
555
556 // Intrinsic <kT>
557 SetMSTP(91,1);
558 SetPARP(91,1.);
559 SetPARP(93,5.);
560
561 // Set b-quark mass
562 SetPMAS(5,1,4.75);
563
564 AtlasTuning();
565 break;
566 case kPyW:
567
568 //Inclusive production of W+/-
569 SetMSEL(0);
570 //f fbar -> W+
571 SetMSUB(2,1);
572 // //f fbar -> g W+
573 // SetMSUB(16,1);
574 // //f fbar -> gamma W+
575 // SetMSUB(20,1);
576 // //f g -> f W+
577 // SetMSUB(31,1);
578 // //f gamma -> f W+
579 // SetMSUB(36,1);
580
581 // Initial/final parton shower on (Pythia default)
582 // With parton showers on we are generating "W inclusive process"
583 SetMSTP(61,1); //Initial QCD & QED showers on
584 SetMSTP(71,1); //Final QCD & QED showers on
585
586 break;
587
588 case kPyZ:
589
590 //Inclusive production of Z
591 SetMSEL(0);
592 //f fbar -> Z/gamma
593 SetMSUB(1,1);
594
595 // // f fbar -> g Z/gamma
596 // SetMSUB(15,1);
597 // // f fbar -> gamma Z/gamma
598 // SetMSUB(19,1);
599 // // f g -> f Z/gamma
600 // SetMSUB(30,1);
601 // // f gamma -> f Z/gamma
602 // SetMSUB(35,1);
603
604 //only Z included, not gamma
605 SetMSTP(43,2);
606
607 // Initial/final parton shower on (Pythia default)
608 // With parton showers on we are generating "Z inclusive process"
609 SetMSTP(61,1); //Initial QCD & QED showers on
610 SetMSTP(71,1); //Final QCD & QED showers on
9a8774a1 611 break;
df607629 612 case kPyZgamma:
613 //Inclusive production of Z
614 SetMSEL(0);
615 //f fbar -> Z/gamma
616 SetMSUB(1,1);
617 // Initial/final parton shower on (Pythia default)
618 // With parton showers on we are generating "Z inclusive process"
619 SetMSTP(61,1); //Initial QCD & QED showers on
620 SetMSTP(71,1); //Final QCD & QED showers on
621 break;
9a8774a1 622 case kPyMBRSingleDiffraction:
623 case kPyMBRDoubleDiffraction:
624 case kPyMBRCentralDiffraction:
39d810c8 625 break;
64da86aa 626 case kPyJetsPWHG:
627 // N.B.
628 // ====
629 // For the case of jet production the following parameter setting
630 // limits the transverse momentum of secondary scatterings, due
631 // to multiple parton interactions, to be less than that of the
632 // primary interaction (see POWHEG Dijet paper arXiv:1012.3380
633 // [hep-ph] sec. 4.1 and also the PYTHIA Manual).
634 SetMSTP(86,1);
635 // maximum number of errors before pythia aborts (def=10)
636 SetMSTU(22,10);
637 // number of warnings printed on the shell
638 SetMSTU(26,20);
639 break;
a6d31e74 640 case kPyCharmPWHG:
641 case kPyBeautyPWHG:
df607629 642 case kPyWPWHG:
a6d31e74 643 // number of warnings printed on the shell
644 SetMSTU(26,20);
645
39d810c8 646 }
647//
648// Initialize PYTHIA
649 SetMSTP(41,1); // all resonance decays switched on
e136a92a 650 if (process == kPyJetsPWHG || process == kPyCharmPWHG || process == kPyBeautyPWHG || process == kPyWPWHG) {
64da86aa 651 Initialize("USER","","",0.);
652 } else {
653 Initialize("CMS",fProjectile,fTarget,fEcms);
654 }
39d810c8 655}
656
657Int_t AliPythia6::CheckedLuComp(Int_t kf)
658{
659// Check Lund particle code (for debugging)
660 Int_t kc=Pycomp(kf);
661 return kc;
662}
663
664void AliPythia6::SetNuclei(Int_t a1, Int_t a2)
665{
666// Treat protons as inside nuclei with mass numbers a1 and a2
667// The MSTP array in the PYPARS common block is used to enable and
668// select the nuclear structure functions.
669// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
670// =1: internal PYTHIA acording to MSTP(51)
671// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
672// If the following mass number both not equal zero, nuclear corrections of the stf are used.
673// MSTP(192) : Mass number of nucleus side 1
674// MSTP(193) : Mass number of nucleus side 2
675 SetMSTP(52,2);
676 SetMSTP(192, a1);
677 SetMSTP(193, a2);
678}
679
680
681AliPythia6* AliPythia6::Instance()
682{
683// Set random number generator
684 if (fgAliPythia) {
685 return fgAliPythia;
686 } else {
687 fgAliPythia = new AliPythia6();
688 return fgAliPythia;
689 }
690}
691
692void AliPythia6::PrintParticles()
693{
694// Print list of particl properties
695 Int_t np = 0;
696 char* name = new char[16];
697 for (Int_t kf=0; kf<1000000; kf++) {
698 for (Int_t c = 1; c > -2; c-=2) {
699 Int_t kc = Pycomp(c*kf);
700 if (kc) {
701 Float_t mass = GetPMAS(kc,1);
702 Float_t width = GetPMAS(kc,2);
703 Float_t tau = GetPMAS(kc,4);
704
705 Pyname(kf,name);
706
707 np++;
708
709 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
710 c*kf, name, mass, width, tau);
711 }
712 }
713 }
714 printf("\n Number of particles %d \n \n", np);
715}
716
717void AliPythia6::ResetDecayTable()
718{
719// Set default values for pythia decay switches
720 Int_t i;
721 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
722 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
723}
724
725void AliPythia6::SetDecayTable()
726{
727// Set default values for pythia decay switches
728//
729 Int_t i;
730 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
731 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
732}
733
8b9bb87a 734void AliPythia6::Pyjoin(Int_t& npart, Int_t *ipart)
735{
736// Call Pythia join alogorithm to set up a string between
737// npart partons, given by indices in array ipart[npart]
738//
739 pyjoin(npart, ipart);
740}
741
f3cbba5f 742void AliPythia6::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
743{
744// Call qPythia showering
745//
746 pyshowq(ip1, ip2, qmax);
747}
748
749void AliPythia6::Qpygin0()
750{
751 //position of the hard scattering in the nuclear overlapping area.
752 //just for qpythia.
753 qpygin0();
754}
755
39d810c8 756void AliPythia6::Pyclus(Int_t& njet)
757{
758// Call Pythia clustering algorithm
759//
760 pyclus(njet);
761}
762
763void AliPythia6::Pycell(Int_t& njet)
764{
765// Call Pythia jet reconstruction algorithm
766//
767 pycell(njet);
768}
769
770void AliPythia6::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
771{
772 // Get jet number i
773 Int_t n = GetN();
774 px = GetPyjets()->P[0][n+i];
775 py = GetPyjets()->P[1][n+i];
776 pz = GetPyjets()->P[2][n+i];
777 e = GetPyjets()->P[3][n+i];
778}
779
780void AliPythia6::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
781{
782// Call Pythia showering
783//
784 pyshow(ip1, ip2, qmax);
785}
786
787void AliPythia6::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
788{
789 pyrobo(imi, ima, the, phi, bex, bey, bez);
790}
791
792
793
794void AliPythia6::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
795{
796// Initializes
797// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
798// (2) The nuclear geometry using the Glauber Model
799//
800
18b7a4a1 801 fGlauber = AliFastGlauber::Instance();
39d810c8 802 fGlauber->Init(2);
803 fGlauber->SetCentralityClass(cMin, cMax);
804
805 fQuenchingWeights = new AliQuenchingWeights();
806 fQuenchingWeights->InitMult();
807 fQuenchingWeights->SetK(k);
808 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
809 fNGmax = ngmax;
810 fZmax = zmax;
811
812}
813
814
815void AliPythia6::Quench()
816{
817//
818//
819// Simple Jet Quenching routine:
820// =============================
821// The jet formed by all final state partons radiated by the parton created
822// in the hard collisions is quenched by a factor (1-z) using light cone variables in
823// the initial parton reference frame:
824// (E + p_z)new = (1-z) (E + p_z)old
825//
826//
827//
828//
829// The lost momentum is first balanced by one gluon with virtuality > 0.
830// Subsequently the gluon splits to yield two gluons with E = p.
