(Jens Viechula)
[u/mrichter/AliRoot.git] / PYTHIA6 / AliPythia6.cxx
CommitLineData
39d810c8 1
2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
17/* $Id: AliPythia.cxx,v 1.40 2007/10/09 08:43:24 morsch Exp $ */
18
19#include "AliPythia6.h"
20#include "AliStack.h"
21#include "AliPythiaRndm.h"
22#include "AliFastGlauber.h"
23#include "AliQuenchingWeights.h"
24
25#include "TVector3.h"
26#include "TParticle.h"
27#include "PyquenCommon.h"
28
29ClassImp(AliPythia6)
30
31#ifndef WIN32
32# define pyclus pyclus_
33# define pycell pycell_
34# define pyshow pyshow_
35# define pyrobo pyrobo_
36# define pyquen pyquen_
37# define pyevnw pyevnw_
38# define type_of_call
39#else
40# define pyclus PYCLUS
41# define pycell PYCELL
42# define pyrobo PYROBO
43# define pyquen PYQUEN
44# define pyevnw PYEVNW
45# define type_of_call _stdcall
46#endif
47
48extern "C" void type_of_call pyclus(Int_t & );
49extern "C" void type_of_call pycell(Int_t & );
50extern "C" void type_of_call pyshow(Int_t &, Int_t &, Double_t &);
51extern "C" void type_of_call pyrobo(Int_t &, Int_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &);
52extern "C" void type_of_call pyquen(Double_t &, Int_t &, Double_t &);
53extern "C" void type_of_call pyevnw();
54
55
56//_____________________________________________________________________________
57
58AliPythia6* AliPythia6::fgAliPythia=NULL;
59
60AliPythia6::AliPythia6():
61 TPythia6(),
62 AliPythiaBase(),
63 fProcess(kPyMb),
64 fEcms(0.),
65 fStrucFunc(kCTEQ5L),
66 fXJet(0.),
67 fYJet(0.),
68 fNGmax(30),
69 fZmax(0.97),
70 fGlauber(0),
71 fQuenchingWeights(0)
72{
73// Default Constructor
74//
75// Set random number
76 if (!AliPythiaRndm::GetPythiaRandom())
77 AliPythiaRndm::SetPythiaRandom(GetRandom());
78 fGlauber = 0;
79 fQuenchingWeights = 0;
80}
81
82AliPythia6::AliPythia6(const AliPythia6& pythia):
83 TPythia6(),
84 AliPythiaBase(),
85 fProcess(kPyMb),
86 fEcms(0.),
87 fStrucFunc(kCTEQ5L),
88 fXJet(0.),
89 fYJet(0.),
90 fNGmax(30),
91 fZmax(0.97),
92 fGlauber(0),
93 fQuenchingWeights(0)
94{
95 // Copy Constructor
96 pythia.Copy(*this);
97}
98
99void AliPythia6::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
100{
101// Initialise the process to generate
102 if (!AliPythiaRndm::GetPythiaRandom())
103 AliPythiaRndm::SetPythiaRandom(GetRandom());
104
105 fProcess = process;
106 fEcms = energy;
107 fStrucFunc = strucfunc;
108//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
109 SetMDCY(Pycomp(111) ,1,0);
110 SetMDCY(Pycomp(310) ,1,0);
111 SetMDCY(Pycomp(3122),1,0);
112 SetMDCY(Pycomp(3112),1,0);
113 SetMDCY(Pycomp(3212),1,0);
114 SetMDCY(Pycomp(3222),1,0);
115 SetMDCY(Pycomp(3312),1,0);
116 SetMDCY(Pycomp(3322),1,0);
117 SetMDCY(Pycomp(3334),1,0);
118 // Select structure function
119 SetMSTP(52,2);
120 SetMSTP(51,AliStructFuncType::PDFsetIndex(strucfunc));
121 // Particles produced in string fragmentation point directly to either of the two endpoints
122 // of the string (depending in the side they were generated from).
123 SetMSTU(16,2);
124
125//
126// Pythia initialisation for selected processes//
127//
128// Make MSEL clean
129//
130 for (Int_t i=1; i<= 200; i++) {
131 SetMSUB(i,0);
132 }
133// select charm production
134 switch (process)
135 {
136 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
137// Multiple interactions on.
