Coverity errors corrected/avoided.
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia6.cxx
CommitLineData
39d810c8 1
2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
17/* $Id: AliPythia.cxx,v 1.40 2007/10/09 08:43:24 morsch Exp $ */
18
19#include "AliPythia6.h"
20#include "AliStack.h"
21#include "AliPythiaRndm.h"
22#include "AliFastGlauber.h"
23#include "AliQuenchingWeights.h"
24
25#include "TVector3.h"
26#include "TParticle.h"
27#include "PyquenCommon.h"
28
29ClassImp(AliPythia6)
30
31#ifndef WIN32
32# define pyclus pyclus_
33# define pycell pycell_
34# define pyshow pyshow_
35# define pyrobo pyrobo_
36# define pyquen pyquen_
37# define pyevnw pyevnw_
38# define type_of_call
39#else
40# define pyclus PYCLUS
41# define pycell PYCELL
42# define pyrobo PYROBO
43# define pyquen PYQUEN
44# define pyevnw PYEVNW
45# define type_of_call _stdcall
46#endif
47
48extern "C" void type_of_call pyclus(Int_t & );
49extern "C" void type_of_call pycell(Int_t & );
50extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
51extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
52extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
53extern "C" void type_of_call pyevnw();
54
55
56//_____________________________________________________________________________
57
58AliPythia6* AliPythia6::fgAliPythia=NULL;
59
60AliPythia6::AliPythia6():
61 TPythia6(),
62 AliPythiaBase(),
63 fProcess(kPyMb),
64 fEcms(0.),
65 fStrucFunc(kCTEQ5L),
66 fXJet(0.),
67 fYJet(0.),
68 fNGmax(30),
69 fZmax(0.97),
70 fGlauber(0),
71 fQuenchingWeights(0)
72{
73// Default Constructor
74//
75// Set random number
76 if (!AliPythiaRndm::GetPythiaRandom())
77 AliPythiaRndm::SetPythiaRandom(GetRandom());
78 fGlauber = 0;
79 fQuenchingWeights = 0;
80}
81
82AliPythia6::AliPythia6(const AliPythia6& pythia):
83 TPythia6(),
84 AliPythiaBase(),
85 fProcess(kPyMb),
86 fEcms(0.),
87 fStrucFunc(kCTEQ5L),
88 fXJet(0.),
89 fYJet(0.),
90 fNGmax(30),
91 fZmax(0.97),
92 fGlauber(0),
93 fQuenchingWeights(0)
94{
95 // Copy Constructor
96 pythia.Copy(*this);
97}
98
99void AliPythia6::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
100{
101// Initialise the process to generate
102 if (!AliPythiaRndm::GetPythiaRandom())
103 AliPythiaRndm::SetPythiaRandom(GetRandom());
104
105 fProcess = process;
106 fEcms = energy;
107 fStrucFunc = strucfunc;
108//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
109 SetMDCY(Pycomp(111) ,1,0);
110 SetMDCY(Pycomp(310) ,1,0);
111 SetMDCY(Pycomp(3122),1,0);
112 SetMDCY(Pycomp(3112),1,0);
113 SetMDCY(Pycomp(3212),1,0);
114 SetMDCY(Pycomp(3222),1,0);
115 SetMDCY(Pycomp(3312),1,0);
116 SetMDCY(Pycomp(3322),1,0);
117 SetMDCY(Pycomp(3334),1,0);
118 // Select structure function
119 SetMSTP(52,2);
120 SetMSTP(51,AliStructFuncType::PDFsetIndex(strucfunc));
121 // Particles produced in string fragmentation point directly to either of the two endpoints
122 // of the string (depending in the side they were generated from).
123 SetMSTU(16,2);
124
125//
126// Pythia initialisation for selected processes//
127//
128// Make MSEL clean
129//
130 for (Int_t i=1; i<= 200; i++) {
131 SetMSUB(i,0);
132 }
133// select charm production
134 switch (process)
135 {
136 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
137// Multiple interactions on.
138 SetMSTP(81,1);
139// Double Gaussian matter distribution.
140 SetMSTP(82,4);
141 SetPARP(83,0.5);
142 SetPARP(84,0.4);
143// pT0.
144 SetPARP(82,2.0);
145// Reference energy for pT0 and energy rescaling pace.
146 SetPARP(89,1800);
147 SetPARP(90,0.25);
148// String drawing almost completely minimizes string length.
149 SetPARP(85,0.9);
150 SetPARP(86,0.95);
151// ISR and FSR activity.
152 SetPARP(67,4);
153 SetPARP(71,4);
154// Lambda_FSR scale.