831//
832//
833//
834 static Float_t eMean = 0.;
835 static Int_t icall = 0;
836
837 Double_t p0[4][5];
838 Double_t p1[4][5];
839 Double_t p2[4][5];
840 Int_t klast[4] = {-1, -1, -1, -1};
841
842 Int_t numpart = fPyjets->N;
843 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
844 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
845 Bool_t quenched[4];
a23e397a 846 Double_t wjtKick[4] = {0., 0., 0., 0.};
39d810c8 847 Int_t nGluon[4];
848 Int_t qPdg[4];
849 Int_t imo, kst, pdg;
850
851//
852// Sore information about Primary partons
853//
854// j =
855// 0, 1 partons from hard scattering
856// 2, 3 partons from initial state radiation
857//
858 for (Int_t i = 2; i <= 7; i++) {
859 Int_t j = 0;
860 // Skip gluons that participate in hard scattering
861 if (i == 4 || i == 5) continue;
862 // Gluons from hard Scattering
863 if (i == 6 || i == 7) {
864 j = i - 6;
865 pxq[j] = fPyjets->P[0][i];
866 pyq[j] = fPyjets->P[1][i];
867 pzq[j] = fPyjets->P[2][i];
868 eq[j] = fPyjets->P[3][i];
869 mq[j] = fPyjets->P[4][i];
870 } else {
871 // Gluons from initial state radiation
872 //
873 // Obtain 4-momentum vector from difference between original parton and parton after gluon
874 // radiation. Energy is calculated independently because initial state radition does not
875 // conserve strictly momentum and energy for each partonic system independently.
876 //
877 // Not very clean. Should be improved !
878 //
879 //
880 j = i;
881 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
882 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
883 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
884 mq[j] = fPyjets->P[4][i];
885 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
886 }
887//
888// Calculate some kinematic variables
889//
890 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
891 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
892 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
893 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
894 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
895 qPdg[j] = fPyjets->K[1][i];
896 }
897
898 Double_t int0[4];
899 Double_t int1[4];
900
901 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
902
903 for (Int_t j = 0; j < 4; j++) {
904 //
905 // Quench only central jets and with E > 10.
906 //
907
908
909 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
5c843db7 910 // Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
911 Double_t eloss = fQuenchingWeights->GetELossRandomK(itype, int0[j], int1[j], eq[j]);
39d810c8 912
913 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
914 fZQuench[j] = 0.;
915 } else {
916 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
917 icall ++;
918 eMean += eloss;
919 }
920 //
921 // Extra pt
922 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
923 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
924 //
925 // Fractional energy loss
926 fZQuench[j] = eloss / eq[j];
927 //
928 // Avoid complete loss
929 //
1044c4d8 930 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
39d810c8 931 //
932 // Some debug printing
933
934
935// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
936// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
937
938// fZQuench[j] = 0.8;
939// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
940 }
941
942 quenched[j] = (fZQuench[j] > 0.01);
943 } // primary partons
944
945
946
947 Double_t pNew[1000][4];
948 Int_t kNew[1000];
949 Int_t icount = 0;
950 Double_t zquench[4];
951
952//
953// System Loop
954 for (Int_t isys = 0; isys < 4; isys++) {
955// Skip to next system if not quenched.
