]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA6/AliPythia6.cxx
DQM configure file
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia6.cxx
CommitLineData
39d810c8 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id: AliPythia.cxx,v 1.40 2007/10/09 08:43:24 morsch Exp $ */
17
18#include "AliPythia6.h"
19#include "AliStack.h"
20#include "AliPythiaRndm.h"
21#include "AliFastGlauber.h"
22#include "AliQuenchingWeights.h"
23
24#include "TVector3.h"
25#include "TParticle.h"
26#include "PyquenCommon.h"
27
28ClassImp(AliPythia6)
29
30#ifndef WIN32
31# define pyclus pyclus_
32# define pycell pycell_
33# define pyshow pyshow_
f3cbba5f 34# define pyshowq pyshowq_
39d810c8 35# define pyrobo pyrobo_
36# define pyquen pyquen_
37# define pyevnw pyevnw_
8b9bb87a 38# define pyjoin pyjoin_
f3cbba5f 39# define qpygin0 qpygin0_
39d810c8 40# define type_of_call
41#else
42# define pyclus PYCLUS
43# define pycell PYCELL
f3cbba5f 44# define pyshow PYSHOW
45# define pyshowq PYSHOWQ
39d810c8 46# define pyrobo PYROBO
47# define pyquen PYQUEN
48# define pyevnw PYEVNW
8b9bb87a 49# define pyjoin PYJOIN
f3cbba5f 50# define qpygin0 QPYGIN0
39d810c8 51# define type_of_call _stdcall
52#endif
53
8b9bb87a 54extern "C" void type_of_call pyjoin(Int_t &, Int_t * );
39d810c8 55extern "C" void type_of_call pyclus(Int_t & );
56extern "C" void type_of_call pycell(Int_t & );
57extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
f3cbba5f 58extern "C" void type_of_call pyshowq(Int_t &, Int_t &, Double_t &);
59extern "C" void type_of_call qpygin0();
39d810c8 60extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
61extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
62extern "C" void type_of_call pyevnw();
63
64
65//_____________________________________________________________________________
66
67AliPythia6* AliPythia6::fgAliPythia=NULL;
68
69AliPythia6::AliPythia6():
70 TPythia6(),
71 AliPythiaBase(),
72 fProcess(kPyMb),
73 fEcms(0.),
74 fStrucFunc(kCTEQ5L),
75 fXJet(0.),
76 fYJet(0.),
77 fNGmax(30),
78 fZmax(0.97),
79 fGlauber(0),
80 fQuenchingWeights(0)
81{
82// Default Constructor
83//
84// Set random number
a23e397a 85 Int_t i;
86 for (i = 0; i < 501; i++) fDefMDCY[i] = 0;
87 for (i = 0; i < 2001; i++) fDefMDME[i] = 0;
88 for (i = 0; i < 4; i++) fZQuench[i] = 0;
89
39d810c8 90 if (!AliPythiaRndm::GetPythiaRandom())
91 AliPythiaRndm::SetPythiaRandom(GetRandom());
92 fGlauber = 0;
93 fQuenchingWeights = 0;
94}
95
96AliPythia6::AliPythia6(const AliPythia6& pythia):
97 TPythia6(),
98 AliPythiaBase(),
99 fProcess(kPyMb),
100 fEcms(0.),
101 fStrucFunc(kCTEQ5L),
102 fXJet(0.),
103 fYJet(0.),
104 fNGmax(30),
105 fZmax(0.97),
106 fGlauber(0),
107 fQuenchingWeights(0)
108{
109 // Copy Constructor
a23e397a 110 Int_t i;
111 for (i = 0; i < 501; i++) fDefMDCY[i] = 0;
112 for (i = 0; i < 2001; i++) fDefMDME[i] = 0;
113 for (i = 0; i < 4; i++) fZQuench[i] = 0;
39d810c8 114 pythia.Copy(*this);
115}
116
75d4f39e 117void AliPythia6::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc, Int_t /*tune*/)
39d810c8 118{
119// Initialise the process to generate
120 if (!AliPythiaRndm::GetPythiaRandom())
121 AliPythiaRndm::SetPythiaRandom(GetRandom());
122
123 fProcess = process;
124 fEcms = energy;
125 fStrucFunc = strucfunc;
126//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
127 SetMDCY(Pycomp(111) ,1,0);
128 SetMDCY(Pycomp(310) ,1,0);
129 SetMDCY(Pycomp(3122),1,0);
130 SetMDCY(Pycomp(3112),1,0);
131 SetMDCY(Pycomp(3212),1,0);
132 SetMDCY(Pycomp(3222),1,0);
133 SetMDCY(Pycomp(3312),1,0);
134 SetMDCY(Pycomp(3322),1,0);
135 SetMDCY(Pycomp(3334),1,0);
136 // Select structure function
137 SetMSTP(52,2);
138 SetMSTP(51,AliStructFuncType::PDFsetIndex(strucfunc));
139 // Particles produced in string fragmentation point directly to either of the two endpoints
140 // of the string (depending in the side they were generated from).
141 SetMSTU(16,2);
142
143//
144// Pythia initialisation for selected processes//
145//
146// Make MSEL clean
147//
148 for (Int_t i=1; i<= 200; i++) {
149 SetMSUB(i,0);
150 }
151// select charm production
152 switch (process)
153 {
154 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
155// Multiple interactions on.
156 SetMSTP(81,1);
157// Double Gaussian matter distribution.
158 SetMSTP(82,4);
159 SetPARP(83,0.5);
160 SetPARP(84,0.4);
161// pT0.
162 SetPARP(82,2.0);
163// Reference energy for pT0 and energy rescaling pace.
164 SetPARP(89,1800);
165 SetPARP(90,0.25);
166// String drawing almost completely minimizes string length.
167 SetPARP(85,0.9);
168 SetPARP(86,0.95);
169// ISR and FSR activity.
170 SetPARP(67,4);
171 SetPARP(71,4);
172// Lambda_FSR scale.
173 SetPARJ(81,0.29);
174 break;
175 case kPyOldUEQ2ordered2:
176// Old underlying events with Q2 ordered QCD processes
177// Multiple interactions on.
178 SetMSTP(81,1);
179// Double Gaussian matter distribution.
180 SetMSTP(82,4);
181 SetPARP(83,0.5);
182 SetPARP(84,0.4);
183// pT0.