155 SetPARJ(81,0.29);
156 break;
157 case kPyOldUEQ2ordered2:
158// Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldPopcorn:
180// Old production mechanism: Old Popcorn
181 SetMSEL(1);
182 SetMSTJ(12,3);
183// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
184 SetMSTP(88,2);
185// (D=1)see can be used to form baryons (BARYON JUNCTION)
186 SetMSTJ(1,1);
187 AtlasTuning();
188 break;
189 case kPyCharm:
190 SetMSEL(4);
191// heavy quark masses
192
193 SetPMAS(4,1,1.2);
194//
195// primordial pT
196 SetMSTP(91,1);
197 SetPARP(91,1.);
198 SetPARP(93,5.);
199//
200 break;
201 case kPyBeauty:
202 SetMSEL(5);
203 SetPMAS(5,1,4.75);
204 break;
205 case kPyJpsi:
206 SetMSEL(0);
207// gg->J/Psi g
208 SetMSUB(86,1);
209 break;
210 case kPyJpsiChi:
211 SetMSEL(0);
212// gg->J/Psi g
213 SetMSUB(86,1);
214// gg-> chi_0c g
215 SetMSUB(87,1);
216// gg-> chi_1c g
217 SetMSUB(88,1);
218// gg-> chi_2c g
219 SetMSUB(89,1);
220 break;
221 case kPyCharmUnforced:
222 SetMSEL(0);
223// gq->qg
224 SetMSUB(28,1);
225// gg->qq
226 SetMSUB(53,1);
227// gg->gg
228 SetMSUB(68,1);
229 break;
230 case kPyBeautyUnforced:
231 SetMSEL(0);
232// gq->qg
233 SetMSUB(28,1);
234// gg->qq
235 SetMSUB(53,1);
236// gg->gg
237 SetMSUB(68,1);
238 break;
239 case kPyMb:
240// Minimum Bias pp-Collisions
241//
242//
243// select Pythia min. bias model
244 SetMSEL(0);
245 SetMSUB(92,1); // single diffraction AB-->XB
246 SetMSUB(93,1); // single diffraction AB-->AX
247 SetMSUB(94,1); // double diffraction
248 SetMSUB(95,1); // low pt production
249
250 AtlasTuning();
251 break;
67b7bb0e 252 case kPyMbAtlasTuneMC09:
253// Minimum Bias pp-Collisions
254//
255//
256// select Pythia min. bias model
257 SetMSEL(0);
258 SetMSUB(92,1); // single diffraction AB-->XB
259 SetMSUB(93,1); // single diffraction AB-->AX
260 SetMSUB(94,1); // double diffraction
261 SetMSUB(95,1); // low pt production
262
263 AtlasTuning_MC09();
264 break;
04081a91 265
266 case kPyMbWithDirectPhoton:
267// Minimum Bias pp-Collisions with direct photon processes added
268//
269//
270// select Pythia min. bias model
271 SetMSEL(0);
272 SetMSUB(92,1); // single diffraction AB-->XB
273 SetMSUB(93,1); // single diffraction AB-->AX
274 SetMSUB(94,1); // double diffraction
275 SetMSUB(95,1); // low pt production
276
277 SetMSUB(14,1); //
278 SetMSUB(18,1); //
279 SetMSUB(29,1); //
280 SetMSUB(114,1); //
281 SetMSUB(115,1); //
282
283
284 AtlasTuning();
285 break;
286
39d810c8 287 case kPyMbDefault:
288// Minimum Bias pp-Collisions
289//
290//
291// select Pythia min. bias model
292 SetMSEL(0);
293 SetMSUB(92,1); // single diffraction AB-->XB
294 SetMSUB(93,1); // single diffraction AB-->AX
295 SetMSUB(94,1); // double diffraction
296 SetMSUB(95,1); // low pt production
297
298 break;
299 case kPyLhwgMb:
300// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
301// -> Pythia 6.3 or above is needed
302//
303 SetMSEL(0);
304 SetMSUB(92,1); // single diffraction AB-->XB
305 SetMSUB(93,1); // single diffraction AB-->AX
306 SetMSUB(94,1); // double diffraction
307 SetMSUB(95,1); // low pt production
308 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll));
309 SetMSTP(52,2);
310 SetMSTP(68,1);
311 SetMSTP(70,2);
312 SetMSTP(81,1); // Multiple Interactions ON
313 SetMSTP(82,4); // Double Gaussian Model
314 SetMSTP(88,1);
315
316 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
317 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
318 SetPARP(84,0.5); // Core radius
319 SetPARP(85,0.9); // Regulates gluon prod. mechanism
320 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
321
322 break;
323 case kPyMbNonDiffr:
324// Minimum Bias pp-Collisions
325//
326//
327// select Pythia min. bias model
328 SetMSEL(0);
329 SetMSUB(95,1); // low pt production
330
331 AtlasTuning();
332 break;
333 case kPyMbMSEL1:
334 ConfigHeavyFlavor();
335// Intrinsic <kT^2>
336 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
337 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
338 SetPARP(93,5.); // Upper cut-off
339// Set Q-quark mass
340 SetPMAS(4,1,1.2); // Charm quark mass
341 SetPMAS(5,1,4.78); // Beauty quark mass
342 SetPARP(71,4.); // Defaut value
343// Atlas Tuning
344 AtlasTuning();
345 break;
346 case kPyJets:
347//
348// QCD Jets
349//
350 SetMSEL(1);
351 // Pythia Tune A (CDF)
352 //
353 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
354 SetMSTP(82,4); // Double Gaussian Model
355 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
356 SetPARP(84,0.4); // Core radius
357 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
358 SetPARP(86,0.95); // Regulates gluon prod. mechanism
359 SetPARP(89,1800.); // [GeV] Ref. energy
360 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
361 break;
362 case kPyDirectGamma:
363 SetMSEL(10);
364 break;
365 case kPyCharmPbPbMNR:
366 case kPyD0PbPbMNR:
367 case kPyDPlusPbPbMNR:
368 case kPyDPlusStrangePbPbMNR:
369 // Tuning of Pythia parameters aimed to get a resonable agreement
370 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
371 // c-cbar single inclusive and double differential distributions.
372 // This parameter settings are meant to work with Pb-Pb collisions
373 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
374 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
375 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
376 ConfigHeavyFlavor();
377 // Intrinsic <kT>
378 SetMSTP(91,1);
379 SetPARP(91,1.304);
380 SetPARP(93,6.52);
381 // Set c-quark mass
382 SetPMAS(4,1,1.2);
383 break;
384 case kPyCharmpPbMNR:
385 case kPyD0pPbMNR:
386 case kPyDPluspPbMNR:
387 case kPyDPlusStrangepPbMNR:
388 // Tuning of Pythia parameters aimed to get a resonable agreement
389 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
390 // c-cbar single inclusive and double differential distributions.
391 // This parameter settings are meant to work with p-Pb collisions
392 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
393 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
394 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
395 ConfigHeavyFlavor();
396 // Intrinsic <kT>
397 SetMSTP(91,1);
398 SetPARP(91,1.16);
399 SetPARP(93,5.8);
400
401 // Set c-quark mass
402 SetPMAS(4,1,1.2);
403 break;
404 case kPyCharmppMNR:
405 case kPyD0ppMNR:
406 case kPyDPlusppMNR:
407 case kPyDPlusStrangeppMNR:
68504d42 408 case kPyLambdacppMNR:
39d810c8 409 // Tuning of Pythia parameters aimed to get a resonable agreement
410 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
411 // c-cbar single inclusive and double differential distributions.
