bugfix: propagate CF output to ESD converter in order to fill the MC information
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia6.cxx
CommitLineData
39d810c8 1
2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
17/* $Id: AliPythia.cxx,v 1.40 2007/10/09 08:43:24 morsch Exp $ */
18
19#include "AliPythia6.h"
20#include "AliStack.h"
21#include "AliPythiaRndm.h"
22#include "AliFastGlauber.h"
23#include "AliQuenchingWeights.h"
24
25#include "TVector3.h"
26#include "TParticle.h"
27#include "PyquenCommon.h"
28
29ClassImp(AliPythia6)
30
31#ifndef WIN32
32# define pyclus pyclus_
33# define pycell pycell_
34# define pyshow pyshow_
35# define pyrobo pyrobo_
36# define pyquen pyquen_
37# define pyevnw pyevnw_
38# define type_of_call
39#else
40# define pyclus PYCLUS
41# define pycell PYCELL
42# define pyrobo PYROBO
43# define pyquen PYQUEN
44# define pyevnw PYEVNW
45# define type_of_call _stdcall
46#endif
47
48extern "C" void type_of_call pyclus(Int_t & );
49extern "C" void type_of_call pycell(Int_t & );
50extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
51extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
52extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
53extern "C" void type_of_call pyevnw();
54
55
56//_____________________________________________________________________________
57
58AliPythia6* AliPythia6::fgAliPythia=NULL;
59
60AliPythia6::AliPythia6():
61 TPythia6(),
62 AliPythiaBase(),
63 fProcess(kPyMb),
64 fEcms(0.),
65 fStrucFunc(kCTEQ5L),
66 fXJet(0.),
67 fYJet(0.),
68 fNGmax(30),
69 fZmax(0.97),
70 fGlauber(0),
71 fQuenchingWeights(0)
72{
73// Default Constructor
74//
75// Set random number
76 if (!AliPythiaRndm::GetPythiaRandom())
77 AliPythiaRndm::SetPythiaRandom(GetRandom());
78 fGlauber = 0;
79 fQuenchingWeights = 0;
80}
81
82AliPythia6::AliPythia6(const AliPythia6& pythia):
83 TPythia6(),
84 AliPythiaBase(),
85 fProcess(kPyMb),
86 fEcms(0.),
87 fStrucFunc(kCTEQ5L),
88 fXJet(0.),
89 fYJet(0.),
90 fNGmax(30),
91 fZmax(0.97),
92 fGlauber(0),
93 fQuenchingWeights(0)
94{
95 // Copy Constructor
96 pythia.Copy(*this);
97}
98
99void AliPythia6::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
100{
101// Initialise the process to generate
102 if (!AliPythiaRndm::GetPythiaRandom())
103 AliPythiaRndm::SetPythiaRandom(GetRandom());
104
105 fProcess = process;
106 fEcms = energy;
107 fStrucFunc = strucfunc;
108//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
109 SetMDCY(Pycomp(111) ,1,0);
110 SetMDCY(Pycomp(310) ,1,0);
111 SetMDCY(Pycomp(3122),1,0);
112 SetMDCY(Pycomp(3112),1,0);
113 SetMDCY(Pycomp(3212),1,0);
114 SetMDCY(Pycomp(3222),1,0);
115 SetMDCY(Pycomp(3312),1,0);
116 SetMDCY(Pycomp(3322),1,0);
117 SetMDCY(Pycomp(3334),1,0);
118 // Select structure function
119 SetMSTP(52,2);
120 SetMSTP(51,AliStructFuncType::PDFsetIndex(strucfunc));
121 // Particles produced in string fragmentation point directly to either of the two endpoints
122 // of the string (depending in the side they were generated from).
123 SetMSTU(16,2);
124
125//
126// Pythia initialisation for selected processes//
127//
128// Make MSEL clean
129//
130 for (Int_t i=1; i<= 200; i++) {
131 SetMSUB(i,0);
132 }
133// select charm production
134 switch (process)
135 {
136 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
137// Multiple interactions on.
138 SetMSTP(81,1);
139// Double Gaussian matter distribution.
140 SetMSTP(82,4);
141 SetPARP(83,0.5);
142 SetPARP(84,0.4);
143// pT0.
144 SetPARP(82,2.0);
145// Reference energy for pT0 and energy rescaling pace.
146 SetPARP(89,1800);
147 SetPARP(90,0.25);
148// String drawing almost completely minimizes string length.
149 SetPARP(85,0.9);
150 SetPARP(86,0.95);
151// ISR and FSR activity.
152 SetPARP(67,4);
153 SetPARP(71,4);
154// Lambda_FSR scale.