956 if (!quenched[isys]) continue;
957
958 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
959 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
960 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
961 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
962
963
964
965 Int_t igMin = -1;
966 Int_t igMax = -1;
967 Double_t pg[4] = {0., 0., 0., 0.};
968
969//
970// Loop on radiation events
971
972 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
973 while (1) {
974 icount = 0;
975 for (Int_t k = 0; k < 4; k++)
976 {
977 p0[isys][k] = 0.;
978 p1[isys][k] = 0.;
979 p2[isys][k] = 0.;
980 }
981// Loop over partons
982 for (Int_t i = 0; i < numpart; i++)
983 {
984 imo = fPyjets->K[2][i];
985 kst = fPyjets->K[0][i];
986 pdg = fPyjets->K[1][i];
987
988
989
990// Quarks and gluons only
991 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
992// Particles from hard scattering only
993
994 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
995 Int_t imom = imo % 1000;
996 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
997 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
998
999
1000// Skip comment lines
1001 if (kst != 1 && kst != 2) continue;
1002//
1003// Parton kinematic
1004 px = fPyjets->P[0][i];
1005 py = fPyjets->P[1][i];
1006 pz = fPyjets->P[2][i];
1007 e = fPyjets->P[3][i];
1008 m = fPyjets->P[4][i];
1009 pt = TMath::Sqrt(px * px + py * py);
1010 p = TMath::Sqrt(px * px + py * py + pz * pz);
1011 phi = TMath::Pi() + TMath::ATan2(-py, -px);
1012 theta = TMath::ATan2(pt, pz);
1013
1014//
1015// Save 4-momentum sum for balancing
1016 Int_t index = isys;
1017
1018 p0[index][0] += px;
1019 p0[index][1] += py;
1020 p0[index][2] += pz;
1021 p0[index][3] += e;
1022
1023 klast[index] = i;
1024
1025//
1026// Fractional energy loss
1027 Double_t z = zquench[index];
1028
1029
1030// Don't fully quench radiated gluons
1031//
1032 if (imo > 1000) {
1033// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
1034//
1035
1036 z = 0.02;
1037 }
1038// printf("z: %d %f\n", imo, z);
1039
1040
1041//
1042
1043 //
1044 //
1045 // Transform into frame in which initial parton is along z-axis
1046 //
1047 TVector3 v(px, py, pz);
1048 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
1049 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
1050
1051 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
1052 Double_t mt2 = jt * jt + m * m;
1053 Double_t zmax = 1.;
1054 //
1055 // Kinematic limit on z
1056 //
1057 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
1058 //
1059 // Change light-cone kinematics rel. to initial parton
1060 //
1061 Double_t eppzOld = e + pl;
1062 Double_t empzOld = e - pl;
1063
1064 Double_t eppzNew = (1. - z) * eppzOld;
1065 Double_t empzNew = empzOld - mt2 * z / eppzOld;
1066 Double_t eNew = 0.5 * (eppzNew + empzNew);
1067 Double_t plNew = 0.5 * (eppzNew - empzNew);
1068
1069 Double_t jtNew;
1070 //
1071 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
1072 Double_t mt2New = eppzNew * empzNew;
1073 if (mt2New < 1.e-8) mt2New = 0.;
1074 if (z < zmax) {
1075 if (m * m > mt2New) {
1076 //
1077 // This should not happen
1078 //
1079 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1080 jtNew = 0;
1081 } else {
1082 jtNew = TMath::Sqrt(mt2New - m * m);
1083 }
1084 } else {
1085 // If pT is to small (probably a leading massive particle) we scale only the energy
1086 // This can cause negative masses of the radiated gluon
1087 // Let's hope for the best ...
1088 jtNew = jt;
1089 eNew = TMath::Sqrt(plNew * plNew + mt2);
1090
1091 }
1092 //
1093 // Calculate new px, py
1094 //
1044c4d8 1095 Double_t pxNew = 0;
1096 Double_t pyNew = 0;
1097
1098 if (jt > 0.) {
1099 pxNew = jtNew / jt * pxs;
1100 pyNew = jtNew / jt * pys;
1101 }
39d810c8 1102
1103// Double_t dpx = pxs - pxNew;
1104// Double_t dpy = pys - pyNew;