412 // This parameter settings are meant to work with pp collisions
413 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
414 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
415 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
416 ConfigHeavyFlavor();
417 // Intrinsic <kT^2>
418 SetMSTP(91,1);
419 SetPARP(91,1.);
420 SetPARP(93,5.);
421
422 // Set c-quark mass
423 SetPMAS(4,1,1.2);
424 break;
425 case kPyCharmppMNRwmi:
426 // Tuning of Pythia parameters aimed to get a resonable agreement
427 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
428 // c-cbar single inclusive and double differential distributions.
429 // This parameter settings are meant to work with pp collisions
430 // and with kCTEQ5L PDFs.
431 // Added multiple interactions according to ATLAS tune settings.
432 // To get a "reasonable" agreement with MNR results, events have to be
433 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
434 // set to 2.76 GeV.
435 // To get a "perfect" agreement with MNR results, events have to be
436 // generated in four ptHard bins with the following relative
437 // normalizations:
438 // 2.76-3 GeV: 25%
439 // 3-4 GeV: 40%
440 // 4-8 GeV: 29%
441 // >8 GeV: 6%
442 ConfigHeavyFlavor();
443 // Intrinsic <kT^2>
444 SetMSTP(91,1);
445 SetPARP(91,1.);
446 SetPARP(93,5.);
447
448 // Set c-quark mass
449 SetPMAS(4,1,1.2);
450 AtlasTuning();
451 break;
452 case kPyBeautyPbPbMNR:
453 // Tuning of Pythia parameters aimed to get a resonable agreement
454 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
455 // b-bbar single inclusive and double differential distributions.
456 // This parameter settings are meant to work with Pb-Pb collisions
457 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
458 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
459 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
460 ConfigHeavyFlavor();
461 // QCD scales
462 SetPARP(67,1.0);
463 SetPARP(71,1.0);
464 // Intrinsic <kT>
465 SetMSTP(91,1);
466 SetPARP(91,2.035);
467 SetPARP(93,10.17);
468 // Set b-quark mass
469 SetPMAS(5,1,4.75);
470 break;
471 case kPyBeautypPbMNR:
472 // Tuning of Pythia parameters aimed to get a resonable agreement
473 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
474 // b-bbar single inclusive and double differential distributions.
475 // This parameter settings are meant to work with p-Pb collisions
476 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
477 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
478 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
479 ConfigHeavyFlavor();
480 // QCD scales
481 SetPARP(67,1.0);
482 SetPARP(71,1.0);
483 // Intrinsic <kT>
484 SetMSTP(91,1);
485 SetPARP(91,1.60);
486 SetPARP(93,8.00);
487 // Set b-quark mass
488 SetPMAS(5,1,4.75);
489 break;
490 case kPyBeautyppMNR:
491 // Tuning of Pythia parameters aimed to get a resonable agreement
492 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
493 // b-bbar single inclusive and double differential distributions.
494 // This parameter settings are meant to work with pp collisions
495 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
496 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
497 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
498 ConfigHeavyFlavor();
499 // QCD scales
500 SetPARP(67,1.0);
501 SetPARP(71,1.0);
502
503 // Intrinsic <kT>
504 SetMSTP(91,1);
505 SetPARP(91,1.);
506 SetPARP(93,5.);
507
508 // Set b-quark mass
509 SetPMAS(5,1,4.75);
510 break;
70574ff8 511 case kPyBeautyJets:
39d810c8 512 case kPyBeautyppMNRwmi:
513 // Tuning of Pythia parameters aimed to get a resonable agreement
514 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
515 // b-bbar single inclusive and double differential distributions.
516 // This parameter settings are meant to work with pp collisions
517 // and with kCTEQ5L PDFs.
518 // Added multiple interactions according to ATLAS tune settings.
519 // To get a "reasonable" agreement with MNR results, events have to be
520 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
521 // set to 2.76 GeV.
522 // To get a "perfect" agreement with MNR results, events have to be
523 // generated in four ptHard bins with the following relative
524 // normalizations:
525 // 2.76-4 GeV: 5%
526 // 4-6 GeV: 31%
527 // 6-8 GeV: 28%
528 // >8 GeV: 36%
529 ConfigHeavyFlavor();
530 // QCD scales
531 SetPARP(67,1.0);
532 SetPARP(71,1.0);
533
534 // Intrinsic <kT>
535 SetMSTP(91,1);
536 SetPARP(91,1.);
537 SetPARP(93,5.);
538
539 // Set b-quark mass
540 SetPMAS(5,1,4.75);
541
542 AtlasTuning();
543 break;
544 case kPyW:
545
546 //Inclusive production of W+/-
547 SetMSEL(0);
548 //f fbar -> W+
549 SetMSUB(2,1);
550 // //f fbar -> g W+
551 // SetMSUB(16,1);
552 // //f fbar -> gamma W+
553 // SetMSUB(20,1);
554 // //f g -> f W+
555 // SetMSUB(31,1);
556 // //f gamma -> f W+
557 // SetMSUB(36,1);
558
559 // Initial/final parton shower on (Pythia default)
560 // With parton showers on we are generating "W inclusive process"
561 SetMSTP(61,1); //Initial QCD & QED showers on
562 SetMSTP(71,1); //Final QCD & QED showers on
563
564 break;
565
566 case kPyZ:
567
568 //Inclusive production of Z
569 SetMSEL(0);
570 //f fbar -> Z/gamma
571 SetMSUB(1,1);
572
573 // // f fbar -> g Z/gamma
574 // SetMSUB(15,1);
575 // // f fbar -> gamma Z/gamma
576 // SetMSUB(19,1);
577 // // f g -> f Z/gamma
578 // SetMSUB(30,1);
579 // // f gamma -> f Z/gamma
580 // SetMSUB(35,1);
581
582 //only Z included, not gamma
583 SetMSTP(43,2);
584
585 // Initial/final parton shower on (Pythia default)
586 // With parton showers on we are generating "Z inclusive process"
587 SetMSTP(61,1); //Initial QCD & QED showers on
588 SetMSTP(71,1); //Final QCD & QED showers on
589
590 break;
591
592 }
593//
594// Initialize PYTHIA
595 SetMSTP(41,1); // all resonance decays switched on
596 Initialize("CMS","p","p",fEcms);
597
598}
599
600Int_t AliPythia6::CheckedLuComp(Int_t kf)
601{
602// Check Lund particle code (for debugging)
603 Int_t kc=Pycomp(kf);
604 return kc;
605}
606
607void AliPythia6::SetNuclei(Int_t a1, Int_t a2)
608{
609// Treat protons as inside nuclei with mass numbers a1 and a2
610// The MSTP array in the PYPARS common block is used to enable and
611// select the nuclear structure functions.
612// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
613// =1: internal PYTHIA acording to MSTP(51)
614// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
615// If the following mass number both not equal zero, nuclear corrections of the stf are used.
616// MSTP(192) : Mass number of nucleus side 1
617// MSTP(193) : Mass number of nucleus side 2
618 SetMSTP(52,2);
619 SetMSTP(192, a1);
620 SetMSTP(193, a2);
621}
622
623
624AliPythia6* AliPythia6::Instance()
625{
626// Set random number generator
627 if (fgAliPythia) {
628 return fgAliPythia;
629 } else {
630 fgAliPythia = new AliPythia6();
631 return fgAliPythia;
632 }
633}
634
635void AliPythia6::PrintParticles()
636{
637// Print list of particl properties
638 Int_t np = 0;
639 char* name = new char[16];
640 for (Int_t kf=0; kf<1000000; kf++) {
641 for (Int_t c = 1; c > -2; c-=2) {
642 Int_t kc = Pycomp(c*kf);
643 if (kc) {
644 Float_t mass = GetPMAS(kc,1);
645 Float_t width = GetPMAS(kc,2);
646 Float_t tau = GetPMAS(kc,4);
647
648 Pyname(kf,name);
649
650 np++;
651
652 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
653 c*kf, name, mass, width, tau);
654 }
655 }
656 }
657 printf("\n Number of particles %d \n \n", np);
658}
659
660void AliPythia6::ResetDecayTable()
661{
662// Set default values for pythia decay switches
663 Int_t i;
664 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
665 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
666}
667
668void AliPythia6::SetDecayTable()
669{
670// Set default values for pythia decay switches
671//
672 Int_t i;
673 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
674 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
675}
676
677void AliPythia6::Pyclus(Int_t& njet)
678{
679// Call Pythia clustering algorithm
680//
681 pyclus(njet);
682}
683
684void AliPythia6::Pycell(Int_t& njet)
685{
686// Call Pythia jet reconstruction algorithm
687//
688 pycell(njet);
689}
690
691void AliPythia6::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
692{
693 // Get jet number i
694 Int_t n = GetN();
695 px = GetPyjets()->P[0][n+i];
696 py = GetPyjets()->P[1][n+i];
697 pz = GetPyjets()->P[2][n+i];
698 e = GetPyjets()->P[3][n+i];
699}
700
701void AliPythia6::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
702{
703// Call Pythia showering
704//
705 pyshow(ip1, ip2, qmax);
706}
707
708void AliPythia6::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
709{
710 pyrobo(imi, ima, the, phi, bex, bey, bez);
711}
712
713
714
715void AliPythia6::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
716{
717// Initializes
718// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
719// (2) The nuclear geometry using the Glauber Model
720//
721
18b7a4a1 722 fGlauber = AliFastGlauber::Instance();
39d810c8 723 fGlauber->Init(2);
724 fGlauber->SetCentralityClass(cMin, cMax);
725
726 fQuenchingWeights = new AliQuenchingWeights();
727 fQuenchingWeights->InitMult();
728 fQuenchingWeights->SetK(k);
729 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
730 fNGmax = ngmax;
731 fZmax = zmax;
732
733}
734
735
736void AliPythia6::Quench()
737{
738//
739//
740// Simple Jet Quenching routine:
741// =============================
742// The jet formed by all final state partons radiated by the parton created
743// in the hard collisions is quenched by a factor (1-z) using light cone variables in
744// the initial parton reference frame:
745// (E + p_z)new = (1-z) (E + p_z)old
746//
747//
748//
749//
750// The lost momentum is first balanced by one gluon with virtuality > 0.
751// Subsequently the gluon splits to yield two gluons with E = p.
752//
753//
754//
755 static Float_t eMean = 0.;
756 static Int_t icall = 0;
757
758 Double_t p0[4][5];
759 Double_t p1[4][5];
760 Double_t p2[4][5];
761 Int_t klast[4] = {-1, -1, -1, -1};
762
763 Int_t numpart = fPyjets->N;
764 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
765 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
766 Bool_t quenched[4];
767 Double_t wjtKick[4];
768 Int_t nGluon[4];
769 Int_t qPdg[4];
770 Int_t imo, kst, pdg;
771
772//
773// Sore information about Primary partons
774//
775// j =
776// 0, 1 partons from hard scattering
777// 2, 3 partons from initial state radiation
778//
779 for (Int_t i = 2; i <= 7; i++) {
780 Int_t j = 0;
781 // Skip gluons that participate in hard scattering
782 if (i == 4 || i == 5) continue;
783 // Gluons from hard Scattering
784 if (i == 6 || i == 7) {
785 j = i - 6;
786 pxq[j] = fPyjets->P[0][i];
787 pyq[j] = fPyjets->P[1][i];
788 pzq[j] = fPyjets->P[2][i];
789 eq[j] = fPyjets->P[3][i];
790 mq[j] = fPyjets->P[4][i];
791 } else {
792 // Gluons from initial state radiation
793 //
794 // Obtain 4-momentum vector from difference between original parton and parton after gluon
795 // radiation. Energy is calculated independently because initial state radition does not
796 // conserve strictly momentum and energy for each partonic system independently.
797 //
798 // Not very clean. Should be improved !