155 SetPARJ(81,0.29);
156 break;
157 case kPyOldUEQ2ordered2:
158// Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldPopcorn:
180// Old production mechanism: Old Popcorn
181 SetMSEL(1);
182 SetMSTJ(12,3);
183// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
184 SetMSTP(88,2);
185// (D=1)see can be used to form baryons (BARYON JUNCTION)
186 SetMSTJ(1,1);
187 AtlasTuning();
188 break;
189 case kPyCharm:
190 SetMSEL(4);
191// heavy quark masses
192
193 SetPMAS(4,1,1.2);
194//
195// primordial pT
196 SetMSTP(91,1);
197 SetPARP(91,1.);
198 SetPARP(93,5.);
199//
200 break;
201 case kPyBeauty:
202 SetMSEL(5);
203 SetPMAS(5,1,4.75);
204 break;
205 case kPyJpsi:
206 SetMSEL(0);
207// gg->J/Psi g
208 SetMSUB(86,1);
209 break;
210 case kPyJpsiChi:
211 SetMSEL(0);
212// gg->J/Psi g
213 SetMSUB(86,1);
214// gg-> chi_0c g
215 SetMSUB(87,1);
216// gg-> chi_1c g
217 SetMSUB(88,1);
218// gg-> chi_2c g
219 SetMSUB(89,1);
220 break;
221 case kPyCharmUnforced:
222 SetMSEL(0);
223// gq->qg
224 SetMSUB(28,1);
225// gg->qq
226 SetMSUB(53,1);
227// gg->gg
228 SetMSUB(68,1);
229 break;
230 case kPyBeautyUnforced:
231 SetMSEL(0);
232// gq->qg
233 SetMSUB(28,1);
234// gg->qq
235 SetMSUB(53,1);
236// gg->gg
237 SetMSUB(68,1);
238 break;
239 case kPyMb:
240// Minimum Bias pp-Collisions
241//
242//
243// select Pythia min. bias model
244 SetMSEL(0);
245 SetMSUB(92,1); // single diffraction AB-->XB
246 SetMSUB(93,1); // single diffraction AB-->AX
247 SetMSUB(94,1); // double diffraction
248 SetMSUB(95,1); // low pt production
249
250 AtlasTuning();
251 break;
04081a91 252
253 case kPyMbWithDirectPhoton:
254// Minimum Bias pp-Collisions with direct photon processes added
255//
256//
257// select Pythia min. bias model
258 SetMSEL(0);
259 SetMSUB(92,1); // single diffraction AB-->XB
260 SetMSUB(93,1); // single diffraction AB-->AX
261 SetMSUB(94,1); // double diffraction
262 SetMSUB(95,1); // low pt production
263
264 SetMSUB(14,1); //
265 SetMSUB(18,1); //
266 SetMSUB(29,1); //
267 SetMSUB(114,1); //
268 SetMSUB(115,1); //
269
270
271 AtlasTuning();
272 break;
273
39d810c8 274 case kPyMbDefault:
275// Minimum Bias pp-Collisions
276//
277//
278// select Pythia min. bias model
279 SetMSEL(0);
280 SetMSUB(92,1); // single diffraction AB-->XB
281 SetMSUB(93,1); // single diffraction AB-->AX
282 SetMSUB(94,1); // double diffraction
283 SetMSUB(95,1); // low pt production
284
285 break;
286 case kPyLhwgMb:
287// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
288// -> Pythia 6.3 or above is needed
289//
290 SetMSEL(0);
291 SetMSUB(92,1); // single diffraction AB-->XB
292 SetMSUB(93,1); // single diffraction AB-->AX
293 SetMSUB(94,1); // double diffraction
294 SetMSUB(95,1); // low pt production
295 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll));
296 SetMSTP(52,2);
297 SetMSTP(68,1);
298 SetMSTP(70,2);
299 SetMSTP(81,1); // Multiple Interactions ON
300 SetMSTP(82,4); // Double Gaussian Model
301 SetMSTP(88,1);
302
303 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
304 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
305 SetPARP(84,0.5); // Core radius
306 SetPARP(85,0.9); // Regulates gluon prod. mechanism
307 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
308
309 break;
310 case kPyMbNonDiffr:
311// Minimum Bias pp-Collisions
312//
313//
314// select Pythia min. bias model
315 SetMSEL(0);
316 SetMSUB(95,1); // low pt production
317
318 AtlasTuning();
319 break;
320 case kPyMbMSEL1:
321 ConfigHeavyFlavor();
322// Intrinsic <kT^2>
323 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
324 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
325 SetPARP(93,5.); // Upper cut-off
326// Set Q-quark mass
327 SetPMAS(4,1,1.2); // Charm quark mass
328 SetPMAS(5,1,4.78); // Beauty quark mass
329 SetPARP(71,4.); // Defaut value
330// Atlas Tuning
331 AtlasTuning();
332 break;
333 case kPyJets:
334//
335// QCD Jets
336//
337 SetMSEL(1);
338 // Pythia Tune A (CDF)
339 //
340 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
341 SetMSTP(82,4); // Double Gaussian Model
342 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
343 SetPARP(84,0.4); // Core radius
344 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
345 SetPARP(86,0.95); // Regulates gluon prod. mechanism
346 SetPARP(89,1800.); // [GeV] Ref. energy
347 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
348 break;
349 case kPyDirectGamma:
350 SetMSEL(10);
351 break;
352 case kPyCharmPbPbMNR:
353 case kPyD0PbPbMNR:
354 case kPyDPlusPbPbMNR:
355 case kPyDPlusStrangePbPbMNR:
356 // Tuning of Pythia parameters aimed to get a resonable agreement
357 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
358 // c-cbar single inclusive and double differential distributions.
359 // This parameter settings are meant to work with Pb-Pb collisions
360 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
361 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
362 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
363 ConfigHeavyFlavor();
364 // Intrinsic <kT>
365 SetMSTP(91,1);
366 SetPARP(91,1.304);
367 SetPARP(93,6.52);
368 // Set c-quark mass
369 SetPMAS(4,1,1.2);
370 break;
371 case kPyCharmpPbMNR:
372 case kPyD0pPbMNR:
373 case kPyDPluspPbMNR:
374 case kPyDPlusStrangepPbMNR:
375 // Tuning of Pythia parameters aimed to get a resonable agreement
376 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
377 // c-cbar single inclusive and double differential distributions.
378 // This parameter settings are meant to work with p-Pb collisions
379 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
380 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
381 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
382 ConfigHeavyFlavor();
383 // Intrinsic <kT>
384 SetMSTP(91,1);
385 SetPARP(91,1.16);
386 SetPARP(93,5.8);
387
388 // Set c-quark mass
389 SetPMAS(4,1,1.2);
390 break;
391 case kPyCharmppMNR:
392 case kPyD0ppMNR:
393 case kPyDPlusppMNR:
394 case kPyDPlusStrangeppMNR:
395 // Tuning of Pythia parameters aimed to get a resonable agreement
396 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
397 // c-cbar single inclusive and double differential distributions.