138 SetMSTP(81,1);
139// Double Gaussian matter distribution.
140 SetMSTP(82,4);
141 SetPARP(83,0.5);
142 SetPARP(84,0.4);
143// pT0.
144 SetPARP(82,2.0);
145// Reference energy for pT0 and energy rescaling pace.
146 SetPARP(89,1800);
147 SetPARP(90,0.25);
148// String drawing almost completely minimizes string length.
149 SetPARP(85,0.9);
150 SetPARP(86,0.95);
151// ISR and FSR activity.
152 SetPARP(67,4);
153 SetPARP(71,4);
154// Lambda_FSR scale.
155 SetPARJ(81,0.29);
156 break;
157 case kPyOldUEQ2ordered2:
158// Old underlying events with Q2 ordered QCD processes
159// Multiple interactions on.
160 SetMSTP(81,1);
161// Double Gaussian matter distribution.
162 SetMSTP(82,4);
163 SetPARP(83,0.5);
164 SetPARP(84,0.4);
165// pT0.
166 SetPARP(82,2.0);
167// Reference energy for pT0 and energy rescaling pace.
168 SetPARP(89,1800);
169 SetPARP(90,0.16); // here is the difference with kPyOldUEQ2ordered
170// String drawing almost completely minimizes string length.
171 SetPARP(85,0.9);
172 SetPARP(86,0.95);
173// ISR and FSR activity.
174 SetPARP(67,4);
175 SetPARP(71,4);
176// Lambda_FSR scale.
177 SetPARJ(81,0.29);
178 break;
179 case kPyOldPopcorn:
180// Old production mechanism: Old Popcorn
181 SetMSEL(1);
182 SetMSTJ(12,3);
183// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
184 SetMSTP(88,2);
185// (D=1)see can be used to form baryons (BARYON JUNCTION)
186 SetMSTJ(1,1);
187 AtlasTuning();
188 break;
189 case kPyCharm:
190 SetMSEL(4);
191// heavy quark masses
192
193 SetPMAS(4,1,1.2);
194//
195// primordial pT
196 SetMSTP(91,1);
197 SetPARP(91,1.);
198 SetPARP(93,5.);
199//
200 break;
201 case kPyBeauty:
202 SetMSEL(5);
203 SetPMAS(5,1,4.75);
204 break;
205 case kPyJpsi:
206 SetMSEL(0);
207// gg->J/Psi g
208 SetMSUB(86,1);
209 break;
210 case kPyJpsiChi:
211 SetMSEL(0);
212// gg->J/Psi g
213 SetMSUB(86,1);
214// gg-> chi_0c g
215 SetMSUB(87,1);
216// gg-> chi_1c g
217 SetMSUB(88,1);
218// gg-> chi_2c g
219 SetMSUB(89,1);
220 break;
221 case kPyCharmUnforced:
222 SetMSEL(0);
223// gq->qg
224 SetMSUB(28,1);
225// gg->qq
226 SetMSUB(53,1);
227// gg->gg
228 SetMSUB(68,1);
229 break;
230 case kPyBeautyUnforced:
231 SetMSEL(0);
232// gq->qg
233 SetMSUB(28,1);
234// gg->qq
235 SetMSUB(53,1);
236// gg->gg
237 SetMSUB(68,1);
238 break;
239 case kPyMb:
240// Minimum Bias pp-Collisions
241//
242//
243// select Pythia min. bias model
244 SetMSEL(0);
245 SetMSUB(92,1); // single diffraction AB-->XB
246 SetMSUB(93,1); // single diffraction AB-->AX
247 SetMSUB(94,1); // double diffraction
248 SetMSUB(95,1); // low pt production
249
250 AtlasTuning();
251 break;
252 case kPyMbDefault:
253// Minimum Bias pp-Collisions
254//
255//
256// select Pythia min. bias model
257 SetMSEL(0);
258 SetMSUB(92,1); // single diffraction AB-->XB
259 SetMSUB(93,1); // single diffraction AB-->AX
260 SetMSUB(94,1); // double diffraction
261 SetMSUB(95,1); // low pt production
262
263 break;
264 case kPyLhwgMb:
265// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
266// -> Pythia 6.3 or above is needed
267//
268 SetMSEL(0);
269 SetMSUB(92,1); // single diffraction AB-->XB
270 SetMSUB(93,1); // single diffraction AB-->AX
271 SetMSUB(94,1); // double diffraction
272 SetMSUB(95,1); // low pt production
273 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ6ll));
274 SetMSTP(52,2);
275 SetMSTP(68,1);
276 SetMSTP(70,2);