184 SetPARP(82,2.0);
185// Reference energy for pT0 and energy rescaling pace.
186 SetPARP(89,1800);
187 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
188// String drawing almost completely minimizes string length.
189 SetPARP(85,0.9);
190 SetPARP(86,0.95);
191// ISR and FSR activity.
192 SetPARP(67,4);
193 SetPARP(71,4);
194// Lambda_FSR scale.
195 SetPARJ(81,0.29);
196 break;
197 case kPyOldPopcorn:
198// Old production mechanism: Old Popcorn
199 SetMSEL(1);
200 SetMSTJ(12,3);
201// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
202 SetMSTP(88,2);
203// (D=1)see can be used to form baryons (BARYON JUNCTION)
204 SetMSTJ(1,1);
205 AtlasTuning();
206 break;
207 case kPyCharm:
208 SetMSEL(4);
209// heavy quark masses
210
211 SetPMAS(4,1,1.2);
212//
213// primordial pT
214 SetMSTP(91,1);
215 SetPARP(91,1.);
216 SetPARP(93,5.);
217//
218 break;
219 case kPyBeauty:
220 SetMSEL(5);
221 SetPMAS(5,1,4.75);
222 break;
223 case kPyJpsi:
224 SetMSEL(0);
225// gg->J/Psi g
226 SetMSUB(86,1);
227 break;
228 case kPyJpsiChi:
229 SetMSEL(0);
230// gg->J/Psi g
231 SetMSUB(86,1);
232// gg-> chi_0c g
233 SetMSUB(87,1);
234// gg-> chi_1c g
235 SetMSUB(88,1);
236// gg-> chi_2c g
237 SetMSUB(89,1);
238 break;
239 case kPyCharmUnforced:
240 SetMSEL(0);
241// gq->qg
242 SetMSUB(28,1);
243// gg->qq
244 SetMSUB(53,1);
245// gg->gg
246 SetMSUB(68,1);
247 break;
248 case kPyBeautyUnforced:
249 SetMSEL(0);
250// gq->qg
251 SetMSUB(28,1);
252// gg->qq
253 SetMSUB(53,1);
254// gg->gg
255 SetMSUB(68,1);
256 break;
257 case kPyMb:
258// Minimum Bias pp-Collisions
259//
260//
261// select Pythia min. bias model
262 SetMSEL(0);
263 SetMSUB(92,1); // single diffraction AB-->XB
264 SetMSUB(93,1); // single diffraction AB-->AX
265 SetMSUB(94,1); // double diffraction
266 SetMSUB(95,1); // low pt production
267
268 AtlasTuning();
269 break;
67b7bb0e 270 case kPyMbAtlasTuneMC09:
271// Minimum Bias pp-Collisions
272//
273//
274// select Pythia min. bias model
275 SetMSEL(0);
276 SetMSUB(92,1); // single diffraction AB-->XB
277 SetMSUB(93,1); // single diffraction AB-->AX
278 SetMSUB(94,1); // double diffraction
279 SetMSUB(95,1); // low pt production
280
b4d68b2a 281 AtlasTuningMC09();
67b7bb0e 282 break;
04081a91 283
284 case kPyMbWithDirectPhoton:
285// Minimum Bias pp-Collisions with direct photon processes added
286//
287//
288// select Pythia min. bias model
289 SetMSEL(0);
290 SetMSUB(92,1); // single diffraction AB-->XB
291 SetMSUB(93,1); // single diffraction AB-->AX
292 SetMSUB(94,1); // double diffraction
293 SetMSUB(95,1); // low pt production
294
295 SetMSUB(14,1); //
296 SetMSUB(18,1); //
297 SetMSUB(29,1); //
298 SetMSUB(114,1); //
299 SetMSUB(115,1); //
300
301
302 AtlasTuning();
303 break;
304
39d810c8 305 case kPyMbDefault:
306// Minimum Bias pp-Collisions
307//
308//
309// select Pythia min. bias model
310 SetMSEL(0);
311 SetMSUB(92,1); // single diffraction AB-->XB
312 SetMSUB(93,1); // single diffraction AB-->AX
313 SetMSUB(94,1); // double diffraction
314 SetMSUB(95,1); // low pt production
315
316 break;
317 case kPyLhwgMb:
318// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
319// -> Pythia 6.3 or above is needed
320//
321 SetMSEL(0);
322 SetMSUB(92,1); // single diffraction AB-->XB
323 SetMSUB(93,1); // single diffraction AB-->AX
324 SetMSUB(94,1); // double diffraction
325 SetMSUB(95,1); // low pt production
326 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll));
327 SetMSTP(52,2);
328 SetMSTP(68,1);
329 SetMSTP(70,2);
330 SetMSTP(81,1); // Multiple Interactions ON
331 SetMSTP(82,4); // Double Gaussian Model
332 SetMSTP(88,1);
333
334 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
335 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
336 SetPARP(84,0.5); // Core radius
337 SetPARP(85,0.9); // Regulates gluon prod. mechanism
338 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
339
340 break;
341 case kPyMbNonDiffr:
342// Minimum Bias pp-Collisions
343//
344//
345// select Pythia min. bias model
346 SetMSEL(0);
347 SetMSUB(95,1); // low pt production
348
349 AtlasTuning();
350 break;
351 case kPyMbMSEL1:
352 ConfigHeavyFlavor();
353// Intrinsic <kT^2>
354 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
355 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
356 SetPARP(93,5.); // Upper cut-off
357// Set Q-quark mass
358 SetPMAS(4,1,1.2); // Charm quark mass
359 SetPMAS(5,1,4.78); // Beauty quark mass
360 SetPARP(71,4.); // Defaut value
361// Atlas Tuning
362 AtlasTuning();
363 break;
364 case kPyJets:
365//
366// QCD Jets
367//
368 SetMSEL(1);
369 // Pythia Tune A (CDF)
370 //
371 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
372 SetMSTP(82,4); // Double Gaussian Model
373 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
374 SetPARP(84,0.4); // Core radius
375 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
376 SetPARP(86,0.95); // Regulates gluon prod. mechanism
377 SetPARP(89,1800.); // [GeV] Ref. energy
378 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
379 break;
380 case kPyDirectGamma:
381 SetMSEL(10);
382 break;
383 case kPyCharmPbPbMNR:
384 case kPyD0PbPbMNR:
385 case kPyDPlusPbPbMNR:
386 case kPyDPlusStrangePbPbMNR:
387 // Tuning of Pythia parameters aimed to get a resonable agreement
388 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
389 // c-cbar single inclusive and double differential distributions.