398 // This parameter settings are meant to work with pp collisions
399 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
400 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
401 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
402 ConfigHeavyFlavor();
403 // Intrinsic <kT^2>
404 SetMSTP(91,1);
405 SetPARP(91,1.);
406 SetPARP(93,5.);
407
408 // Set c-quark mass
409 SetPMAS(4,1,1.2);
410 break;
411 case kPyCharmppMNRwmi:
412 // Tuning of Pythia parameters aimed to get a resonable agreement
413 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
414 // c-cbar single inclusive and double differential distributions.
415 // This parameter settings are meant to work with pp collisions
416 // and with kCTEQ5L PDFs.
417 // Added multiple interactions according to ATLAS tune settings.
418 // To get a "reasonable" agreement with MNR results, events have to be
419 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
420 // set to 2.76 GeV.
421 // To get a "perfect" agreement with MNR results, events have to be
422 // generated in four ptHard bins with the following relative
423 // normalizations:
424 // 2.76-3 GeV: 25%
425 // 3-4 GeV: 40%
426 // 4-8 GeV: 29%
427 // >8 GeV: 6%
428 ConfigHeavyFlavor();
429 // Intrinsic <kT^2>
430 SetMSTP(91,1);
431 SetPARP(91,1.);
432 SetPARP(93,5.);
433
434 // Set c-quark mass
435 SetPMAS(4,1,1.2);
436 AtlasTuning();
437 break;
438 case kPyBeautyPbPbMNR:
439 // Tuning of Pythia parameters aimed to get a resonable agreement
440 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
441 // b-bbar single inclusive and double differential distributions.
442 // This parameter settings are meant to work with Pb-Pb collisions
443 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
444 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
445 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
446 ConfigHeavyFlavor();
447 // QCD scales
448 SetPARP(67,1.0);
449 SetPARP(71,1.0);
450 // Intrinsic <kT>
451 SetMSTP(91,1);
452 SetPARP(91,2.035);
453 SetPARP(93,10.17);
454 // Set b-quark mass
455 SetPMAS(5,1,4.75);
456 break;
457 case kPyBeautypPbMNR:
458 // Tuning of Pythia parameters aimed to get a resonable agreement
459 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
460 // b-bbar single inclusive and double differential distributions.
461 // This parameter settings are meant to work with p-Pb collisions
462 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
463 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
464 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
465 ConfigHeavyFlavor();
466 // QCD scales
467 SetPARP(67,1.0);
468 SetPARP(71,1.0);
469 // Intrinsic <kT>
470 SetMSTP(91,1);
471 SetPARP(91,1.60);
472 SetPARP(93,8.00);
473 // Set b-quark mass
474 SetPMAS(5,1,4.75);
475 break;
476 case kPyBeautyppMNR:
477 // Tuning of Pythia parameters aimed to get a resonable agreement
478 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
479 // b-bbar single inclusive and double differential distributions.
480 // This parameter settings are meant to work with pp collisions
481 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
482 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
483 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
484 ConfigHeavyFlavor();
485 // QCD scales
486 SetPARP(67,1.0);
487 SetPARP(71,1.0);
488
489 // Intrinsic <kT>
490 SetMSTP(91,1);
491 SetPARP(91,1.);
492 SetPARP(93,5.);
493
494 // Set b-quark mass
495 SetPMAS(5,1,4.75);
496 break;
497 case kPyBeautyppMNRwmi:
498 // Tuning of Pythia parameters aimed to get a resonable agreement
499 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
500 // b-bbar single inclusive and double differential distributions.
501 // This parameter settings are meant to work with pp collisions
502 // and with kCTEQ5L PDFs.
503 // Added multiple interactions according to ATLAS tune settings.
504 // To get a "reasonable" agreement with MNR results, events have to be
505 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
506 // set to 2.76 GeV.
507 // To get a "perfect" agreement with MNR results, events have to be
508 // generated in four ptHard bins with the following relative
509 // normalizations:
510 // 2.76-4 GeV: 5%
511 // 4-6 GeV: 31%
512 // 6-8 GeV: 28%
513 // >8 GeV: 36%
514 ConfigHeavyFlavor();
515 // QCD scales
516 SetPARP(67,1.0);
517 SetPARP(71,1.0);
518
519 // Intrinsic <kT>
520 SetMSTP(91,1);
521 SetPARP(91,1.);
522 SetPARP(93,5.);
523
524 // Set b-quark mass
525 SetPMAS(5,1,4.75);
526
527 AtlasTuning();
528 break;
529 case kPyW:
530
531 //Inclusive production of W+/-
532 SetMSEL(0);
533 //f fbar -> W+
534 SetMSUB(2,1);
535 // //f fbar -> g W+
536 // SetMSUB(16,1);
537 // //f fbar -> gamma W+
538 // SetMSUB(20,1);
539 // //f g -> f W+
540 // SetMSUB(31,1);
541 // //f gamma -> f W+
542 // SetMSUB(36,1);
543
544 // Initial/final parton shower on (Pythia default)
545 // With parton showers on we are generating "W inclusive process"
546 SetMSTP(61,1); //Initial QCD & QED showers on
547 SetMSTP(71,1); //Final QCD & QED showers on
548
549 break;
550
551 case kPyZ:
552
553 //Inclusive production of Z
554 SetMSEL(0);
555 //f fbar -> Z/gamma
556 SetMSUB(1,1);
557
558 // // f fbar -> g Z/gamma
559 // SetMSUB(15,1);
560 // // f fbar -> gamma Z/gamma
561 // SetMSUB(19,1);
562 // // f g -> f Z/gamma
563 // SetMSUB(30,1);
564 // // f gamma -> f Z/gamma
565 // SetMSUB(35,1);
566
567 //only Z included, not gamma
568 SetMSTP(43,2);
569
570 // Initial/final parton shower on (Pythia default)
571 // With parton showers on we are generating "Z inclusive process"
572 SetMSTP(61,1); //Initial QCD & QED showers on
573 SetMSTP(71,1); //Final QCD & QED showers on
574
575 break;
576
577 }
578//
579// Initialize PYTHIA
580 SetMSTP(41,1); // all resonance decays switched on
581 Initialize("CMS","p","p",fEcms);
582
583}
584
585Int_t AliPythia6::CheckedLuComp(Int_t kf)
586{
587// Check Lund particle code (for debugging)
588 Int_t kc=Pycomp(kf);
589 return kc;
590}
591
592void AliPythia6::SetNuclei(Int_t a1, Int_t a2)
593{
594// Treat protons as inside nuclei with mass numbers a1 and a2
595// The MSTP array in the PYPARS common block is used to enable and
596// select the nuclear structure functions.
597// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
598// =1: internal PYTHIA acording to MSTP(51)
599// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
600// If the following mass number both not equal zero, nuclear corrections of the stf are used.
601// MSTP(192) : Mass number of nucleus side 1
602// MSTP(193) : Mass number of nucleus side 2
603 SetMSTP(52,2);
604 SetMSTP(192, a1);
605 SetMSTP(193, a2);
606}
607
608
609AliPythia6* AliPythia6::Instance()
610{
611// Set random number generator
612 if (fgAliPythia) {
613 return fgAliPythia;
614 } else {
615 fgAliPythia = new AliPythia6();
616 return fgAliPythia;
617 }
618}
619
620void AliPythia6::PrintParticles()
621{
622// Print list of particl properties
623 Int_t np = 0;
624 char* name = new char[16];
625 for (Int_t kf=0; kf<1000000; kf++) {
626 for (Int_t c = 1; c > -2; c-=2) {
627 Int_t kc = Pycomp(c*kf);
628 if (kc) {
629 Float_t mass = GetPMAS(kc,1);
630 Float_t width = GetPMAS(kc,2);
631 Float_t tau = GetPMAS(kc,4);
632
633 Pyname(kf,name);
634
635 np++;
636
637 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
638 c*kf, name, mass, width, tau);
639 }
640 }
641 }
642 printf("\n Number of particles %d \n \n", np);
643}
644
645void AliPythia6::ResetDecayTable()
646{
647// Set default values for pythia decay switches
648 Int_t i;
649 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
650 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
651}
652
653void AliPythia6::SetDecayTable()
654{
655// Set default values for pythia decay switches
656//
657 Int_t i;
658 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
659 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
660}
661
662void AliPythia6::Pyclus(Int_t& njet)
663{
664// Call Pythia clustering algorithm
665//
666 pyclus(njet);
667}
668
669void AliPythia6::Pycell(Int_t& njet)
670{
671// Call Pythia jet reconstruction algorithm
672//
673 pycell(njet);
674}
675
676void AliPythia6::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
677{
678 // Get jet number i
679 Int_t n = GetN();
680 px = GetPyjets()->P[0][n+i];
681 py = GetPyjets()->P[1][n+i];
682 pz = GetPyjets()->P[2][n+i];
683 e = GetPyjets()->P[3][n+i];
684}
685
686void AliPythia6::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
687{
688// Call Pythia showering
689//
690 pyshow(ip1, ip2, qmax);
691}
692
693void AliPythia6::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
694{
695 pyrobo(imi, ima, the, phi, bex, bey, bez);
696}
697
698
699
700void AliPythia6::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
701{
702// Initializes
703// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
704// (2) The nuclear geometry using the Glauber Model
705//
706
18b7a4a1 707 fGlauber = AliFastGlauber::Instance();
39d810c8 708 fGlauber->Init(2);
709 fGlauber->SetCentralityClass(cMin, cMax);
710
711 fQuenchingWeights = new AliQuenchingWeights();
712 fQuenchingWeights->InitMult();
713 fQuenchingWeights->SetK(k);
714 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
715 fNGmax = ngmax;
716 fZmax = zmax;
717
718}
719
720
721void AliPythia6::Quench()
722{
723//
724//
725// Simple Jet Quenching routine:
726// =============================
727// The jet formed by all final state partons radiated by the parton created
728// in the hard collisions is quenched by a factor (1-z) using light cone variables in
729// the initial parton reference frame:
730// (E + p_z)new = (1-z) (E + p_z)old
731//
732//
733//
734//
735// The lost momentum is first balanced by one gluon with virtuality > 0.
736// Subsequently the gluon splits to yield two gluons with E = p.
737//
738//
739//
740 static Float_t eMean = 0.;
741 static Int_t icall = 0;
742
743 Double_t p0[4][5];
744 Double_t p1[4][5];
745 Double_t p2[4][5];
746 Int_t klast[4] = {-1, -1, -1, -1};
747
748 Int_t numpart = fPyjets->N;
749 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
750 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
751 Bool_t quenched[4];
752 Double_t wjtKick[4];
753 Int_t nGluon[4];
754 Int_t qPdg[4];
755 Int_t imo, kst, pdg;
756
757//
758// Sore information about Primary partons
759//
760// j =
761// 0, 1 partons from hard scattering
762// 2, 3 partons from initial state radiation
763//
764 for (Int_t i = 2; i <= 7; i++) {
765 Int_t j = 0;
766 // Skip gluons that participate in hard scattering
767 if (i == 4 || i == 5) continue;
768 // Gluons from hard Scattering
769 if (i == 6 || i == 7) {
770 j = i - 6;
771 pxq[j] = fPyjets->P[0][i];
772 pyq[j] = fPyjets->P[1][i];
773 pzq[j] = fPyjets->P[2][i];
774 eq[j] = fPyjets->P[3][i];
775 mq[j] = fPyjets->P[4][i];
776 } else {
777 // Gluons from initial state radiation
778 //
779 // Obtain 4-momentum vector from difference between original parton and parton after gluon
780 // radiation. Energy is calculated independently because initial state radition does not
781 // conserve strictly momentum and energy for each partonic system independently.