277 SetMSTP(81,1); // Multiple Interactions ON
278 SetMSTP(82,4); // Double Gaussian Model
279 SetMSTP(88,1);
280
281 SetPARP(82,2.3); // [GeV] PT_min at Ref. energy
282 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
283 SetPARP(84,0.5); // Core radius
284 SetPARP(85,0.9); // Regulates gluon prod. mechanism
285 SetPARP(90,0.2); // 2*epsilon (exponent in power law)
286
287 break;
288 case kPyMbNonDiffr:
289// Minimum Bias pp-Collisions
290//
291//
292// select Pythia min. bias model
293 SetMSEL(0);
294 SetMSUB(95,1); // low pt production
295
296 AtlasTuning();
297 break;
298 case kPyMbMSEL1:
299 ConfigHeavyFlavor();
300// Intrinsic <kT^2>
301 SetMSTP(91,1);// Width (1=gaussian) primordial kT dist. inside hadrons
302 SetPARP(91,1.); // <kT^2> = PARP(91,1.)^2
303 SetPARP(93,5.); // Upper cut-off
304// Set Q-quark mass
305 SetPMAS(4,1,1.2); // Charm quark mass
306 SetPMAS(5,1,4.78); // Beauty quark mass
307 SetPARP(71,4.); // Defaut value
308// Atlas Tuning
309 AtlasTuning();
310 break;
311 case kPyJets:
312//
313// QCD Jets
314//
315 SetMSEL(1);
316 // Pythia Tune A (CDF)
317 //
318 SetPARP(67,2.5); // Regulates Initial State Radiation (value from best fit to D0 dijet analysis)
319 SetMSTP(82,4); // Double Gaussian Model
320 SetPARP(82,2.0); // [GeV] PT_min at Ref. energy
321 SetPARP(84,0.4); // Core radius
322 SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
323 SetPARP(86,0.95); // Regulates gluon prod. mechanism
324 SetPARP(89,1800.); // [GeV] Ref. energy
325 SetPARP(90,0.25); // 2*epsilon (exponent in power law)
326 break;
327 case kPyDirectGamma:
328 SetMSEL(10);
329 break;
330 case kPyCharmPbPbMNR:
331 case kPyD0PbPbMNR:
332 case kPyDPlusPbPbMNR:
333 case kPyDPlusStrangePbPbMNR:
334 // Tuning of Pythia parameters aimed to get a resonable agreement
335 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
336 // c-cbar single inclusive and double differential distributions.
337 // This parameter settings are meant to work with Pb-Pb collisions
338 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
339 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
340 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
341 ConfigHeavyFlavor();
342 // Intrinsic <kT>
343 SetMSTP(91,1);
344 SetPARP(91,1.304);
345 SetPARP(93,6.52);
346 // Set c-quark mass
347 SetPMAS(4,1,1.2);
348 break;
349 case kPyCharmpPbMNR:
350 case kPyD0pPbMNR:
351 case kPyDPluspPbMNR:
352 case kPyDPlusStrangepPbMNR:
353 // Tuning of Pythia parameters aimed to get a resonable agreement
354 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
355 // c-cbar single inclusive and double differential distributions.
356 // This parameter settings are meant to work with p-Pb collisions
357 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
358 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
359 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
360 ConfigHeavyFlavor();
361 // Intrinsic <kT>
362 SetMSTP(91,1);
363 SetPARP(91,1.16);
364 SetPARP(93,5.8);
365
366 // Set c-quark mass
367 SetPMAS(4,1,1.2);
368 break;
369 case kPyCharmppMNR:
370 case kPyD0ppMNR:
371 case kPyDPlusppMNR:
372 case kPyDPlusStrangeppMNR:
373 // Tuning of Pythia parameters aimed to get a resonable agreement
374 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
375 // c-cbar single inclusive and double differential distributions.