799 //
800 //
801 j = i;
802 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
803 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
804 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
805 mq[j] = fPyjets->P[4][i];
806 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
807 }
808//
809// Calculate some kinematic variables
810//
811 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
812 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
813 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
814 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
815 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
816 qPdg[j] = fPyjets->K[1][i];
817 }
818
819 Double_t int0[4];
820 Double_t int1[4];
821
822 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
823
824 for (Int_t j = 0; j < 4; j++) {
825 //
826 // Quench only central jets and with E > 10.
827 //
828
829
830 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
831 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
832
833 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
834 fZQuench[j] = 0.;
835 } else {
836 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
837 icall ++;
838 eMean += eloss;
839 }
840 //
841 // Extra pt
842 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
843 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
844 //
845 // Fractional energy loss
846 fZQuench[j] = eloss / eq[j];
847 //
848 // Avoid complete loss
849 //
1044c4d8 850 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
39d810c8 851 //
852 // Some debug printing
853
854
855// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
856// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
857
858// fZQuench[j] = 0.8;
859// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
860 }
861
862 quenched[j] = (fZQuench[j] > 0.01);
863 } // primary partons
864
865
866
867 Double_t pNew[1000][4];
868 Int_t kNew[1000];
869 Int_t icount = 0;
870 Double_t zquench[4];
871
872//
873// System Loop
874 for (Int_t isys = 0; isys < 4; isys++) {
875// Skip to next system if not quenched.
876 if (!quenched[isys]) continue;
877
878 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
879 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
880 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
881 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
882
883
884
885 Int_t igMin = -1;
886 Int_t igMax = -1;
887 Double_t pg[4] = {0., 0., 0., 0.};
888
889//
890// Loop on radiation events
891
892 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
893 while (1) {
894 icount = 0;
895 for (Int_t k = 0; k < 4; k++)
896 {
897 p0[isys][k] = 0.;
898 p1[isys][k] = 0.;
899 p2[isys][k] = 0.;
900 }
901// Loop over partons
902 for (Int_t i = 0; i < numpart; i++)
903 {
904 imo = fPyjets->K[2][i];
905 kst = fPyjets->K[0][i];
906 pdg = fPyjets->K[1][i];
907
908
909
910// Quarks and gluons only
911 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
912// Particles from hard scattering only
913
914 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
915 Int_t imom = imo % 1000;
916 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
917 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
918
919
920// Skip comment lines
921 if (kst != 1 && kst != 2) continue;
922//
923// Parton kinematic
924 px = fPyjets->P[0][i];
925 py = fPyjets->P[1][i];
926 pz = fPyjets->P[2][i];
927 e = fPyjets->P[3][i];
928 m = fPyjets->P[4][i];
929 pt = TMath::Sqrt(px * px + py * py);
930 p = TMath::Sqrt(px * px + py * py + pz * pz);
931 phi = TMath::Pi() + TMath::ATan2(-py, -px);
932 theta = TMath::ATan2(pt, pz);
933
934//
935// Save 4-momentum sum for balancing
936 Int_t index = isys;
937
938 p0[index][0] += px;
939 p0[index][1] += py;
940 p0[index][2] += pz;
941 p0[index][3] += e;
942
943 klast[index] = i;
944
945//
946// Fractional energy loss
947 Double_t z = zquench[index];
948
949
950// Don't fully quench radiated gluons
951//
952 if (imo > 1000) {
953// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
954//
955
956 z = 0.02;
957 }
958// printf("z: %d %f\n", imo, z);
959
960
961//
962
963 //
964 //
965 // Transform into frame in which initial parton is along z-axis
966 //
967 TVector3 v(px, py, pz);
968 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
969 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
970
971 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
972 Double_t mt2 = jt * jt + m * m;
973 Double_t zmax = 1.;
974 //
975 // Kinematic limit on z
976 //
977 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
978 //
979 // Change light-cone kinematics rel. to initial parton
980 //
981 Double_t eppzOld = e + pl;
982 Double_t empzOld = e - pl;
983
984 Double_t eppzNew = (1. - z) * eppzOld;
985 Double_t empzNew = empzOld - mt2 * z / eppzOld;
986 Double_t eNew = 0.5 * (eppzNew + empzNew);
987 Double_t plNew = 0.5 * (eppzNew - empzNew);
988
989 Double_t jtNew;
990 //
991 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
992 Double_t mt2New = eppzNew * empzNew;
993 if (mt2New < 1.e-8) mt2New = 0.;
994 if (z < zmax) {
995 if (m * m > mt2New) {
996 //
997 // This should not happen
998 //
999 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
1000 jtNew = 0;
1001 } else {
1002 jtNew = TMath::Sqrt(mt2New - m * m);
1003 }
1004 } else {
1005 // If pT is to small (probably a leading massive particle) we scale only the energy
1006 // This can cause negative masses of the radiated gluon
1007 // Let's hope for the best ...