1105// Double_t dpz = pl - plNew;
1106// Double_t de = e - eNew;
1107// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1108// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1109// printf("New mass (2) %e %e \n", pxNew, pyNew);
1110 //
1111 // Rotate back
1112 //
1113 TVector3 w(pxNew, pyNew, plNew);
1114 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1115 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1116
1117 p1[index][0] += pxNew;
1118 p1[index][1] += pyNew;
1119 p1[index][2] += plNew;
1120 p1[index][3] += eNew;
1121 //
1122 // Updated 4-momentum vectors
1123 //
1124 pNew[icount][0] = pxNew;
1125 pNew[icount][1] = pyNew;
1126 pNew[icount][2] = plNew;
1127 pNew[icount][3] = eNew;
1128 kNew[icount] = i;
1129 icount++;
1130 } // parton loop
1131 //
1132 // Check if there was phase-space for quenching
1133 //
1134
1135 if (icount == 0) quenched[isys] = kFALSE;
1136 if (!quenched[isys]) break;
1137
1138 for (Int_t j = 0; j < 4; j++)
1139 {
1140 p2[isys][j] = p0[isys][j] - p1[isys][j];
1141 }
1142 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
1143 if (p2[isys][4] > 0.) {
1144 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1145 break;
1146 } else {
1147 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
1148 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
1149 if (p2[isys][4] < -0.01) {
1150 printf("Negative mass squared !\n");
1151 // Here we have to put the gluon back to mass shell
1152 // This will lead to a small energy imbalance
1153 p2[isys][4] = 0.;
1154 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1155 break;
1156 } else {
1157 p2[isys][4] = 0.;
1158 break;
1159 }
1160 }
1161 /*
1162 zHeavy *= 0.98;
1163 printf("zHeavy lowered to %f\n", zHeavy);
1164 if (zHeavy < 0.01) {
1165 printf("No success ! \n");
1166 icount = 0;
1167 quenched[isys] = kFALSE;
1168 break;
1169 }
1170 */
1171 } // iteration on z (while)
1172
1173// Update event record
1174 for (Int_t k = 0; k < icount; k++) {
1175// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1176 fPyjets->P[0][kNew[k]] = pNew[k][0];
1177 fPyjets->P[1][kNew[k]] = pNew[k][1];
1178 fPyjets->P[2][kNew[k]] = pNew[k][2];
1179 fPyjets->P[3][kNew[k]] = pNew[k][3];
1180 }
1181 //
1182 // Add the gluons
1183 //
1184 Int_t ish = 0;
1185 Int_t iGlu;
1186 if (!quenched[isys]) continue;
1187//
1188// Last parton from shower i
1189 Int_t in = klast[isys];
1190//
1191// Continue if no parton in shower i selected
1192 if (in == -1) continue;
1193//
1194// If this is the second initial parton and it is behind the first move pointer by previous ish
1195 if (isys == 1 && klast[1] > klast[0]) in += ish;
1196//
1197// Starting index
1198
1199// jmin = in - 1;
1200// How many additional gluons will be generated
1201 ish = 1;
1202 if (p2[isys][4] > 0.05) ish = 2;
1203//
1204// Position of gluons
1205 iGlu = numpart;
1206 if (iglu == 0) igMin = iGlu;
1207 igMax = iGlu;
1208 numpart += ish;
1209 (fPyjets->N) += ish;
1210
1211 if (ish == 1) {
1212 fPyjets->P[0][iGlu] = p2[isys][0];
1213 fPyjets->P[1][iGlu] = p2[isys][1];
1214 fPyjets->P[2][iGlu] = p2[isys][2];
1215 fPyjets->P[3][iGlu] = p2[isys][3];
1216 fPyjets->P[4][iGlu] = p2[isys][4];
1217
1218 fPyjets->K[0][iGlu] = 1;
1219 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
1220 fPyjets->K[1][iGlu] = 21;
1221 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1222 fPyjets->K[3][iGlu] = -1;
1223 fPyjets->K[4][iGlu] = -1;
1224
1225 pg[0] += p2[isys][0];
1226 pg[1] += p2[isys][1];
1227 pg[2] += p2[isys][2];
1228 pg[3] += p2[isys][3];
1229 } else {
1230 //
1231 // Split gluon in rest frame.
1232 //
1233 Double_t bx = p2[isys][0] / p2[isys][3];
1234 Double_t by = p2[isys][1] / p2[isys][3];
1235 Double_t bz = p2[isys][2] / p2[isys][3];
1236 Double_t pst = p2[isys][4] / 2.;
1237 //
1238 // Isotropic decay ????