376 // This parameter settings are meant to work with pp collisions
377 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
378 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
379 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
380 ConfigHeavyFlavor();
381 // Intrinsic <kT^2>
382 SetMSTP(91,1);
383 SetPARP(91,1.);
384 SetPARP(93,5.);
385
386 // Set c-quark mass
387 SetPMAS(4,1,1.2);
388 break;
389 case kPyCharmppMNRwmi:
390 // Tuning of Pythia parameters aimed to get a resonable agreement
391 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
392 // c-cbar single inclusive and double differential distributions.
393 // This parameter settings are meant to work with pp collisions
394 // and with kCTEQ5L PDFs.
395 // Added multiple interactions according to ATLAS tune settings.
396 // To get a "reasonable" agreement with MNR results, events have to be
397 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
398 // set to 2.76 GeV.
399 // To get a "perfect" agreement with MNR results, events have to be
400 // generated in four ptHard bins with the following relative
401 // normalizations:
402 // 2.76-3 GeV: 25%
403 // 3-4 GeV: 40%
404 // 4-8 GeV: 29%
405 // >8 GeV: 6%
406 ConfigHeavyFlavor();
407 // Intrinsic <kT^2>
408 SetMSTP(91,1);
409 SetPARP(91,1.);
410 SetPARP(93,5.);
411
412 // Set c-quark mass
413 SetPMAS(4,1,1.2);
414 AtlasTuning();
415 break;
416 case kPyBeautyPbPbMNR:
417 // Tuning of Pythia parameters aimed to get a resonable agreement
418 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
419 // b-bbar single inclusive and double differential distributions.
420 // This parameter settings are meant to work with Pb-Pb collisions
421 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
422 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
423 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
424 ConfigHeavyFlavor();
425 // QCD scales
426 SetPARP(67,1.0);
427 SetPARP(71,1.0);
428 // Intrinsic <kT>
429 SetMSTP(91,1);
430 SetPARP(91,2.035);
431 SetPARP(93,10.17);
432 // Set b-quark mass
433 SetPMAS(5,1,4.75);
434 break;
435 case kPyBeautypPbMNR:
436 // Tuning of Pythia parameters aimed to get a resonable agreement
437 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
438 // b-bbar single inclusive and double differential distributions.
439 // This parameter settings are meant to work with p-Pb collisions
440 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
441 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
442 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
443 ConfigHeavyFlavor();
444 // QCD scales
445 SetPARP(67,1.0);
446 SetPARP(71,1.0);
447 // Intrinsic <kT>
448 SetMSTP(91,1);
449 SetPARP(91,1.60);
450 SetPARP(93,8.00);
451 // Set b-quark mass
452 SetPMAS(5,1,4.75);
453 break;
454 case kPyBeautyppMNR:
455 // Tuning of Pythia parameters aimed to get a resonable agreement
456 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
457 // b-bbar single inclusive and double differential distributions.
458 // This parameter settings are meant to work with pp collisions
459 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
460 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
461 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
462 ConfigHeavyFlavor();
463 // QCD scales
464 SetPARP(67,1.0);
465 SetPARP(71,1.0);
466
467 // Intrinsic <kT>
468 SetMSTP(91,1);
469 SetPARP(91,1.);
470 SetPARP(93,5.);
471
472 // Set b-quark mass
473 SetPMAS(5,1,4.75);
474 break;
475 case kPyBeautyppMNRwmi:
476 // Tuning of Pythia parameters aimed to get a resonable agreement
477 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
478 // b-bbar single inclusive and double differential distributions.
479 // This parameter settings are meant to work with pp collisions
480 // and with kCTEQ5L PDFs.
481 // Added multiple interactions according to ATLAS tune settings.
482 // To get a "reasonable" agreement with MNR results, events have to be
483 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
484 // set to 2.76 GeV.