1008 jtNew = jt;
1009 eNew = TMath::Sqrt(plNew * plNew + mt2);
1010
1011 }
1012 //
1013 // Calculate new px, py
1014 //
1044c4d8 1015 Double_t pxNew = 0;
1016 Double_t pyNew = 0;
1017
1018 if (jt > 0.) {
1019 pxNew = jtNew / jt * pxs;
1020 pyNew = jtNew / jt * pys;
1021 }
39d810c8 1022
1023// Double_t dpx = pxs - pxNew;
1024// Double_t dpy = pys - pyNew;
1025// Double_t dpz = pl - plNew;
1026// Double_t de = e - eNew;
1027// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1028// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1029// printf("New mass (2) %e %e \n", pxNew, pyNew);
1030 //
1031 // Rotate back
1032 //
1033 TVector3 w(pxNew, pyNew, plNew);
1034 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1035 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1036
1037 p1[index][0] += pxNew;
1038 p1[index][1] += pyNew;
1039 p1[index][2] += plNew;
1040 p1[index][3] += eNew;
1041 //
1042 // Updated 4-momentum vectors
1043 //
1044 pNew[icount][0] = pxNew;
1045 pNew[icount][1] = pyNew;
1046 pNew[icount][2] = plNew;
1047 pNew[icount][3] = eNew;
1048 kNew[icount] = i;
1049 icount++;
1050 } // parton loop
1051 //
1052 // Check if there was phase-space for quenching
1053 //
1054
1055 if (icount == 0) quenched[isys] = kFALSE;
1056 if (!quenched[isys]) break;
1057
1058 for (Int_t j = 0; j < 4; j++)
1059 {
1060 p2[isys][j] = p0[isys][j] - p1[isys][j];
1061 }
1062 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
1063 if (p2[isys][4] > 0.) {
1064 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1065 break;
1066 } else {
1067 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
1068 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
1069 if (p2[isys][4] < -0.01) {
1070 printf("Negative mass squared !\n");
1071 // Here we have to put the gluon back to mass shell
1072 // This will lead to a small energy imbalance
1073 p2[isys][4] = 0.;
1074 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1075 break;
1076 } else {
1077 p2[isys][4] = 0.;
1078 break;
1079 }
1080 }
1081 /*
1082 zHeavy *= 0.98;
1083 printf("zHeavy lowered to %f\n", zHeavy);
1084 if (zHeavy < 0.01) {
1085 printf("No success ! \n");
1086 icount = 0;
1087 quenched[isys] = kFALSE;
1088 break;
1089 }
1090 */
1091 } // iteration on z (while)
1092
1093// Update event record
1094 for (Int_t k = 0; k < icount; k++) {
1095// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1096 fPyjets->P[0][kNew[k]] = pNew[k][0];
1097 fPyjets->P[1][kNew[k]] = pNew[k][1];
1098 fPyjets->P[2][kNew[k]] = pNew[k][2];
1099 fPyjets->P[3][kNew[k]] = pNew[k][3];
1100 }
1101 //
1102 // Add the gluons
1103 //
1104 Int_t ish = 0;
1105 Int_t iGlu;
1106 if (!quenched[isys]) continue;
1107//
1108// Last parton from shower i
1109 Int_t in = klast[isys];
1110//
1111// Continue if no parton in shower i selected
1112 if (in == -1) continue;
1113//
1114// If this is the second initial parton and it is behind the first move pointer by previous ish
1115 if (isys == 1 && klast[1] > klast[0]) in += ish;
1116//
1117// Starting index
1118
1119// jmin = in - 1;
1120// How many additional gluons will be generated
1121 ish = 1;
1122 if (p2[isys][4] > 0.05) ish = 2;
1123//
1124// Position of gluons
1125 iGlu = numpart;
1126 if (iglu == 0) igMin = iGlu;
1127 igMax = iGlu;
1128 numpart += ish;
1129 (fPyjets->N) += ish;
1130
1131 if (ish == 1) {
1132 fPyjets->P[0][iGlu] = p2[isys][0];
1133 fPyjets->P[1][iGlu] = p2[isys][1];
1134 fPyjets->P[2][iGlu] = p2[isys][2];
1135 fPyjets->P[3][iGlu] = p2[isys][3];
1136 fPyjets->P[4][iGlu] = p2[isys][4];
1137
1138 fPyjets->K[0][iGlu] = 1;
1139 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
1140 fPyjets->K[1][iGlu] = 21;
1141 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1142 fPyjets->K[3][iGlu] = -1;
1143 fPyjets->K[4][iGlu] = -1;
1144
1145 pg[0] += p2[isys][0];
1146 pg[1] += p2[isys][1];
1147 pg[2] += p2[isys][2];
1148 pg[3] += p2[isys][3];
1149 } else {
1150 //
1151 // Split gluon in rest frame.
1152 //
1153 Double_t bx = p2[isys][0] / p2[isys][3];
1154 Double_t by = p2[isys][1] / p2[isys][3];
1155 Double_t bz = p2[isys][2] / p2[isys][3];
1156 Double_t pst = p2[isys][4] / 2.;
1157 //
1158 // Isotropic decay ????
1159 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1160 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1161 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
39d810c8 1162
1163 Double_t pz1 = pst * cost;
1164 Double_t pz2 = -pst * cost;
1165 Double_t pt1 = pst * sint;
1166 Double_t pt2 = -pst * sint;
2ab330c9 1167 Double_t px1 = pt1 * TMath::Cos(phis);
1168 Double_t py1 = pt1 * TMath::Sin(phis);
1169 Double_t px2 = pt2 * TMath::Cos(phis);
1170 Double_t py2 = pt2 * TMath::Sin(phis);
39d810c8 1171
1172 fPyjets->P[0][iGlu] = px1;
1173 fPyjets->P[1][iGlu] = py1;
1174 fPyjets->P[2][iGlu] = pz1;
1175 fPyjets->P[3][iGlu] = pst;
1176 fPyjets->P[4][iGlu] = 0.;
1177
1178 fPyjets->K[0][iGlu] = 1 ;
1179 fPyjets->K[1][iGlu] = 21;
1180 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1181 fPyjets->K[3][iGlu] = -1;
1182 fPyjets->K[4][iGlu] = -1;
1183
1184 fPyjets->P[0][iGlu+1] = px2;
1185 fPyjets->P[1][iGlu+1] = py2;
1186 fPyjets->P[2][iGlu+1] = pz2;
1187 fPyjets->P[3][iGlu+1] = pst;