1239 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1240 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1241 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
39d810c8 1242
1243 Double_t pz1 = pst * cost;
1244 Double_t pz2 = -pst * cost;
1245 Double_t pt1 = pst * sint;
1246 Double_t pt2 = -pst * sint;
2ab330c9 1247 Double_t px1 = pt1 * TMath::Cos(phis);
1248 Double_t py1 = pt1 * TMath::Sin(phis);
1249 Double_t px2 = pt2 * TMath::Cos(phis);
1250 Double_t py2 = pt2 * TMath::Sin(phis);
39d810c8 1251
1252 fPyjets->P[0][iGlu] = px1;
1253 fPyjets->P[1][iGlu] = py1;
1254 fPyjets->P[2][iGlu] = pz1;
1255 fPyjets->P[3][iGlu] = pst;
1256 fPyjets->P[4][iGlu] = 0.;
1257
1258 fPyjets->K[0][iGlu] = 1 ;
1259 fPyjets->K[1][iGlu] = 21;
1260 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1261 fPyjets->K[3][iGlu] = -1;
1262 fPyjets->K[4][iGlu] = -1;
1263
1264 fPyjets->P[0][iGlu+1] = px2;
1265 fPyjets->P[1][iGlu+1] = py2;
1266 fPyjets->P[2][iGlu+1] = pz2;
1267 fPyjets->P[3][iGlu+1] = pst;
1268 fPyjets->P[4][iGlu+1] = 0.;
1269
1270 fPyjets->K[0][iGlu+1] = 1;
1271 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
1272 fPyjets->K[1][iGlu+1] = 21;
1273 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
1274 fPyjets->K[3][iGlu+1] = -1;
1275 fPyjets->K[4][iGlu+1] = -1;
1276 SetMSTU(1,0);
1277 SetMSTU(2,0);
1278 //
1279 // Boost back
1280 //
1281 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1282 }
1283/*
1284 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1285 Double_t px, py, pz;
1286 px = fPyjets->P[0][ig];
1287 py = fPyjets->P[1][ig];
1288 pz = fPyjets->P[2][ig];
1289 TVector3 v(px, py, pz);
1290 v.RotateZ(-phiq[isys]);
1291 v.RotateY(-thetaq[isys]);
1292 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1293 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1294 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1295 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1296 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1297 pxs += jtKick * TMath::Cos(phiKick);
1298 pys += jtKick * TMath::Sin(phiKick);
1299 TVector3 w(pxs, pys, pzs);
1300 w.RotateY(thetaq[isys]);
1301 w.RotateZ(phiq[isys]);
1302 fPyjets->P[0][ig] = w.X();
1303 fPyjets->P[1][ig] = w.Y();
1304 fPyjets->P[2][ig] = w.Z();
1305 fPyjets->P[2][ig] = w.Mag();
1306 }
1307*/
1308 } // kGluon
1309
1310
1311 // Check energy conservation
1312 Double_t pxs = 0.;
1313 Double_t pys = 0.;
1314 Double_t pzs = 0.;
1315 Double_t es = 14000.;
1316
1317 for (Int_t i = 0; i < numpart; i++)
1318 {
1319 kst = fPyjets->K[0][i];
1320 if (kst != 1 && kst != 2) continue;
1321 pxs += fPyjets->P[0][i];
1322 pys += fPyjets->P[1][i];
1323 pzs += fPyjets->P[2][i];
1324 es -= fPyjets->P[3][i];
1325 }
1326 if (TMath::Abs(pxs) > 1.e-2 ||
1327 TMath::Abs(pys) > 1.e-2 ||
1328 TMath::Abs(pzs) > 1.e-1) {
1329 printf("%e %e %e %e\n", pxs, pys, pzs, es);
1330// Fatal("Quench()", "4-Momentum non-conservation");
1331 }
1332
1333 } // end quenching loop (systems)
1334// Clean-up
1335 for (Int_t i = 0; i < numpart; i++)
1336 {
1337 imo = fPyjets->K[2][i];
1338 if (imo > 1000) {
1339 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1340 }
1341 }
1342// this->Pylist(1);
1343} // end quench
1344
1345
1346void AliPythia6::Pyquen(Double_t a, Int_t ibf, Double_t b)
1347{
1348 // Igor Lokthine's quenching routine
1349 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1350
1351 pyquen(a, ibf, b);
1352}
1353
1354void AliPythia6::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1355{
1356 // Set the parameters for the PYQUEN package.