485 // To get a "perfect" agreement with MNR results, events have to be
486 // generated in four ptHard bins with the following relative
487 // normalizations:
488 // 2.76-4 GeV: 5%
489 // 4-6 GeV: 31%
490 // 6-8 GeV: 28%
491 // >8 GeV: 36%
492 ConfigHeavyFlavor();
493 // QCD scales
494 SetPARP(67,1.0);
495 SetPARP(71,1.0);
496
497 // Intrinsic <kT>
498 SetMSTP(91,1);
499 SetPARP(91,1.);
500 SetPARP(93,5.);
501
502 // Set b-quark mass
503 SetPMAS(5,1,4.75);
504
505 AtlasTuning();
506 break;
507 case kPyW:
508
509 //Inclusive production of W+/-
510 SetMSEL(0);
511 //f fbar -> W+
512 SetMSUB(2,1);
513 // //f fbar -> g W+
514 // SetMSUB(16,1);
515 // //f fbar -> gamma W+
516 // SetMSUB(20,1);
517 // //f g -> f W+
518 // SetMSUB(31,1);
519 // //f gamma -> f W+
520 // SetMSUB(36,1);
521
522 // Initial/final parton shower on (Pythia default)
523 // With parton showers on we are generating "W inclusive process"
524 SetMSTP(61,1); //Initial QCD & QED showers on
525 SetMSTP(71,1); //Final QCD & QED showers on
526
527 break;
528
529 case kPyZ:
530
531 //Inclusive production of Z
532 SetMSEL(0);
533 //f fbar -> Z/gamma
534 SetMSUB(1,1);
535
536 // // f fbar -> g Z/gamma
537 // SetMSUB(15,1);
538 // // f fbar -> gamma Z/gamma
539 // SetMSUB(19,1);
540 // // f g -> f Z/gamma
541 // SetMSUB(30,1);
542 // // f gamma -> f Z/gamma
543 // SetMSUB(35,1);
544
545 //only Z included, not gamma
546 SetMSTP(43,2);
547
548 // Initial/final parton shower on (Pythia default)
549 // With parton showers on we are generating "Z inclusive process"
550 SetMSTP(61,1); //Initial QCD & QED showers on
551 SetMSTP(71,1); //Final QCD & QED showers on
552
553 break;
554
555 }
556//
557// Initialize PYTHIA
558 SetMSTP(41,1); // all resonance decays switched on
559 Initialize("CMS","p","p",fEcms);
560
561}
562
563Int_t AliPythia6::CheckedLuComp(Int_t kf)
564{
565// Check Lund particle code (for debugging)
566 Int_t kc=Pycomp(kf);
567 return kc;
568}
569
570void AliPythia6::SetNuclei(Int_t a1, Int_t a2)
571{
572// Treat protons as inside nuclei with mass numbers a1 and a2
573// The MSTP array in the PYPARS common block is used to enable and
574// select the nuclear structure functions.
575// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
576// =1: internal PYTHIA acording to MSTP(51)
577// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
578// If the following mass number both not equal zero, nuclear corrections of the stf are used.
579// MSTP(192) : Mass number of nucleus side 1
580// MSTP(193) : Mass number of nucleus side 2
581 SetMSTP(52,2);
582 SetMSTP(192, a1);
583 SetMSTP(193, a2);
584}
585
586
587AliPythia6* AliPythia6::Instance()
588{
589// Set random number generator
590 if (fgAliPythia) {
591 return fgAliPythia;
592 } else {
593 fgAliPythia = new AliPythia6();
594 return fgAliPythia;
595 }
596}
597
598void AliPythia6::PrintParticles()
599{
600// Print list of particl properties
601 Int_t np = 0;
602 char* name = new char[16];
603 for (Int_t kf=0; kf<1000000; kf++) {
604 for (Int_t c = 1; c > -2; c-=2) {
605 Int_t kc = Pycomp(c*kf);
606 if (kc) {
607 Float_t mass = GetPMAS(kc,1);
608 Float_t width = GetPMAS(kc,2);
609 Float_t tau = GetPMAS(kc,4);
610
611 Pyname(kf,name);
612
613 np++;
614
615 printf("\n mass, width, tau: %6d %s %10.3f %10.3e %10.3e",
616 c*kf, name, mass, width, tau);
617 }
618 }
619 }
620 printf("\n Number of particles %d \n \n", np);
621}
622
623void AliPythia6::ResetDecayTable()
624{
625// Set default values for pythia decay switches
626 Int_t i;
627 for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
628 for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
629}
630
631void AliPythia6::SetDecayTable()