390 // This parameter settings are meant to work with Pb-Pb collisions
391 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
392 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
393 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
394 ConfigHeavyFlavor();
395 // Intrinsic <kT>
396 SetMSTP(91,1);
397 SetPARP(91,1.304);
398 SetPARP(93,6.52);
399 // Set c-quark mass
400 SetPMAS(4,1,1.2);
401 break;
402 case kPyCharmpPbMNR:
403 case kPyD0pPbMNR:
404 case kPyDPluspPbMNR:
405 case kPyDPlusStrangepPbMNR:
406 // Tuning of Pythia parameters aimed to get a resonable agreement
407 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
408 // c-cbar single inclusive and double differential distributions.
409 // This parameter settings are meant to work with p-Pb collisions
410 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
411 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
412 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
413 ConfigHeavyFlavor();
414 // Intrinsic <kT>
415 SetMSTP(91,1);
416 SetPARP(91,1.16);
417 SetPARP(93,5.8);
418
419 // Set c-quark mass
420 SetPMAS(4,1,1.2);
421 break;
422 case kPyCharmppMNR:
423 case kPyD0ppMNR:
424 case kPyDPlusppMNR:
425 case kPyDPlusStrangeppMNR:
68504d42 426 case kPyLambdacppMNR:
39d810c8 427 // Tuning of Pythia parameters aimed to get a resonable agreement
428 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
429 // c-cbar single inclusive and double differential distributions.
430 // This parameter settings are meant to work with pp collisions
431 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
432 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
433 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
434 ConfigHeavyFlavor();
435 // Intrinsic <kT^2>
436 SetMSTP(91,1);
437 SetPARP(91,1.);
438 SetPARP(93,5.);
439
440 // Set c-quark mass
441 SetPMAS(4,1,1.2);
442 break;
443 case kPyCharmppMNRwmi:
444 // Tuning of Pythia parameters aimed to get a resonable agreement
445 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
446 // c-cbar single inclusive and double differential distributions.
447 // This parameter settings are meant to work with pp collisions
448 // and with kCTEQ5L PDFs.
449 // Added multiple interactions according to ATLAS tune settings.
450 // To get a "reasonable" agreement with MNR results, events have to be
451 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
452 // set to 2.76 GeV.
453 // To get a "perfect" agreement with MNR results, events have to be
454 // generated in four ptHard bins with the following relative
455 // normalizations:
456 // 2.76-3 GeV: 25%
457 // 3-4 GeV: 40%
458 // 4-8 GeV: 29%
459 // >8 GeV: 6%
460 ConfigHeavyFlavor();
461 // Intrinsic <kT^2>
462 SetMSTP(91,1);
463 SetPARP(91,1.);
464 SetPARP(93,5.);
465
466 // Set c-quark mass
467 SetPMAS(4,1,1.2);
468 AtlasTuning();
469 break;
470 case kPyBeautyPbPbMNR:
471 // Tuning of Pythia parameters aimed to get a resonable agreement
472 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
473 // b-bbar single inclusive and double differential distributions.
474 // This parameter settings are meant to work with Pb-Pb collisions
475 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
476 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
477 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
478 ConfigHeavyFlavor();
479 // QCD scales
480 SetPARP(67,1.0);
481 SetPARP(71,1.0);
482 // Intrinsic <kT>
483 SetMSTP(91,1);
484 SetPARP(91,2.035);
485 SetPARP(93,10.17);
486 // Set b-quark mass
487 SetPMAS(5,1,4.75);
488 break;
489 case kPyBeautypPbMNR:
490 // Tuning of Pythia parameters aimed to get a resonable agreement
491 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
492 // b-bbar single inclusive and double differential distributions.
493 // This parameter settings are meant to work with p-Pb collisions
494 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
495 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
496 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
497 ConfigHeavyFlavor();
498 // QCD scales
499 SetPARP(67,1.0);
500 SetPARP(71,1.0);
501 // Intrinsic <kT>
502 SetMSTP(91,1);
503 SetPARP(91,1.60);
504 SetPARP(93,8.00);
505 // Set b-quark mass
506 SetPMAS(5,1,4.75);
507 break;
508 case kPyBeautyppMNR:
509 // Tuning of Pythia parameters aimed to get a resonable agreement
510 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
511 // b-bbar single inclusive and double differential distributions.
512 // This parameter settings are meant to work with pp collisions
513 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
514 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
515 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
516 ConfigHeavyFlavor();
517 // QCD scales
518 SetPARP(67,1.0);
519 SetPARP(71,1.0);
520
521 // Intrinsic <kT>
522 SetMSTP(91,1);
523 SetPARP(91,1.);
524 SetPARP(93,5.);
525
526 // Set b-quark mass
527 SetPMAS(5,1,4.75);
528 break;
70574ff8 529 case kPyBeautyJets:
39d810c8 530 case kPyBeautyppMNRwmi:
531 // Tuning of Pythia parameters aimed to get a resonable agreement
532 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
533 // b-bbar single inclusive and double differential distributions.
534 // This parameter settings are meant to work with pp collisions
535 // and with kCTEQ5L PDFs.
536 // Added multiple interactions according to ATLAS tune settings.
537 // To get a "reasonable" agreement with MNR results, events have to be
538 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
539 // set to 2.76 GeV.