1357 // See comments in PyquenCommon.h
1358
1359
1360 PYQPAR.t0 = t0;
1361 PYQPAR.tau0 = tau0;
1362 PYQPAR.nf = nf;
1363 PYQPAR.iengl = iengl;
1364 PYQPAR.iangl = iangl;
1365}
1366
1367void AliPythia6::LoadEvent(AliStack* stack, Int_t flag, Int_t reHadr)
1368{
1369//
1370// Load event into Pythia Common Block
1371//
1372
1373 Int_t npart = stack -> GetNprimary();
1374 Int_t n0 = 0;
1375
1376 if (!flag) {
1377 GetPyjets()->N = npart;
1378 } else {
1379 n0 = GetPyjets()->N;
1380 GetPyjets()->N = n0 + npart;
1381 }
1382
1383
1384 for (Int_t part = 0; part < npart; part++) {
1385 TParticle *mPart = stack->Particle(part);
1386
1387 Int_t kf = mPart->GetPdgCode();
1388 Int_t ks = mPart->GetStatusCode();
1389 Int_t idf = mPart->GetFirstDaughter();
1390 Int_t idl = mPart->GetLastDaughter();
1391
1392 if (reHadr) {
1393 if (ks == 11 || ks == 12) {
1394 ks -= 10;
1395 idf = -1;
1396 idl = -1;
1397 }
1398 }
1399
1400 Float_t px = mPart->Px();
1401 Float_t py = mPart->Py();
1402 Float_t pz = mPart->Pz();
1403 Float_t e = mPart->Energy();
1404 Float_t m = mPart->GetCalcMass();
1405
1406
1407 (GetPyjets())->P[0][part+n0] = px;
1408 (GetPyjets())->P[1][part+n0] = py;
1409 (GetPyjets())->P[2][part+n0] = pz;
1410 (GetPyjets())->P[3][part+n0] = e;
1411 (GetPyjets())->P[4][part+n0] = m;
1412
1413 (GetPyjets())->K[1][part+n0] = kf;
1414 (GetPyjets())->K[0][part+n0] = ks;
1415 (GetPyjets())->K[3][part+n0] = idf + 1;
1416 (GetPyjets())->K[4][part+n0] = idl + 1;
1417 (GetPyjets())->K[2][part+n0] = mPart->GetFirstMother() + 1;
1418 }
1419}
1420
1421
1422void AliPythia6::Pyevnw()
1423{
1424 // New multiple interaction scenario
1425 pyevnw();
1426}
1427
1428void AliPythia6::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1429{
1430 // Return event specific quenching parameters
1431 xp = fXJet;
1432 yp = fYJet;
1433 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1434
1435}
1436
1437void AliPythia6::ConfigHeavyFlavor()
1438{
1439 //
1440 // Default configuration for Heavy Flavor production
1441 //
1442 // All QCD processes
1443 //
1444 SetMSEL(1);
1445
1446 // No multiple interactions
1447 SetMSTP(81,0);
1448 SetPARP(81, 0.);
1449 SetPARP(82, 0.);
1450 // Initial/final parton shower on (Pythia default)
1451 SetMSTP(61,1);
1452 SetMSTP(71,1);
1453
1454 // 2nd order alpha_s
1455 SetMSTP(2,2);
1456
1457 // QCD scales
1458 SetMSTP(32,2);
1459 SetPARP(34,1.0);
1460}
1461
1462void AliPythia6::AtlasTuning()
1463{
1464 //
1465 // Configuration for the ATLAS tuning
1466 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ5L));
1467 SetMSTP(81,1); // Multiple Interactions ON
1468 SetMSTP(82,4); // Double Gaussian Model
1469 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1470 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1471 SetPARP(89,1000.); // [GeV] Ref. energy
1472 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1473 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1474 SetPARP(84,0.5); // Core radius
1475 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1476 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1477 SetPARP(67,1); // Regulates Initial State Radiation
1478}
1479
b4d68b2a 1480void AliPythia6::AtlasTuningMC09()
67b7bb0e 1481{
1482 //
1483 // Configuration for the ATLAS tuning
1484 printf("ATLAS New TUNE MC09\n");
1485 SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model
1486 SetMSTP(82, 4); // Double Gaussian Model
1487 SetMSTP(52, 2); // External PDF
1488 SetMSTP(51, 20650); // MRST LO*
1489
1490
1491 SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR
1492 SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR
1493 SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant
1494 SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT
1495
1496 SetPARP(78, 0.3); // the amount of color reconnection in the final state