632{
633// Set default values for pythia decay switches
634//
635 Int_t i;
636 for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
637 for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
638}
639
640void AliPythia6::Pyclus(Int_t& njet)
641{
642// Call Pythia clustering algorithm
643//
644 pyclus(njet);
645}
646
647void AliPythia6::Pycell(Int_t& njet)
648{
649// Call Pythia jet reconstruction algorithm
650//
651 pycell(njet);
652}
653
654void AliPythia6::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
655{
656 // Get jet number i
657 Int_t n = GetN();
658 px = GetPyjets()->P[0][n+i];
659 py = GetPyjets()->P[1][n+i];
660 pz = GetPyjets()->P[2][n+i];
661 e = GetPyjets()->P[3][n+i];
662}
663
664void AliPythia6::Pyshow(Int_t ip1, Int_t ip2, Double_t qmax)
665{
666// Call Pythia showering
667//
668 pyshow(ip1, ip2, qmax);
669}
670
671void AliPythia6::Pyrobo(Int_t imi, Int_t ima, Double_t the, Double_t phi, Double_t bex, Double_t bey, Double_t bez)
672{
673 pyrobo(imi, ima, the, phi, bex, bey, bez);
674}
675
676
677
678void AliPythia6::InitQuenching(Float_t cMin, Float_t cMax, Float_t k, Int_t iECMethod, Float_t zmax, Int_t ngmax)
679{
680// Initializes
681// (1) The quenching model using quenching weights according to C. Salgado and U. Wiedemann
682// (2) The nuclear geometry using the Glauber Model
683//
684
685 fGlauber = new AliFastGlauber();
686 fGlauber->Init(2);
687 fGlauber->SetCentralityClass(cMin, cMax);
688
689 fQuenchingWeights = new AliQuenchingWeights();
690 fQuenchingWeights->InitMult();
691 fQuenchingWeights->SetK(k);
692 fQuenchingWeights->SetECMethod(AliQuenchingWeights::kECMethod(iECMethod));
693 fNGmax = ngmax;
694 fZmax = zmax;
695
696}
697
698
699void AliPythia6::Quench()
700{
701//
702//
703// Simple Jet Quenching routine:
704// =============================
705// The jet formed by all final state partons radiated by the parton created
706// in the hard collisions is quenched by a factor (1-z) using light cone variables in
707// the initial parton reference frame:
708// (E + p_z)new = (1-z) (E + p_z)old
709//
710//
711//
712//
713// The lost momentum is first balanced by one gluon with virtuality > 0.
714// Subsequently the gluon splits to yield two gluons with E = p.
715//
716//
717//
718 static Float_t eMean = 0.;
719 static Int_t icall = 0;
720
721 Double_t p0[4][5];
722 Double_t p1[4][5];
723 Double_t p2[4][5];
724 Int_t klast[4] = {-1, -1, -1, -1};
725
726 Int_t numpart = fPyjets->N;
727 Double_t px = 0., py = 0., pz = 0., e = 0., m = 0., p = 0., pt = 0., theta = 0., phi = 0.;
728 Double_t pxq[4], pyq[4], pzq[4], eq[4], yq[4], mq[4], pq[4], phiq[4], thetaq[4], ptq[4];
729 Bool_t quenched[4];
730 Double_t wjtKick[4];
731 Int_t nGluon[4];
732 Int_t qPdg[4];
733 Int_t imo, kst, pdg;
734
735//
736// Sore information about Primary partons
737//
738// j =
739// 0, 1 partons from hard scattering
740// 2, 3 partons from initial state radiation
741//
742 for (Int_t i = 2; i <= 7; i++) {
743 Int_t j = 0;
744 // Skip gluons that participate in hard scattering
745 if (i == 4 || i == 5) continue;
746 // Gluons from hard Scattering
747 if (i == 6 || i == 7) {
748 j = i - 6;
749 pxq[j] = fPyjets->P[0][i];
750 pyq[j] = fPyjets->P[1][i];
751 pzq[j] = fPyjets->P[2][i];
752 eq[j] = fPyjets->P[3][i];
753 mq[j] = fPyjets->P[4][i];
754 } else {
755 // Gluons from initial state radiation
756 //
757 // Obtain 4-momentum vector from difference between original parton and parton after gluon
758 // radiation. Energy is calculated independently because initial state radition does not
759 // conserve strictly momentum and energy for each partonic system independently.