540 // To get a "perfect" agreement with MNR results, events have to be
541 // generated in four ptHard bins with the following relative
542 // normalizations:
543 // 2.76-4 GeV: 5%
544 // 4-6 GeV: 31%
545 // 6-8 GeV: 28%
546 // >8 GeV: 36%
547 ConfigHeavyFlavor();
548 // QCD scales
549 SetPARP(67,1.0);
550 SetPARP(71,1.0);
551
552 // Intrinsic <kT>
553 SetMSTP(91,1);
554 SetPARP(91,1.);
555 SetPARP(93,5.);
556
557 // Set b-quark mass
558 SetPMAS(5,1,4.75);
559
560 AtlasTuning();
561 break;
562 case kPyW:
563
564 //Inclusive production of W+/-
565 SetMSEL(0);
566 //f fbar -> W+
567 SetMSUB(2,1);
568 // //f fbar -> g W+
569 // SetMSUB(16,1);
570 // //f fbar -> gamma W+
571 // SetMSUB(20,1);
572 // //f g -> f W+
573 // SetMSUB(31,1);
574 // //f gamma -> f W+
575 // SetMSUB(36,1);
576
577 // Initial/final parton shower on (Pythia default)
578 // With parton showers on we are generating "W inclusive process"
579 SetMSTP(61,1); //Initial QCD & QED showers on
580 SetMSTP(71,1); //Final QCD & QED showers on
581
582 break;
583
584 case kPyZ:
585
586 //Inclusive production of Z
587 SetMSEL(0);
588 //f fbar -> Z/gamma
589 SetMSUB(1,1);
590
591 // // f fbar -> g Z/gamma
592 // SetMSUB(15,1);
593 // // f fbar -> gamma Z/gamma
594 // SetMSUB(19,1);
595 // // f g -> f Z/gamma
596 // SetMSUB(30,1);
597 // // f gamma -> f Z/gamma
598 // SetMSUB(35,1);
599
600 //only Z included, not gamma
601 SetMSTP(43,2);
602
603 // Initial/final parton shower on (Pythia default)
604 // With parton showers on we are generating "Z inclusive process"
605 SetMSTP(61,1); //Initial QCD & QED showers on
606 SetMSTP(71,1); //Final QCD & QED showers on
607
608 break;
609
610 }
611//
612// Initialize PYTHIA
613 SetMSTP(41,1); // all resonance decays switched on
614 Initialize("CMS","p","p",fEcms);
615
616}
617
618Int_t AliPythia6::CheckedLuComp(Int_t kf)
619{
620// Check Lund particle code (for debugging)
621 Int_t kc=Pycomp(kf);
622 return kc;
623}
624
625void AliPythia6::SetNuclei(Int_t a1, Int_t a2)
626{
627// Treat protons as inside nuclei with mass numbers a1 and a2
628// The MSTP array in the PYPARS common block is used to enable and
629// select the nuclear structure functions.
630// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
631// =1: internal PYTHIA acording to MSTP(51)
632// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
633// If the following mass number both not equal zero, nuclear corrections of the stf are used.
634// MSTP(192) : Mass number of nucleus side 1
635// MSTP(193) : Mass number of nucleus side 2
636 SetMSTP(52,2);
637 SetMSTP(192, a1);
638 SetMSTP(193, a2);
639}
640
641
642AliPythia6* AliPythia6::Instance()
643{
644// Set random number generator
645 if (fgAliPythia) {
646 return fgAliPythia;
647 } else {
648 fgAliPythia = new AliPythia6();
649 return fgAliPythia;
650 }
651}
652
653void AliPythia6::PrintParticles()
654{
655// Print list of particl properties
656 Int_t np = 0;
657 char* name = new char[16];
658 for (Int_t kf=0; kf<1000000; kf++) {
659 for (Int_t c = 1; c > -2; c-=2) {
660 Int_t kc = Pycomp(c*kf);
661 if (kc) {
662 Float_t mass = GetPMAS(kc,1);
663 Float_t width = GetPMAS(kc,2);
664 Float_t tau = GetPMAS(kc,4);
665
666 Pyname(kf,name);
667
668 np++;
669
670 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
671 c*kf, name, mass, width, tau);
672 }
673 }
674 }
675 printf("\n Number of particles %d \n \n", np);
676}
677
678void AliPythia6::ResetDecayTable()
679{
680// Set default values for pythia decay switches
681 Int_t i;
682 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
683 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
684}
685
686void AliPythia6::SetDecayTable()
687{
688// Set default values for pythia decay switches
689//
690 Int_t i;
691 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
692 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
693}
694
8b9bb87a 695void AliPythia6::Pyjoin(Int_t& npart, Int_t *ipart)
696{
697// Call Pythia join alogorithm to set up a string between
698// npart partons, given by indices in array ipart[npart]
699//
700 pyjoin(npart, ipart);
701}
702
f3cbba5f 703void AliPythia6::Pyshowq(Int_t ip1, Int_t ip2, Double_t qmax)
704{
705// Call qPythia showering
706//
707 pyshowq(ip1, ip2, qmax);
708}
709
710void AliPythia6::Qpygin0()
711{
712 //position of the hard scattering in the nuclear overlapping area.
713 //just for qpythia.
714 qpygin0();
715}
716
39d810c8 717void AliPythia6::Pyclus(Int_t& njet)
718{
719// Call Pythia clustering algorithm
720//
721 pyclus(njet);
722}
723
724void AliPythia6::Pycell(Int_t& njet)
725{
726// Call Pythia jet reconstruction algorithm
727//
728 pycell(njet);
729}
730
731void AliPythia6::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
732{
733 // Get jet number i
734 Int_t n = GetN();
735 px = GetPyjets()->P[0][n+i];
736 py = GetPyjets()->P[1][n+i];
737 pz = GetPyjets()->P[2][n+i];
738 e = GetPyjets()->P[3][n+i];
739}
740
741void AliPythia6::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
742{
743// Call Pythia showering
744//
745 pyshow(ip1, ip2, qmax);
746}
747
748void AliPythia6::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
749{
750 pyrobo(imi, ima, the, phi, bex, bey, bez);
751}
752
753
754
755void AliPythia6::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
756{
757// Initializes
758// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
759// (2) The nuclear geometry using the Glauber Model
760//
761
18b7a4a1 762 fGlauber = AliFastGlauber::Instance();
39d810c8 763 fGlauber->Init(2);
764 fGlauber->SetCentralityClass(cMin, cMax);
765
766 fQuenchingWeights = new AliQuenchingWeights();
767 fQuenchingWeights->InitMult();
768 fQuenchingWeights->SetK(k);
769 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
770 fNGmax = ngmax;
771 fZmax = zmax;
772
773}
774
775
776void AliPythia6::Quench()
777{
778//
779//
780// Simple Jet Quenching routine:
781// =============================
782// The jet formed by all final state partons radiated by the parton created
783// in the hard collisions is quenched by a factor (1-z) using light cone variables in
784// the initial parton reference frame:
785// (E + p_z)new = (1-z) (E + p_z)old
786//
787//
788//
789//
790// The lost momentum is first balanced by one gluon with virtuality > 0.
791// Subsequently the gluon splits to yield two gluons with E = p.