782 //
783 // Not very clean. Should be improved !
784 //
785 //
786 j = i;
787 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
788 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
789 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
790 mq[j] = fPyjets->P[4][i];
791 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
792 }
793//
794// Calculate some kinematic variables
795//
796 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
797 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
798 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
799 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
800 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
801 qPdg[j] = fPyjets->K[1][i];
802 }
803
804 Double_t int0[4];
805 Double_t int1[4];
806
807 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
808
809 for (Int_t j = 0; j < 4; j++) {
810 //
811 // Quench only central jets and with E > 10.
812 //
813
814
815 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
816 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
817
818 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
819 fZQuench[j] = 0.;
820 } else {
821 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
822 icall ++;
823 eMean += eloss;
824 }
825 //
826 // Extra pt
827 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
828 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
829 //
830 // Fractional energy loss
831 fZQuench[j] = eloss / eq[j];
832 //
833 // Avoid complete loss
834 //
1044c4d8 835 if (fZQuench[j] > fZmax) fZQuench[j] = fZmax;
39d810c8 836 //
837 // Some debug printing
838
839
840// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
841// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
842
843// fZQuench[j] = 0.8;
844// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
845 }
846
847 quenched[j] = (fZQuench[j] > 0.01);
848 } // primary partons
849
850
851
852 Double_t pNew[1000][4];
853 Int_t kNew[1000];
854 Int_t icount = 0;
855 Double_t zquench[4];
856
857//
858// System Loop
859 for (Int_t isys = 0; isys < 4; isys++) {
860// Skip to next system if not quenched.
861 if (!quenched[isys]) continue;
862
863 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
864 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
865 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
866 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
867
868
869
870 Int_t igMin = -1;
871 Int_t igMax = -1;
872 Double_t pg[4] = {0., 0., 0., 0.};
873
874//
875// Loop on radiation events
876
877 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
878 while (1) {
879 icount = 0;
880 for (Int_t k = 0; k < 4; k++)
881 {
882 p0[isys][k] = 0.;
883 p1[isys][k] = 0.;
884 p2[isys][k] = 0.;
885 }
886// Loop over partons
887 for (Int_t i = 0; i < numpart; i++)
888 {
889 imo = fPyjets->K[2][i];
890 kst = fPyjets->K[0][i];
891 pdg = fPyjets->K[1][i];
892
893
894
895// Quarks and gluons only
896 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
897// Particles from hard scattering only
898
899 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
900 Int_t imom = imo % 1000;
901 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
902 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
903
904
905// Skip comment lines
906 if (kst != 1 && kst != 2) continue;
907//
908// Parton kinematic
909 px = fPyjets->P[0][i];
910 py = fPyjets->P[1][i];
911 pz = fPyjets->P[2][i];
912 e = fPyjets->P[3][i];
913 m = fPyjets->P[4][i];
914 pt = TMath::Sqrt(px * px + py * py);
915 p = TMath::Sqrt(px * px + py * py + pz * pz);
916 phi = TMath::Pi() + TMath::ATan2(-py, -px);
917 theta = TMath::ATan2(pt, pz);
918
919//
920// Save 4-momentum sum for balancing
921 Int_t index = isys;
922
923 p0[index][0] += px;
924 p0[index][1] += py;
925 p0[index][2] += pz;
926 p0[index][3] += e;
927
928 klast[index] = i;
929
930//
931// Fractional energy loss
932 Double_t z = zquench[index];
933
934
935// Don't fully quench radiated gluons
936//
937 if (imo > 1000) {
938// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
939//
940
941 z = 0.02;
942 }
943// printf("z: %d %f\n", imo, z);
944
945
946//
947
948 //
949 //
950 // Transform into frame in which initial parton is along z-axis
951 //
952 TVector3 v(px, py, pz);
953 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
954 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
955
956 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
957 Double_t mt2 = jt * jt + m * m;
958 Double_t zmax = 1.;
959 //
960 // Kinematic limit on z
961 //
962 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
963 //
964 // Change light-cone kinematics rel. to initial parton
965 //
966 Double_t eppzOld = e + pl;
967 Double_t empzOld = e - pl;
968
969 Double_t eppzNew = (1. - z) * eppzOld;
970 Double_t empzNew = empzOld - mt2 * z / eppzOld;
971 Double_t eNew = 0.5 * (eppzNew + empzNew);
972 Double_t plNew = 0.5 * (eppzNew - empzNew);
973
974 Double_t jtNew;
975 //
976 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
977 Double_t mt2New = eppzNew * empzNew;
978 if (mt2New < 1.e-8) mt2New = 0.;
979 if (z < zmax) {
980 if (m * m > mt2New) {
981 //
982 // This should not happen
983 //
984 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
985 jtNew = 0;
986 } else {
987 jtNew = TMath::Sqrt(mt2New - m * m);
988 }
989 } else {
990 // If pT is to small (probably a leading massive particle) we scale only the energy
991 // This can cause negative masses of the radiated gluon
992 // Let's hope for the best ...