1497 SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant
1498 SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy
1499 SetPARP(83, 0.8); // Core density in proton matter distribution (def.value)
1500 SetPARP(84, 0.7); // Core radius
1501 SetPARP(90, 0.25); // 2*epsilon (exponent in power law)
1502 SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers
1503
1504 SetMSTP(95, 6);
1505 SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF
1506 SetPARJ(42, 0.58);
1507 SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks
1508 SetPARP(89,1800.); // [GeV] Ref. energy
1509}
1510
39d810c8 1511void AliPythia6::SetPtHardRange(Float_t ptmin, Float_t ptmax)
1512{
1513 // Set the pt hard range
1514 SetCKIN(3, ptmin);
1515 SetCKIN(4, ptmax);
1516}
1517
1518void AliPythia6::SetYHardRange(Float_t ymin, Float_t ymax)
1519{
1520 // Set the y hard range
1521 SetCKIN(7, ymin);
1522 SetCKIN(8, ymax);
1523}
1524
1525
1526void AliPythia6::SetFragmentation(Int_t flag)
1527{
1528 // Switch fragmentation on/off
1529 SetMSTP(111, flag);
1530}
1531
1532void AliPythia6::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
1533{
1534// initial state radiation
1535 SetMSTP(61, flag1);
1536// final state radiation
1537 SetMSTP(71, flag2);
1538}
1539
1540void AliPythia6::SetIntrinsicKt(Float_t kt)
1541{
1542 // Set the inreinsic kt
1543 if (kt > 0.) {
1544 SetMSTP(91,1);
1545 SetPARP(91,kt);
1546 SetPARP(93, 4. * kt);
1547 } else {
1548 SetMSTP(91,0);
1549 }
1550}
1551
1552void AliPythia6::SwitchHFOff()
1553{
1554 // Switch off heavy flavor
1555 // Maximum number of quark flavours used in pdf
1556 SetMSTP(58, 3);
1557 // Maximum number of flavors that can be used in showers
1558 SetMSTJ(45, 3);
1559}
1560
1561void AliPythia6::SetPycellParameters(Float_t etamax, Int_t neta, Int_t nphi,
1562 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
1563{
1564// Set pycell parameters
1565 SetPARU(51, etamax);
1566 SetMSTU(51, neta);
1567 SetMSTU(52, nphi);
1568 SetPARU(58, thresh);
1569 SetPARU(52, etseed);
1570 SetPARU(53, minet);
1571 SetPARU(54, r);
1572 SetMSTU(54, 2);
1573}
1574
1575void AliPythia6::ModifiedSplitting()
1576{
1577 // Modified splitting probability as a model for quenching
1578 SetPARJ(200, 0.8);
1579 SetMSTJ(41, 1); // QCD radiation only
1580 SetMSTJ(42, 2); // angular ordering
1581 SetMSTJ(44, 2); // option to run alpha_s
1582 SetMSTJ(47, 0); // No correction back to hard scattering element
1583 SetMSTJ(50, 0); // No coherence in first branching
1584 SetPARJ(82, 1.); // Cut off for parton showers
1585}
1586
1587void AliPythia6::SwitchHadronisationOff()
1588{
1589 // Switch off hadronisarion
1590 SetMSTJ(1, 0);
1591}
1592
1593void AliPythia6::SwitchHadronisationOn()
1594{
1595 // Switch on hadronisarion
1596 SetMSTJ(1, 1);
1597}
1598
1599
1600void AliPythia6::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
1601{
1602 // Get x1, x2 and Q for this event
1603
1604 q = GetVINT(51);
1605 x1 = GetVINT(41);
1606 x2 = GetVINT(42);
1607}
1608
1609Float_t AliPythia6::GetXSection()
1610{
1611 // Get the total cross-section
1612 return (GetPARI(1));
1613}
1614
1615Float_t AliPythia6::GetPtHard()
1616{
1617 // Get the pT hard for this event
1618 return GetVINT(47);
1619}
1620
1621Int_t AliPythia6::ProcessCode()
1622{
1623 // Get the subprocess code
1624 return GetMSTI(1);
1625}
1626
1627void AliPythia6::PrintStatistics()
1628{
1629 // End of run statistics
1630 Pystat(1);
1631}
1632
1633void AliPythia6::EventListing()
1634{
1635 // End of run statistics
1636 Pylist(2);
1637}
1638
1639AliPythia6& AliPythia6::operator=(const AliPythia6& rhs)
1640{
1641// Assignment operator
1642 rhs.Copy(*this);
1643 return *this;
1644}
1645
1646 void AliPythia6::Copy(TObject&) const
1647{
1648 //
1649 // Copy
1650 //
1651 Fatal("Copy","Not implemented!\n");
1652}