760 //
761 // Not very clean. Should be improved !
762 //
763 //
764 j = i;
765 pxq[j] = fPyjets->P[0][i] - fPyjets->P[0][i+2];
766 pyq[j] = fPyjets->P[1][i] - fPyjets->P[1][i+2];
767 pzq[j] = fPyjets->P[2][i] - fPyjets->P[2][i+2];
768 mq[j] = fPyjets->P[4][i];
769 eq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j] + mq[j] * mq[j]);
770 }
771//
772// Calculate some kinematic variables
773//
774 yq[j] = 0.5 * TMath::Log((eq[j] + pzq[j] + 1.e-14) / (eq[j] - pzq[j] + 1.e-14));
775 pq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j] + pzq[j] * pzq[j]);
776 phiq[j] = TMath::Pi()+TMath::ATan2(-pyq[j], -pxq[j]);
777 ptq[j] = TMath::Sqrt(pxq[j] * pxq[j] + pyq[j] * pyq[j]);
778 thetaq[j] = TMath::ATan2(ptq[j], pzq[j]);
779 qPdg[j] = fPyjets->K[1][i];
780 }
781
782 Double_t int0[4];
783 Double_t int1[4];
784
785 fGlauber->GetI0I1ForPythiaAndXY(4, phiq, int0, int1, fXJet, fYJet, 15.);
786
787 for (Int_t j = 0; j < 4; j++) {
788 //
789 // Quench only central jets and with E > 10.
790 //
791
792
793 Int_t itype = (qPdg[j] == 21) ? 2 : 1;
794 Double_t eloss = fQuenchingWeights->GetELossRandomKFast(itype, int0[j], int1[j], eq[j]);
795
796 if (TMath::Abs(yq[j]) > 2.5 || eq[j] < 10.) {
797 fZQuench[j] = 0.;
798 } else {
799 if (eq[j] > 40. && TMath::Abs(yq[j]) < 0.5) {
800 icall ++;
801 eMean += eloss;
802 }
803 //
804 // Extra pt
805 Double_t l = fQuenchingWeights->CalcLk(int0[j], int1[j]);
806 wjtKick[j] = TMath::Sqrt(l * fQuenchingWeights->CalcQk(int0[j], int1[j]));
807 //
808 // Fractional energy loss
809 fZQuench[j] = eloss / eq[j];
810 //
811 // Avoid complete loss
812 //
813 if (fZQuench[j] == 1.) fZQuench[j] = fZmax;
814 //
815 // Some debug printing
816
817
818// printf("Initial parton # %3d, Type %3d Energy %10.3f Phi %10.3f Length %10.3f Loss %10.3f Kick %10.3f Mean: %10.3f %10.3f\n",
819// j, itype, eq[j], phiq[j], l, eloss, wjtKick[j], eMean / Float_t(icall+1), yq[j]);
820
821// fZQuench[j] = 0.8;
822// while (fZQuench[j] >= 0.95) fZQuench[j] = gRandom->Exp(0.2);
823 }
824
825 quenched[j] = (fZQuench[j] > 0.01);
826 } // primary partons
827
828
829
830 Double_t pNew[1000][4];
831 Int_t kNew[1000];
832 Int_t icount = 0;
833 Double_t zquench[4];
834
835//
836// System Loop
837 for (Int_t isys = 0; isys < 4; isys++) {
838// Skip to next system if not quenched.