993 jtNew = jt;
994 eNew = TMath::Sqrt(plNew * plNew + mt2);
995
996 }
997 //
998 // Calculate new px, py
999 //
1044c4d8 1000 Double_t pxNew = 0;
1001 Double_t pyNew = 0;
1002
1003 if (jt > 0.) {
1004 pxNew = jtNew / jt * pxs;
1005 pyNew = jtNew / jt * pys;
1006 }
39d810c8 1007
1008// Double_t dpx = pxs - pxNew;
1009// Double_t dpy = pys - pyNew;
1010// Double_t dpz = pl - plNew;
1011// Double_t de = e - eNew;
1012// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
1013// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
1014// printf("New mass (2) %e %e \n", pxNew, pyNew);
1015 //
1016 // Rotate back
1017 //
1018 TVector3 w(pxNew, pyNew, plNew);
1019 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
1020 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
1021
1022 p1[index][0] += pxNew;
1023 p1[index][1] += pyNew;
1024 p1[index][2] += plNew;
1025 p1[index][3] += eNew;
1026 //
1027 // Updated 4-momentum vectors
1028 //
1029 pNew[icount][0] = pxNew;
1030 pNew[icount][1] = pyNew;
1031 pNew[icount][2] = plNew;
1032 pNew[icount][3] = eNew;
1033 kNew[icount] = i;
1034 icount++;
1035 } // parton loop
1036 //
1037 // Check if there was phase-space for quenching
1038 //
1039
1040 if (icount == 0) quenched[isys] = kFALSE;
1041 if (!quenched[isys]) break;
1042
1043 for (Int_t j = 0; j < 4; j++)
1044 {
1045 p2[isys][j] = p0[isys][j] - p1[isys][j];
1046 }
1047 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
1048 if (p2[isys][4] > 0.) {
1049 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1050 break;
1051 } else {
1052 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
1053 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
1054 if (p2[isys][4] < -0.01) {
1055 printf("Negative mass squared !\n");
1056 // Here we have to put the gluon back to mass shell
1057 // This will lead to a small energy imbalance
1058 p2[isys][4] = 0.;
1059 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1060 break;
1061 } else {
1062 p2[isys][4] = 0.;
1063 break;
1064 }
1065 }
1066 /*
1067 zHeavy *= 0.98;
1068 printf("zHeavy lowered to %f\n", zHeavy);
1069 if (zHeavy < 0.01) {
1070 printf("No success ! \n");
1071 icount = 0;
1072 quenched[isys] = kFALSE;
1073 break;
1074 }
1075 */
1076 } // iteration on z (while)
1077
1078// Update event record
1079 for (Int_t k = 0; k < icount; k++) {
1080// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1081 fPyjets->P[0][kNew[k]] = pNew[k][0];
1082 fPyjets->P[1][kNew[k]] = pNew[k][1];
1083 fPyjets->P[2][kNew[k]] = pNew[k][2];
1084 fPyjets->P[3][kNew[k]] = pNew[k][3];
1085 }
1086 //
1087 // Add the gluons
1088 //
1089 Int_t ish = 0;
1090 Int_t iGlu;
1091 if (!quenched[isys]) continue;
1092//
1093// Last parton from shower i
1094 Int_t in = klast[isys];
1095//
1096// Continue if no parton in shower i selected
1097 if (in == -1) continue;
1098//
1099// If this is the second initial parton and it is behind the first move pointer by previous ish
1100 if (isys == 1 && klast[1] > klast[0]) in += ish;
1101//
1102// Starting index
1103
1104// jmin = in - 1;
1105// How many additional gluons will be generated
1106 ish = 1;
1107 if (p2[isys][4] > 0.05) ish = 2;
1108//
1109// Position of gluons
1110 iGlu = numpart;
1111 if (iglu == 0) igMin = iGlu;
1112 igMax = iGlu;
1113 numpart += ish;
1114 (fPyjets->N) += ish;
1115
1116 if (ish == 1) {
1117 fPyjets->P[0][iGlu] = p2[isys][0];
1118 fPyjets->P[1][iGlu] = p2[isys][1];
1119 fPyjets->P[2][iGlu] = p2[isys][2];
1120 fPyjets->P[3][iGlu] = p2[isys][3];
1121 fPyjets->P[4][iGlu] = p2[isys][4];
1122
1123 fPyjets->K[0][iGlu] = 1;
1124 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
1125 fPyjets->K[1][iGlu] = 21;
1126 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1127 fPyjets->K[3][iGlu] = -1;
1128 fPyjets->K[4][iGlu] = -1;
1129
1130 pg[0] += p2[isys][0];
1131 pg[1] += p2[isys][1];
1132 pg[2] += p2[isys][2];
1133 pg[3] += p2[isys][3];
1134 } else {
1135 //
1136 // Split gluon in rest frame.
1137 //
1138 Double_t bx = p2[isys][0] / p2[isys][3];
1139 Double_t by = p2[isys][1] / p2[isys][3];
1140 Double_t bz = p2[isys][2] / p2[isys][3];
1141 Double_t pst = p2[isys][4] / 2.;
1142 //
1143 // Isotropic decay ????