1188 fPyjets->P[4][iGlu+1] = 0.;
1189
1190 fPyjets->K[0][iGlu+1] = 1;
1191 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
1192 fPyjets->K[1][iGlu+1] = 21;
1193 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
1194 fPyjets->K[3][iGlu+1] = -1;
1195 fPyjets->K[4][iGlu+1] = -1;
1196 SetMSTU(1,0);
1197 SetMSTU(2,0);
1198 //
1199 // Boost back
1200 //
1201 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1202 }
1203/*
1204 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1205 Double_t px, py, pz;
1206 px = fPyjets->P[0][ig];
1207 py = fPyjets->P[1][ig];
1208 pz = fPyjets->P[2][ig];
1209 TVector3 v(px, py, pz);
1210 v.RotateZ(-phiq[isys]);
1211 v.RotateY(-thetaq[isys]);
1212 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1213 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1214 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1215 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1216 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1217 pxs += jtKick * TMath::Cos(phiKick);
1218 pys += jtKick * TMath::Sin(phiKick);
1219 TVector3 w(pxs, pys, pzs);
1220 w.RotateY(thetaq[isys]);
1221 w.RotateZ(phiq[isys]);
1222 fPyjets->P[0][ig] = w.X();
1223 fPyjets->P[1][ig] = w.Y();
1224 fPyjets->P[2][ig] = w.Z();
1225 fPyjets->P[2][ig] = w.Mag();
1226 }
1227*/
1228 } // kGluon
1229
1230
1231 // Check energy conservation
1232 Double_t pxs = 0.;
1233 Double_t pys = 0.;
1234 Double_t pzs = 0.;
1235 Double_t es = 14000.;
1236
1237 for (Int_t i = 0; i < numpart; i++)
1238 {
1239 kst = fPyjets->K[0][i];
1240 if (kst != 1 && kst != 2) continue;
1241 pxs += fPyjets->P[0][i];
1242 pys += fPyjets->P[1][i];
1243 pzs += fPyjets->P[2][i];
1244 es -= fPyjets->P[3][i];
1245 }
1246 if (TMath::Abs(pxs) > 1.e-2 ||
1247 TMath::Abs(pys) > 1.e-2 ||
1248 TMath::Abs(pzs) > 1.e-1) {
1249 printf("%e %e %e %e\n", pxs, pys, pzs, es);
1250// Fatal("Quench()", "4-Momentum non-conservation");
1251 }
1252
1253 } // end quenching loop (systems)
1254// Clean-up
1255 for (Int_t i = 0; i < numpart; i++)
1256 {
1257 imo = fPyjets->K[2][i];
1258 if (imo > 1000) {
1259 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1260 }
1261 }
1262// this->Pylist(1);
1263} // end quench
1264
1265
1266void AliPythia6::Pyquen(Double_t a, Int_t ibf, Double_t b)
1267{
1268 // Igor Lokthine's quenching routine
1269 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1270
1271 pyquen(a, ibf, b);
1272}
1273
1274void AliPythia6::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1275{
1276 // Set the parameters for the PYQUEN package.
1277 // See comments in PyquenCommon.h
1278
1279
1280 PYQPAR.t0 = t0;
1281 PYQPAR.tau0 = tau0;
1282 PYQPAR.nf = nf;
1283 PYQPAR.iengl = iengl;
1284 PYQPAR.iangl = iangl;
1285}
1286
1287void AliPythia6::LoadEvent(AliStack* stack, Int_t flag, Int_t reHadr)
1288{
1289//
1290// Load event into Pythia Common Block
1291//
1292
1293 Int_t npart = stack -> GetNprimary();
1294 Int_t n0 = 0;
1295
1296 if (!flag) {
1297 GetPyjets()->N = npart;
1298 } else {
1299 n0 = GetPyjets()->N;
1300 GetPyjets()->N = n0 + npart;
1301 }
1302
1303
1304 for (Int_t part = 0; part < npart; part++) {
1305 TParticle *mPart = stack->Particle(part);
1306
1307 Int_t kf = mPart->GetPdgCode();
1308 Int_t ks = mPart->GetStatusCode();
1309 Int_t idf = mPart->GetFirstDaughter();
1310 Int_t idl = mPart->GetLastDaughter();
1311
1312 if (reHadr) {
1313 if (ks == 11 || ks == 12) {
1314 ks -= 10;
1315 idf = -1;
1316 idl = -1;
1317 }
1318 }
1319
1320 Float_t px = mPart->Px();
1321 Float_t py = mPart->Py();
1322 Float_t pz = mPart->Pz();
1323 Float_t e = mPart->Energy();
1324 Float_t m = mPart->GetCalcMass();
1325
1326
1327 (GetPyjets())->P[0][part+n0] = px;
1328 (GetPyjets())->P[1][part+n0] = py;
1329 (GetPyjets())->P[2][part+n0] = pz;
1330 (GetPyjets())->P[3][part+n0] = e;
1331 (GetPyjets())->P[4][part+n0] = m;
1332
1333 (GetPyjets())->K[1][part+n0] = kf;
1334 (GetPyjets())->K[0][part+n0] = ks;
1335 (GetPyjets())->K[3][part+n0] = idf + 1;
1336 (GetPyjets())->K[4][part+n0] = idl + 1;
1337 (GetPyjets())->K[2][part+n0] = mPart->GetFirstMother() + 1;
1338 }
1339}
1340
1341
1342void AliPythia6::Pyevnw()
1343{
1344 // New multiple interaction scenario
1345 pyevnw();
1346}
1347
1348void AliPythia6::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1349{
1350 // Return event specific quenching parameters
1351 xp = fXJet;
1352 yp = fYJet;
1353 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1354
1355}
1356
1357void AliPythia6::ConfigHeavyFlavor()
1358{
1359 //
1360 // Default configuration for Heavy Flavor production
1361 //
1362 // All QCD processes
1363 //
1364 SetMSEL(1);
1365
1366 // No multiple interactions
1367 SetMSTP(81,0);
1368 SetPARP(81, 0.);
1369 SetPARP(82, 0.);
1370 // Initial/final parton shower on (Pythia default)
1371 SetMSTP(61,1);
1372 SetMSTP(71,1);
1373
1374 // 2nd order alpha_s
1375 SetMSTP(2,2);
1376
1377 // QCD scales
1378 SetMSTP(32,2);
1379 SetPARP(34,1.0);
1380}
1381
1382void AliPythia6::AtlasTuning()
1383{
1384 //
1385 // Configuration for the ATLAS tuning
1386 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ5L));
1387 SetMSTP(81,1); // Multiple Interactions ON