792//
793//
794//
795 static Float_t eMean = 0.;
796 static Int_t icall = 0;
797
798 Double_t p0[4][5];
799 Double_t p1[4][5];
800 Double_t p2[4][5];
801 Int_t klast[4] = {-1, -1, -1, -1};
802
803 Int_t numpart = fPyjets->N;
804 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
805 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
806 Bool_t quenched[4];
a23e397a 807 Double_t wjtKick[4] = {0., 0., 0., 0.};
39d810c8 808 Int_t nGluon[4];
809 Int_t qPdg[4];
810 Int_t imo, kst, pdg;
811
812//
813// Sore information about Primary partons
814//
815// j =
816// 0, 1 partons from hard scattering
817// 2, 3 partons from initial state radiation
818//
819 for (Int_t i = 2; i <= 7; i++) {
820 Int_t j = 0;
821 // Skip gluons that participate in hard scattering
822 if (i == 4 || i == 5) continue;
823 // Gluons from hard Scattering
824 if (i == 6 || i == 7) {
825 j = i - 6;
826 pxq[j] = fPyjets->P[0][i];
827 pyq[j] = fPyjets->P[1][i];
828 pzq[j] = fPyjets->P[2][i];
829 eq[j] = fPyjets->P[3][i];
830 mq[j] = fPyjets->P[4][i];
831 } else {
832 // Gluons from initial state radiation
833 //
834 // Obtain 4-momentum vector from difference between original parton and parton after gluon
835 // radiation. Energy is calculated independently because initial state radition does not
836 // conserve strictly momentum and energy for each partonic system independently.
837 //
838 // Not very clean. Should be improved !
839 //
840 //
841 j = i;
842 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
843 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
844 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
845 mq[j] = fPyjets->P[4][i];
846 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
847 }
848//
849// Calculate some kinematic variables
850//
851 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
852 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
853 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
854 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
855 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
856 qPdg[j] = fPyjets->K[1][i];
857 }
858
859 Double_t int0[4];
860 Double_t int1[4];
861
862 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
863
864 for (Int_t j = 0; j < 4; j++) {
865 //
866 // Quench only central jets and with E > 10.
867 //
868
869
870 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
5c843db7 871 // Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
872 Double_t eloss = fQuenchingWeights->GetELossRandomK(itype, int0[j], int1[j], eq[j]);
39d810c8 873
874 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
875 fZQuench[j] = 0.;
876 } else {
877 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
878 icall ++;
879 eMean += eloss;
880 }
881 //
882 // Extra pt
883 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
884 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
885 //
886 // Fractional energy loss
887 fZQuench[j] = eloss / eq[j];
888 //
889 // Avoid complete loss
890 //
1044c4d8 891 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
39d810c8 892 //
893 // Some debug printing
894
895
896// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
897// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
898
899// fZQuench[j] = 0.8;
900// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
901 }
902
903 quenched[j] = (fZQuench[j] > 0.01);
904 } // primary partons
905
906
907
908 Double_t pNew[1000][4];
909 Int_t kNew[1000];
910 Int_t icount = 0;
911 Double_t zquench[4];
912
913//
914// System Loop
915 for (Int_t isys = 0; isys < 4; isys++) {
916// Skip to next system if not quenched.
917 if (!quenched[isys]) continue;
918
919 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
920 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
921 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
922 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
923
924
925
926 Int_t igMin = -1;
927 Int_t igMax = -1;
928 Double_t pg[4] = {0., 0., 0., 0.};
929
930//
931// Loop on radiation events
932
933 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
934 while (1) {
935 icount = 0;
936 for (Int_t k = 0; k < 4; k++)
937 {
938 p0[isys][k] = 0.;
939 p1[isys][k] = 0.;
940 p2[isys][k] = 0.;
941 }
942// Loop over partons
943 for (Int_t i = 0; i < numpart; i++)
944 {
945 imo = fPyjets->K[2][i];
946 kst = fPyjets->K[0][i];
947 pdg = fPyjets->K[1][i];
948
949
950
951// Quarks and gluons only
952 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
953// Particles from hard scattering only
954
955 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
956 Int_t imom = imo % 1000;
957 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
958 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
959
960
961// Skip comment lines
962 if (kst != 1 && kst != 2) continue;
963//
964// Parton kinematic
965 px = fPyjets->P[0][i];
966 py = fPyjets->P[1][i];
967 pz = fPyjets->P[2][i];
968 e = fPyjets->P[3][i];
969 m = fPyjets->P[4][i];
970 pt = TMath::Sqrt(px * px + py * py);
971 p = TMath::Sqrt(px * px + py * py + pz * pz);
972 phi = TMath::Pi() + TMath::ATan2(-py, -px);
973 theta = TMath::ATan2(pt, pz);
974
975//
976// Save 4-momentum sum for balancing
977 Int_t index = isys;
978
979 p0[index][0] += px;
980 p0[index][1] += py;
981 p0[index][2] += pz;
982 p0[index][3] += e;
983
984 klast[index] = i;
985
986//
987// Fractional energy loss
988 Double_t z = zquench[index];
989
990
991// Don't fully quench radiated gluons
992//
993 if (imo > 1000) {
994// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
995//
996
997 z = 0.02;
998 }
999// printf("z: %d %f\n", imo, z);
1000
1001
1002//
1003
1004 //
1005 //
1006 // Transform into frame in which initial parton is along z-axis
1007 //
1008 TVector3 v(px, py, pz);
1009 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
1010 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
1011
1012 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
1013 Double_t mt2 = jt * jt + m * m;
1014 Double_t zmax = 1.;
1015 //
1016 // Kinematic limit on z
1017 //
1018 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
1019 //
1020 // Change light-cone kinematics rel. to initial parton
1021 //
1022 Double_t eppzOld = e + pl;
1023 Double_t empzOld = e - pl;
1024
1025 Double_t eppzNew = (1. - z) * eppzOld;
1026 Double_t empzNew = empzOld - mt2 * z / eppzOld;
1027 Double_t eNew = 0.5 * (eppzNew + empzNew);
1028 Double_t plNew = 0.5 * (eppzNew - empzNew);
1029
1030 Double_t jtNew;
1031 //
1032 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
1033 Double_t mt2New = eppzNew * empzNew;
1034 if (mt2New < 1.e-8) mt2New = 0.;
1035 if (z < zmax) {
1036 if (m * m > mt2New) {
1037 //
1038 // This should not happen
1039 //
1040 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1041 jtNew = 0;
1042 } else {
1043 jtNew = TMath::Sqrt(mt2New - m * m);
1044 }
1045 } else {
1046 // If pT is to small (probably a leading massive particle) we scale only the energy
1047 // This can cause negative masses of the radiated gluon
1048 // Let's hope for the best ...