1144 Double_t cost = 2. * gRandom->Rndm() - 1.;
60e55aee 1145 Double_t sint = TMath::Sqrt((1.-cost)*(1.+cost));
2ab330c9 1146 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
39d810c8 1147
1148 Double_t pz1 = pst * cost;
1149 Double_t pz2 = -pst * cost;
1150 Double_t pt1 = pst * sint;
1151 Double_t pt2 = -pst * sint;
2ab330c9 1152 Double_t px1 = pt1 * TMath::Cos(phis);
1153 Double_t py1 = pt1 * TMath::Sin(phis);
1154 Double_t px2 = pt2 * TMath::Cos(phis);
1155 Double_t py2 = pt2 * TMath::Sin(phis);
39d810c8 1156
1157 fPyjets->P[0][iGlu] = px1;
1158 fPyjets->P[1][iGlu] = py1;
1159 fPyjets->P[2][iGlu] = pz1;
1160 fPyjets->P[3][iGlu] = pst;
1161 fPyjets->P[4][iGlu] = 0.;
1162
1163 fPyjets->K[0][iGlu] = 1 ;
1164 fPyjets->K[1][iGlu] = 21;
1165 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1166 fPyjets->K[3][iGlu] = -1;
1167 fPyjets->K[4][iGlu] = -1;
1168
1169 fPyjets->P[0][iGlu+1] = px2;
1170 fPyjets->P[1][iGlu+1] = py2;
1171 fPyjets->P[2][iGlu+1] = pz2;
1172 fPyjets->P[3][iGlu+1] = pst;
1173 fPyjets->P[4][iGlu+1] = 0.;
1174
1175 fPyjets->K[0][iGlu+1] = 1;
1176 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
1177 fPyjets->K[1][iGlu+1] = 21;
1178 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
1179 fPyjets->K[3][iGlu+1] = -1;
1180 fPyjets->K[4][iGlu+1] = -1;
1181 SetMSTU(1,0);
1182 SetMSTU(2,0);
1183 //
1184 // Boost back
1185 //
1186 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1187 }
1188/*
1189 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1190 Double_t px, py, pz;
1191 px = fPyjets->P[0][ig];
1192 py = fPyjets->P[1][ig];
1193 pz = fPyjets->P[2][ig];
1194 TVector3 v(px, py, pz);
1195 v.RotateZ(-phiq[isys]);
1196 v.RotateY(-thetaq[isys]);
1197 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1198 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1199 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1200 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1201 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1202 pxs += jtKick * TMath::Cos(phiKick);
1203 pys += jtKick * TMath::Sin(phiKick);
1204 TVector3 w(pxs, pys, pzs);
1205 w.RotateY(thetaq[isys]);
1206 w.RotateZ(phiq[isys]);
1207 fPyjets->P[0][ig] = w.X();
1208 fPyjets->P[1][ig] = w.Y();
1209 fPyjets->P[2][ig] = w.Z();
1210 fPyjets->P[2][ig] = w.Mag();
1211 }
1212*/
1213 } // kGluon
1214
1215
1216 // Check energy conservation
1217 Double_t pxs = 0.;
1218 Double_t pys = 0.;
1219 Double_t pzs = 0.;
1220 Double_t es = 14000.;
1221
1222 for (Int_t i = 0; i < numpart; i++)
1223 {
1224 kst = fPyjets->K[0][i];
1225 if (kst != 1 && kst != 2) continue;
1226 pxs += fPyjets->P[0][i];
1227 pys += fPyjets->P[1][i];
1228 pzs += fPyjets->P[2][i];
1229 es -= fPyjets->P[3][i];
1230 }
1231 if (TMath::Abs(pxs) > 1.e-2 ||
1232 TMath::Abs(pys) > 1.e-2 ||
1233 TMath::Abs(pzs) > 1.e-1) {
1234 printf("%e %e %e %e\n", pxs, pys, pzs, es);
1235// Fatal("Quench()", "4-Momentum non-conservation");
1236 }
1237
1238 } // end quenching loop (systems)
1239// Clean-up
1240 for (Int_t i = 0; i < numpart; i++)
1241 {
1242 imo = fPyjets->K[2][i];
1243 if (imo > 1000) {
1244 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1245 }
1246 }
1247// this->Pylist(1);
1248} // end quench
1249
1250
1251void AliPythia6::Pyquen(Double_t a, Int_t ibf, Double_t b)
1252{
1253 // Igor Lokthine's quenching routine
1254 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1255
1256 pyquen(a, ibf, b);
1257}
1258
1259void AliPythia6::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1260{
1261 // Set the parameters for the PYQUEN package.
1262 // See comments in PyquenCommon.h
1263
1264
1265 PYQPAR.t0 = t0;
1266 PYQPAR.tau0 = tau0;
1267 PYQPAR.nf = nf;
1268 PYQPAR.iengl = iengl;
1269 PYQPAR.iangl = iangl;
1270}
1271
1272void AliPythia6::LoadEvent(AliStack* stack, Int_t flag, Int_t reHadr)
1273{
1274//
1275// Load event into Pythia Common Block
1276//
1277
1278 Int_t npart = stack -> GetNprimary();
1279 Int_t n0 = 0;
1280
1281 if (!flag) {
1282 GetPyjets()->N = npart;
1283 } else {
1284 n0 = GetPyjets()->N;
1285 GetPyjets()->N = n0 + npart;
1286 }
1287
1288
1289 for (Int_t part = 0; part < npart; part++) {
1290 TParticle *mPart = stack->Particle(part);
1291
1292 Int_t kf = mPart->GetPdgCode();
1293 Int_t ks = mPart->GetStatusCode();
1294 Int_t idf = mPart->GetFirstDaughter();
1295 Int_t idl = mPart->GetLastDaughter();
1296
1297 if (reHadr) {
1298 if (ks == 11 || ks == 12) {
1299 ks -= 10;
1300 idf = -1;
1301 idl = -1;
1302 }
1303 }
1304
1305 Float_t px = mPart->Px();
1306 Float_t py = mPart->Py();
1307 Float_t pz = mPart->Pz();
1308 Float_t e = mPart->Energy();
1309 Float_t m = mPart->GetCalcMass();
1310
1311
1312 (GetPyjets())->P[0][part+n0] = px;
1313 (GetPyjets())->P[1][part+n0] = py;
1314 (GetPyjets())->P[2][part+n0] = pz;
1315 (GetPyjets())->P[3][part+n0] = e;
1316 (GetPyjets())->P[4][part+n0] = m;
1317
1318 (GetPyjets())->K[1][part+n0] = kf;
1319 (GetPyjets())->K[0][part+n0] = ks;