1388 SetMSTP(82,4); // Double Gaussian Model
1389 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1390 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1391 SetPARP(89,1000.); // [GeV] Ref. energy
1392 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1393 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1394 SetPARP(84,0.5); // Core radius
1395 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1396 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1397 SetPARP(67,1); // Regulates Initial State Radiation
1398}
1399
67b7bb0e 1400void AliPythia6::AtlasTuning_MC09()
1401{
1402 //
1403 // Configuration for the ATLAS tuning
1404 printf("ATLAS New TUNE MC09\n");
1405 SetMSTP(81,21); // treatment for MI, ISR, FSR and beam remnants: MI on, new model
1406 SetMSTP(82, 4); // Double Gaussian Model
1407 SetMSTP(52, 2); // External PDF
1408 SetMSTP(51, 20650); // MRST LO*
1409
1410
1411 SetMSTP(70, 0); // (was 2: def manual 1, def code 0) virtuality scale for ISR
1412 SetMSTP(72, 1); // (was 0: def 1) maximum scale for FSR
1413 SetMSTP(88, 1); // (was 0: def 1) strategy for qq junction to di-quark or baryon in beam remnant
1414 SetMSTP(90, 0); // (was 1: def 0) strategy of compensate the primordial kT
1415
1416 SetPARP(78, 0.3); // the amount of color reconnection in the final state
1417 SetPARP(80, 0.1); // probability of color partons kicked out from beam remnant
1418 SetPARP(82, 2.3); // [GeV] PT_min at Ref. energy
1419 SetPARP(83, 0.8); // Core density in proton matter distribution (def.value)
1420 SetPARP(84, 0.7); // Core radius
1421 SetPARP(90, 0.25); // 2*epsilon (exponent in power law)
1422 SetPARJ(81, 0.29); // (was 0.14: def 0.29) Labmda value in running alpha_s for parton showers
1423
1424 SetMSTP(95, 6);
1425 SetPARJ(41, 0.3); // a and b parameters of the symmm. Lund FF
1426 SetPARJ(42, 0.58);
1427 SetPARJ(46, 0.75); // mod. of the Lund FF for heavy end-point quarks
1428 SetPARP(89,1800.); // [GeV] Ref. energy
1429}
1430
39d810c8 1431void AliPythia6::SetPtHardRange(Float_t ptmin, Float_t ptmax)
1432{
1433 // Set the pt hard range
1434 SetCKIN(3, ptmin);
1435 SetCKIN(4, ptmax);
1436}
1437
1438void AliPythia6::SetYHardRange(Float_t ymin, Float_t ymax)
1439{
1440 // Set the y hard range
1441 SetCKIN(7, ymin);
1442 SetCKIN(8, ymax);
1443}
1444
1445
1446void AliPythia6::SetFragmentation(Int_t flag)
1447{
1448 // Switch fragmentation on/off
1449 SetMSTP(111, flag);
1450}
1451
1452void AliPythia6::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
1453{
1454// initial state radiation
1455 SetMSTP(61, flag1);
1456// final state radiation
1457 SetMSTP(71, flag2);
1458}
1459
1460void AliPythia6::SetIntrinsicKt(Float_t kt)
1461{
1462 // Set the inreinsic kt
1463 if (kt > 0.) {
1464 SetMSTP(91,1);
1465 SetPARP(91,kt);
1466 SetPARP(93, 4. * kt);
1467 } else {
1468 SetMSTP(91,0);
1469 }
1470}
1471
1472void AliPythia6::SwitchHFOff()
1473{
1474 // Switch off heavy flavor
1475 // Maximum number of quark flavours used in pdf
1476 SetMSTP(58, 3);
1477 // Maximum number of flavors that can be used in showers
1478 SetMSTJ(45, 3);
1479}
1480
1481void AliPythia6::SetPycellParameters(Float_t etamax, Int_t neta, Int_t nphi,
1482 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
1483{
1484// Set pycell parameters
1485 SetPARU(51, etamax);
1486 SetMSTU(51, neta);
1487 SetMSTU(52, nphi);
1488 SetPARU(58, thresh);
1489 SetPARU(52, etseed);
1490 SetPARU(53, minet);
1491 SetPARU(54, r);
1492 SetMSTU(54, 2);
1493}
1494
1495void AliPythia6::ModifiedSplitting()
1496{
1497 // Modified splitting probability as a model for quenching
1498 SetPARJ(200, 0.8);
1499 SetMSTJ(41, 1); // QCD radiation only
1500 SetMSTJ(42, 2); // angular ordering
1501 SetMSTJ(44, 2); // option to run alpha_s
1502 SetMSTJ(47, 0); // No correction back to hard scattering element
1503 SetMSTJ(50, 0); // No coherence in first branching
1504 SetPARJ(82, 1.); // Cut off for parton showers
1505}
1506
1507void AliPythia6::SwitchHadronisationOff()
1508{
1509 // Switch off hadronisarion
1510 SetMSTJ(1, 0);
1511}
1512
1513void AliPythia6::SwitchHadronisationOn()
1514{
1515 // Switch on hadronisarion
1516 SetMSTJ(1, 1);
1517}
1518
1519
1520void AliPythia6::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
1521{
1522 // Get x1, x2 and Q for this event
1523
1524 q = GetVINT(51);
1525 x1 = GetVINT(41);
1526 x2 = GetVINT(42);
1527}
1528
1529Float_t AliPythia6::GetXSection()
1530{
1531 // Get the total cross-section
1532 return (GetPARI(1));
1533}
1534
1535Float_t AliPythia6::GetPtHard()
1536{
1537 // Get the pT hard for this event
1538 return GetVINT(47);
1539}
1540
1541Int_t AliPythia6::ProcessCode()
1542{
1543 // Get the subprocess code
1544 return GetMSTI(1);
1545}
1546
1547void AliPythia6::PrintStatistics()
1548{
1549 // End of run statistics
1550 Pystat(1);
1551}
1552
1553void AliPythia6::EventListing()
1554{
1555 // End of run statistics
1556 Pylist(2);
1557}
1558
1559AliPythia6& AliPythia6::operator=(const AliPythia6& rhs)
1560{
1561// Assignment operator
1562 rhs.Copy(*this);
1563 return *this;
1564}
1565
1566 void AliPythia6::Copy(TObject&) const
1567{
1568 //
1569 // Copy
1570 //
1571 Fatal("Copy","Not implemented!\n");
1572}