1049 jtNew = jt;
1050 eNew = TMath::Sqrt(plNew * plNew + mt2);
1051
1052 }
1053 //
1054 // Calculate new px, py
1055 //
1044c4d8 1056 Double_t pxNew = 0;
1057 Double_t pyNew = 0;
1058
1059 if (jt > 0.) {
1060 pxNew = jtNew / jt * pxs;
1061 pyNew = jtNew / jt * pys;
1062 }
39d810c8 1063
1064// Double_t dpx = pxs - pxNew;
1065// Double_t dpy = pys - pyNew;
1066// Double_t dpz = pl - plNew;
1067// Double_t de = e - eNew;
1068// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1069// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1070// printf("New mass (2) %e %e \n", pxNew, pyNew);
1071 //
1072 // Rotate back
1073 //
1074 TVector3 w(pxNew, pyNew, plNew);
1075 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1076 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1077
1078 p1[index][0] += pxNew;
1079 p1[index][1] += pyNew;
1080 p1[index][2] += plNew;
1081 p1[index][3] += eNew;
1082 //
1083 // Updated 4-momentum vectors
1084 //
1085 pNew[icount][0] = pxNew;
1086 pNew[icount][1] = pyNew;
1087 pNew[icount][2] = plNew;
1088 pNew[icount][3] = eNew;
1089 kNew[icount] = i;
1090 icount++;
1091 } // parton loop
1092 //
1093 // Check if there was phase-space for quenching
1094 //
1095
1096 if (icount == 0) quenched[isys] = kFALSE;
1097 if (!quenched[isys]) break;
1098
1099 for (Int_t j = 0; j < 4; j++)
1100 {
1101 p2[isys][j] = p0[isys][j] - p1[isys][j];
1102 }
1103 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
1104 if (p2[isys][4] > 0.) {
1105 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1106 break;
1107 } else {
1108 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
1109 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
1110 if (p2[isys][4] < -0.01) {
1111 printf("Negative mass squared !\n");
1112 // Here we have to put the gluon back to mass shell
1113 // This will lead to a small energy imbalance
1114 p2[isys][4] = 0.;
1115 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1116 break;
1117 } else {
1118 p2[isys][4] = 0.;
1119 break;
1120 }
1121 }
1122 /*
1123 zHeavy *= 0.98;
1124 printf("zHeavy lowered to %f\n", zHeavy);
1125 if (zHeavy < 0.01) {
1126 printf("No success ! \n");
1127 icount = 0;
1128 quenched[isys] = kFALSE;
1129 break;
1130 }
1131 */
1132 } // iteration on z (while)
1133
1134// Update event record
1135 for (Int_t k = 0; k < icount; k++) {
1136// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1137 fPyjets->P[0][kNew[k]] = pNew[k][0];
1138 fPyjets->P[1][kNew[k]] = pNew[k][1];
1139 fPyjets->P[2][kNew[k]] = pNew[k][2];
1140 fPyjets->P[3][kNew[k]] = pNew[k][3];
1141 }
1142 //
1143 // Add the gluons
1144 //
1145 Int_t ish = 0;
1146 Int_t iGlu;
1147 if (!quenched[isys]) continue;
1148//
1149// Last parton from shower i
1150 Int_t in = klast[isys];
1151//
1152// Continue if no parton in shower i selected
1153 if (in == -1) continue;
1154//
1155// If this is the second initial parton and it is behind the first move pointer by previous ish
1156 if (isys == 1 && klast[1] > klast[0]) in += ish;
1157//
1158// Starting index
1159
1160// jmin = in - 1;
1161// How many additional gluons will be generated
1162 ish = 1;
1163 if (p2[isys][4] > 0.05) ish = 2;
1164//
1165// Position of gluons
1166 iGlu = numpart;
1167 if (iglu == 0) igMin = iGlu;
1168 igMax = iGlu;
1169 numpart += ish;
1170 (fPyjets->N) += ish;
1171
1172 if (ish == 1) {
1173 fPyjets->P[0][iGlu] = p2[isys][0];
1174 fPyjets->P[1][iGlu] = p2[isys][1];
1175 fPyjets->P[2][iGlu] = p2[isys][2];
1176 fPyjets->P[3][iGlu] = p2[isys][3];
1177 fPyjets->P[4][iGlu] = p2[isys][4];
1178
1179 fPyjets->K[0][iGlu] = 1;
1180 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
1181 fPyjets->K[1][iGlu] = 21;
1182 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1183 fPyjets->K[3][iGlu] = -1;
1184 fPyjets->K[4][iGlu] = -1;
1185
1186 pg[0] += p2[isys][0];
1187 pg[1] += p2[isys][1];
1188 pg[2] += p2[isys][2];
1189 pg[3] += p2[isys][3];
1190 } else {
1191 //
1192 // Split gluon in rest frame.
1193 //
1194 Double_t bx = p2[isys][0] / p2[isys][3];
1195 Double_t by = p2[isys][1] / p2[isys][3];
1196 Double_t bz = p2[isys][2] / p2[isys][3];
1197 Double_t pst = p2[isys][4] / 2.;
1198 //
1199 // Isotropic decay ????