1320 (GetPyjets())->K[3][part+n0] = idf + 1;
1321 (GetPyjets())->K[4][part+n0] = idl + 1;
1322 (GetPyjets())->K[2][part+n0] = mPart->GetFirstMother() + 1;
1323 }
1324}
1325
1326
1327void AliPythia6::Pyevnw()
1328{
1329 // New multiple interaction scenario
1330 pyevnw();
1331}
1332
1333void AliPythia6::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1334{
1335 // Return event specific quenching parameters
1336 xp = fXJet;
1337 yp = fYJet;
1338 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1339
1340}
1341
1342void AliPythia6::ConfigHeavyFlavor()
1343{
1344 //
1345 // Default configuration for Heavy Flavor production
1346 //
1347 // All QCD processes
1348 //
1349 SetMSEL(1);
1350
1351 // No multiple interactions
1352 SetMSTP(81,0);
1353 SetPARP(81, 0.);
1354 SetPARP(82, 0.);
1355 // Initial/final parton shower on (Pythia default)
1356 SetMSTP(61,1);
1357 SetMSTP(71,1);
1358
1359 // 2nd order alpha_s
1360 SetMSTP(2,2);
1361
1362 // QCD scales
1363 SetMSTP(32,2);
1364 SetPARP(34,1.0);
1365}
1366
1367void AliPythia6::AtlasTuning()
1368{
1369 //
1370 // Configuration for the ATLAS tuning
1371 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ5L));
1372 SetMSTP(81,1); // Multiple Interactions ON
1373 SetMSTP(82,4); // Double Gaussian Model
1374 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1375 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1376 SetPARP(89,1000.); // [GeV] Ref. energy
1377 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1378 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1379 SetPARP(84,0.5); // Core radius
1380 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1381 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1382 SetPARP(67,1); // Regulates Initial State Radiation
1383}
1384
1385void AliPythia6::SetPtHardRange(Float_t ptmin, Float_t ptmax)
1386{
1387 // Set the pt hard range
1388 SetCKIN(3, ptmin);
1389 SetCKIN(4, ptmax);
1390}
1391
1392void AliPythia6::SetYHardRange(Float_t ymin, Float_t ymax)
1393{
1394 // Set the y hard range
1395 SetCKIN(7, ymin);
1396 SetCKIN(8, ymax);
1397}
1398
1399
1400void AliPythia6::SetFragmentation(Int_t flag)
1401{
1402 // Switch fragmentation on/off
1403 SetMSTP(111, flag);
1404}
1405
1406void AliPythia6::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
1407{
1408// initial state radiation
1409 SetMSTP(61, flag1);
1410// final state radiation
1411 SetMSTP(71, flag2);
1412}
1413
1414void AliPythia6::SetIntrinsicKt(Float_t kt)
1415{
1416 // Set the inreinsic kt
1417 if (kt > 0.) {
1418 SetMSTP(91,1);
1419 SetPARP(91,kt);
1420 SetPARP(93, 4. * kt);
1421 } else {
1422 SetMSTP(91,0);
1423 }
1424}
1425
1426void AliPythia6::SwitchHFOff()
1427{
1428 // Switch off heavy flavor
1429 // Maximum number of quark flavours used in pdf
1430 SetMSTP(58, 3);
1431 // Maximum number of flavors that can be used in showers
1432 SetMSTJ(45, 3);
1433}
1434
1435void AliPythia6::SetPycellParameters(Float_t etamax, Int_t neta, Int_t nphi,
1436 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
1437{
1438// Set pycell parameters
1439 SetPARU(51, etamax);
1440 SetMSTU(51, neta);
1441 SetMSTU(52, nphi);
1442 SetPARU(58, thresh);
1443 SetPARU(52, etseed);
1444 SetPARU(53, minet);
1445 SetPARU(54, r);
1446 SetMSTU(54, 2);
1447}
1448
1449void AliPythia6::ModifiedSplitting()
1450{
1451 // Modified splitting probability as a model for quenching
1452 SetPARJ(200, 0.8);
1453 SetMSTJ(41, 1); // QCD radiation only
1454 SetMSTJ(42, 2); // angular ordering
1455 SetMSTJ(44, 2); // option to run alpha_s
1456 SetMSTJ(47, 0); // No correction back to hard scattering element
1457 SetMSTJ(50, 0); // No coherence in first branching
1458 SetPARJ(82, 1.); // Cut off for parton showers
1459}
1460
1461void AliPythia6::SwitchHadronisationOff()
1462{
1463 // Switch off hadronisarion
1464 SetMSTJ(1, 0);
1465}
1466
1467void AliPythia6::SwitchHadronisationOn()
1468{
1469 // Switch on hadronisarion
1470 SetMSTJ(1, 1);
1471}
1472
1473
1474void AliPythia6::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
1475{
1476 // Get x1, x2 and Q for this event
1477
1478 q = GetVINT(51);
1479 x1 = GetVINT(41);
1480 x2 = GetVINT(42);
1481}
1482
1483Float_t AliPythia6::GetXSection()
1484{
1485 // Get the total cross-section
1486 return (GetPARI(1));
1487}
1488
1489Float_t AliPythia6::GetPtHard()
1490{
1491 // Get the pT hard for this event
1492 return GetVINT(47);
1493}
1494
1495Int_t AliPythia6::ProcessCode()
1496{
1497 // Get the subprocess code
1498 return GetMSTI(1);
1499}
1500
1501void AliPythia6::PrintStatistics()
1502{
1503 // End of run statistics
1504 Pystat(1);
1505}
1506
1507void AliPythia6::EventListing()
1508{
1509 // End of run statistics
1510 Pylist(2);
1511}
1512
1513AliPythia6& AliPythia6::operator=(const AliPythia6& rhs)
1514{
1515// Assignment operator
1516 rhs.Copy(*this);
1517 return *this;
1518}
1519
1520 void AliPythia6::Copy(TObject&) const
1521{
1522 //
1523 // Copy
1524 //
1525 Fatal("Copy","Not implemented!\n");
1526}