1200 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1201 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1202 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
39d810c8 1203
1204 Double_t pz1 = pst * cost;
1205 Double_t pz2 = -pst * cost;
1206 Double_t pt1 = pst * sint;
1207 Double_t pt2 = -pst * sint;
2ab330c9 1208 Double_t px1 = pt1 * TMath::Cos(phis);
1209 Double_t py1 = pt1 * TMath::Sin(phis);
1210 Double_t px2 = pt2 * TMath::Cos(phis);
1211 Double_t py2 = pt2 * TMath::Sin(phis);
39d810c8 1212
1213 fPyjets->P[0][iGlu] = px1;
1214 fPyjets->P[1][iGlu] = py1;
1215 fPyjets->P[2][iGlu] = pz1;
1216 fPyjets->P[3][iGlu] = pst;
1217 fPyjets->P[4][iGlu] = 0.;
1218
1219 fPyjets->K[0][iGlu] = 1 ;
1220 fPyjets->K[1][iGlu] = 21;
1221 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1222 fPyjets->K[3][iGlu] = -1;
1223 fPyjets->K[4][iGlu] = -1;
1224
1225 fPyjets->P[0][iGlu+1] = px2;
1226 fPyjets->P[1][iGlu+1] = py2;
1227 fPyjets->P[2][iGlu+1] = pz2;
1228 fPyjets->P[3][iGlu+1] = pst;
1229 fPyjets->P[4][iGlu+1] = 0.;
1230
1231 fPyjets->K[0][iGlu+1] = 1;
1232 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
1233 fPyjets->K[1][iGlu+1] = 21;
1234 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
1235 fPyjets->K[3][iGlu+1] = -1;
1236 fPyjets->K[4][iGlu+1] = -1;
1237 SetMSTU(1,0);
1238 SetMSTU(2,0);
1239 //
1240 // Boost back
1241 //
1242 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1243 }
1244/*
1245 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1246 Double_t px, py, pz;
1247 px = fPyjets->P[0][ig];
1248 py = fPyjets->P[1][ig];
1249 pz = fPyjets->P[2][ig];
1250 TVector3 v(px, py, pz);
1251 v.RotateZ(-phiq[isys]);
1252 v.RotateY(-thetaq[isys]);
1253 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1254 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1255 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1256 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1257 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1258 pxs += jtKick * TMath::Cos(phiKick);
1259 pys += jtKick * TMath::Sin(phiKick);
1260 TVector3 w(pxs, pys, pzs);
1261 w.RotateY(thetaq[isys]);
1262 w.RotateZ(phiq[isys]);
1263 fPyjets->P[0][ig] = w.X();
1264 fPyjets->P[1][ig] = w.Y();
1265 fPyjets->P[2][ig] = w.Z();
1266 fPyjets->P[2][ig] = w.Mag();
1267 }
1268*/
1269 } // kGluon
1270
1271
1272 // Check energy conservation
1273 Double_t pxs = 0.;
1274 Double_t pys = 0.;
1275 Double_t pzs = 0.;
1276 Double_t es = 14000.;
1277
1278 for (Int_t i = 0; i < numpart; i++)
1279 {
1280 kst = fPyjets->K[0][i];
1281 if (kst != 1 && kst != 2) continue;
1282 pxs += fPyjets->P[0][i];
1283 pys += fPyjets->P[1][i];
1284 pzs += fPyjets->P[2][i];
1285 es -= fPyjets->P[3][i];
1286 }
1287 if (TMath::Abs(pxs) > 1.e-2 ||
1288 TMath::Abs(pys) > 1.e-2 ||
1289 TMath::Abs(pzs) > 1.e-1) {
1290 printf("%e %e %e %e\n", pxs, pys, pzs, es);
1291// Fatal("Quench()", "4-Momentum non-conservation");
1292 }
1293
1294 } // end quenching loop (systems)
1295// Clean-up
1296 for (Int_t i = 0; i < numpart; i++)
1297 {
1298 imo = fPyjets->K[2][i];
1299 if (imo > 1000) {
1300 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1301 }
1302 }
1303// this->Pylist(1);
1304} // end quench
1305
1306
1307void AliPythia6::Pyquen(Double_t a, Int_t ibf, Double_t b)
1308{
1309 // Igor Lokthine's quenching routine
1310 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1311
1312 pyquen(a, ibf, b);
1313}
1314
1315void AliPythia6::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1316{
1317 // Set the parameters for the PYQUEN package.
1318 // See comments in PyquenCommon.h
1319
1320
1321 PYQPAR.t0 = t0;
1322 PYQPAR.tau0 = tau0;
1323 PYQPAR.nf = nf;
1324 PYQPAR.iengl = iengl;
1325 PYQPAR.iangl = iangl;
1326}
1327
1328void AliPythia6::LoadEvent(AliStack* stack, Int_t flag, Int_t reHadr)
1329{
1330//
1331// Load event into Pythia Common Block
1332//
1333
1334 Int_t npart = stack -> GetNprimary();
1335 Int_t n0 = 0;
1336
1337 if (!flag) {
1338 GetPyjets()->N = npart;
1339 } else {
1340 n0 = GetPyjets()->N;
1341 GetPyjets()->N = n0 + npart;
1342 }
1343
1344
1345 for (Int_t part = 0; part < npart; part++) {
1346 TParticle *mPart = stack->Particle(part);
1347
1348 Int_t kf = mPart->GetPdgCode();
1349 Int_t ks = mPart->GetStatusCode();
1350 Int_t idf = mPart->GetFirstDaughter();
1351 Int_t idl = mPart->GetLastDaughter();
1352
1353 if (reHadr) {
1354 if (ks == 11 || ks == 12) {
1355 ks -= 10;
1356 idf = -1;
1357 idl = -1;
1358 }
1359 }
1360
1361 Float_t px = mPart->Px();
1362 Float_t py = mPart->Py();
1363 Float_t pz = mPart->Pz();
1364 Float_t e = mPart->Energy();
1365 Float_t m = mPart->GetCalcMass();
1366
1367
1368 (GetPyjets())->P[0][part+n0] = px;
1369 (GetPyjets())->P[1][part+n0] = py;
1370 (GetPyjets())->P[2][part+n0] = pz;
1371 (GetPyjets())->P[3][part+n0] = e;
1372 (GetPyjets())->P[4][part+n0] = m;
1373
1374 (GetPyjets())->K[1][part+n0] = kf;
1375 (GetPyjets())->K[0][part+n0] = ks;
1376 (GetPyjets())->K[3][part+n0] = idf + 1;
1377 (GetPyjets())->K[4][part+n0] = idl + 1;
1378 (GetPyjets())->K[2][part+n0] = mPart->GetFirstMother() + 1;
1379 }
1380}
1381
1382
1383void AliPythia6::Pyevnw()
1384{
1385 // New multiple interaction scenario
1386 pyevnw();
1387}
1388
1389void AliPythia6::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1390{
1391 // Return event specific quenching parameters
1392 xp = fXJet;
1393 yp = fYJet;
1394 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1395
1396}
1397
1398void AliPythia6::ConfigHeavyFlavor()
1399{
1400 //
1401 // Default configuration for Heavy Flavor production
1402 //
1403 // All QCD processes
1404 //
1405 SetMSEL(1);
1406
1407 // No multiple interactions
1408 SetMSTP(81,0);
1409 SetPARP(81, 0.);
1410 SetPARP(82, 0.);
1411 // Initial/final parton shower on (Pythia default)
1412 SetMSTP(61,1);
1413 SetMSTP(71,1);
1414
1415 // 2nd order alpha_s
1416 SetMSTP(2,2);
1417
1418 // QCD scales
1419 SetMSTP(32,2);
1420 SetPARP(34,1.0);
1421}
1422
1423void AliPythia6::AtlasTuning()
1424{
1425 //
1426 // Configuration for the ATLAS tuning
1427 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ5L));
1428 SetMSTP(81,1); // Multiple Interactions ON
1429 SetMSTP(82,4); // Double Gaussian Model
1430 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1431 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1432 SetPARP(89,1000.); // [GeV] Ref. energy
1433 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1434 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1435 SetPARP(84,0.5); // Core radius
1436 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1437 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1438 SetPARP(67,1); // Regulates Initial State Radiation
1439}
1440
b4d68b2a 1441void AliPythia6::AtlasTuningMC09()
67b7bb0e 1442{
1443 //
1444 // Configuration for the ATLAS tuning
1445 printf("ATLAS New TUNE MC09\n");
1446 SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model
1447 SetMSTP(82, 4); // Double Gaussian Model
1448 SetMSTP(52, 2); // External PDF
1449 SetMSTP(51, 20650); // MRST LO*
1450
1451
1452 SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR
1453 SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR
1454 SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant
1455 SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT
1456
1457 SetPARP(78, 0.3); // the amount of color reconnection in the final state
1458 SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant
1459 SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy
1460 SetPARP(83, 0.8); // Core density in proton matter distribution (def.value)
1461 SetPARP(84, 0.7); // Core radius
1462 SetPARP(90, 0.25); // 2*epsilon (exponent in power law)
1463 SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers
1464
1465 SetMSTP(95, 6);
1466 SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF
1467 SetPARJ(42, 0.58);
1468 SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks
1469 SetPARP(89,1800.); // [GeV] Ref. energy
1470}
1471
39d810c8 1472void AliPythia6::SetPtHardRange(Float_t ptmin, Float_t ptmax)
1473{
1474 // Set the pt hard range
1475 SetCKIN(3, ptmin);
1476 SetCKIN(4, ptmax);
1477}
1478
1479void AliPythia6::SetYHardRange(Float_t ymin, Float_t ymax)
1480{
1481 // Set the y hard range
1482 SetCKIN(7, ymin);
1483 SetCKIN(8, ymax);
1484}
1485
1486
1487void AliPythia6::SetFragmentation(Int_t flag)
1488{
1489 // Switch fragmentation on/off
1490 SetMSTP(111, flag);
1491}
1492
1493void AliPythia6::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
1494{
1495// initial state radiation
1496 SetMSTP(61, flag1);
1497// final state radiation
1498 SetMSTP(71, flag2);
1499}
1500
1501void AliPythia6::SetIntrinsicKt(Float_t kt)
1502{
1503 // Set the inreinsic kt
1504 if (kt > 0.) {
1505 SetMSTP(91,1);
1506 SetPARP(91,kt);
1507 SetPARP(93, 4. * kt);
1508 } else {
1509 SetMSTP(91,0);
1510 }
1511}
1512
1513void AliPythia6::SwitchHFOff()
1514{
1515 // Switch off heavy flavor
1516 // Maximum number of quark flavours used in pdf
1517 SetMSTP(58, 3);
1518 // Maximum number of flavors that can be used in showers
1519 SetMSTJ(45, 3);
1520}
1521
1522void AliPythia6::SetPycellParameters(Float_t etamax, Int_t neta, Int_t nphi,
1523 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
1524{
1525// Set pycell parameters
1526 SetPARU(51, etamax);
1527 SetMSTU(51, neta);
1528 SetMSTU(52, nphi);
1529 SetPARU(58, thresh);
1530 SetPARU(52, etseed);
1531 SetPARU(53, minet);
1532 SetPARU(54, r);
1533 SetMSTU(54, 2);
1534}
1535
1536void AliPythia6::ModifiedSplitting()
1537{
1538 // Modified splitting probability as a model for quenching
1539 SetPARJ(200, 0.8);
1540 SetMSTJ(41, 1); // QCD radiation only
1541 SetMSTJ(42, 2); // angular ordering
1542 SetMSTJ(44, 2); // option to run alpha_s
1543 SetMSTJ(47, 0); // No correction back to hard scattering element
1544 SetMSTJ(50, 0); // No coherence in first branching
1545 SetPARJ(82, 1.); // Cut off for parton showers
1546}
1547
1548void AliPythia6::SwitchHadronisationOff()
1549{
1550 // Switch off hadronisarion
1551 SetMSTJ(1, 0);
1552}
1553
1554void AliPythia6::SwitchHadronisationOn()
1555{
1556 // Switch on hadronisarion
1557 SetMSTJ(1, 1);
1558}
1559
1560
1561void AliPythia6::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
1562{
1563 // Get x1, x2 and Q for this event
1564
1565 q = GetVINT(51);
1566 x1 = GetVINT(41);
1567 x2 = GetVINT(42);
1568}
1569
1570Float_t AliPythia6::GetXSection()
1571{
1572 // Get the total cross-section
1573 return (GetPARI(1));
1574}
1575
1576Float_t AliPythia6::GetPtHard()
1577{
1578 // Get the pT hard for this event
1579 return GetVINT(47);
1580}
1581
1582Int_t AliPythia6::ProcessCode()
1583{
1584 // Get the subprocess code
1585 return GetMSTI(1);
1586}
1587
1588void AliPythia6::PrintStatistics()
1589{
1590 // End of run statistics
1591 Pystat(1);
1592}
1593
1594void AliPythia6::EventListing()
1595{
1596 // End of run statistics
1597 Pylist(2);
1598}
1599
1600AliPythia6& AliPythia6::operator=(const AliPythia6& rhs)
1601{
1602// Assignment operator
1603 rhs.Copy(*this);
1604 return *this;
1605}
1606
1607 void AliPythia6::Copy(TObject&) const
1608{
1609 //
1610 // Copy
1611 //
1612 Fatal("Copy","Not implemented!\n");
1613}