839 if (!quenched[isys]) continue;
840
841 nGluon[isys] = 1 + Int_t(fZQuench[isys] / (1. - fZQuench[isys]));
842 if (nGluon[isys] > fNGmax) nGluon[isys] = fNGmax;
843 zquench[isys] = 1. - TMath::Power(1. - fZQuench[isys], 1./Double_t(nGluon[isys]));
844 wjtKick[isys] = wjtKick[isys] / TMath::Sqrt(Double_t(nGluon[isys]));
845
846
847
848 Int_t igMin = -1;
849 Int_t igMax = -1;
850 Double_t pg[4] = {0., 0., 0., 0.};
851
852//
853// Loop on radiation events
854
855 for (Int_t iglu = 0; iglu < nGluon[isys]; iglu++) {
856 while (1) {
857 icount = 0;
858 for (Int_t k = 0; k < 4; k++)
859 {
860 p0[isys][k] = 0.;
861 p1[isys][k] = 0.;
862 p2[isys][k] = 0.;
863 }
864// Loop over partons
865 for (Int_t i = 0; i < numpart; i++)
866 {
867 imo = fPyjets->K[2][i];
868 kst = fPyjets->K[0][i];
869 pdg = fPyjets->K[1][i];
870
871
872
873// Quarks and gluons only
874 if (pdg != 21 && TMath::Abs(pdg) > 6) continue;
875// Particles from hard scattering only
876
877 if (imo > 8 && imo < 1000) imo = fPyjets->K[2][imo - 1];
878 Int_t imom = imo % 1000;
879 if ((isys == 0 || isys == 1) && ((imom != (isys + 7)))) continue;
880 if ((isys == 2 || isys == 3) && ((imom != (isys + 1)))) continue;
881
882
883// Skip comment lines
884 if (kst != 1 && kst != 2) continue;
885//
886// Parton kinematic
887 px = fPyjets->P[0][i];
888 py = fPyjets->P[1][i];
889 pz = fPyjets->P[2][i];
890 e = fPyjets->P[3][i];
891 m = fPyjets->P[4][i];
892 pt = TMath::Sqrt(px * px + py * py);
893 p = TMath::Sqrt(px * px + py * py + pz * pz);
894 phi = TMath::Pi() + TMath::ATan2(-py, -px);
895 theta = TMath::ATan2(pt, pz);
896
897//
898// Save 4-momentum sum for balancing
899 Int_t index = isys;
900
901 p0[index][0] += px;
902 p0[index][1] += py;
903 p0[index][2] += pz;
904 p0[index][3] += e;
905
906 klast[index] = i;
907
908//
909// Fractional energy loss
910 Double_t z = zquench[index];
911
912
913// Don't fully quench radiated gluons
914//
915 if (imo > 1000) {
916// This small factor makes sure that the gluons are not too close in phase space to avoid recombination
917//
918
919 z = 0.02;
920 }
921// printf("z: %d %f\n", imo, z);
922
923
924//
925
926 //
927 //
928 // Transform into frame in which initial parton is along z-axis
929 //
930 TVector3 v(px, py, pz);
931 v.RotateZ(-phiq[index]); v.RotateY(-thetaq[index]);
932 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pl = v.Z();
933
934 Double_t jt = TMath::Sqrt(pxs * pxs + pys * pys);
935 Double_t mt2 = jt * jt + m * m;
936 Double_t zmax = 1.;
937 //
938 // Kinematic limit on z
939 //
940 if (m > 0.) zmax = 1. - m / TMath::Sqrt(m * m + jt * jt);
941 //
942 // Change light-cone kinematics rel. to initial parton
943 //
944 Double_t eppzOld = e + pl;
945 Double_t empzOld = e - pl;
946
947 Double_t eppzNew = (1. - z) * eppzOld;
948 Double_t empzNew = empzOld - mt2 * z / eppzOld;
949 Double_t eNew = 0.5 * (eppzNew + empzNew);
950 Double_t plNew = 0.5 * (eppzNew - empzNew);
951
952 Double_t jtNew;
953 //
954 // if mt very small (or sometimes even < 0 for numerical reasons) set it to 0
955 Double_t mt2New = eppzNew * empzNew;
956 if (mt2New < 1.e-8) mt2New = 0.;
957 if (z < zmax) {
958 if (m * m > mt2New) {
959 //
960 // This should not happen
961 //
962 Fatal("Quench()", "This should never happen %e %e %e!", m, eppzNew, empzNew);
963 jtNew = 0;
964 } else {
965 jtNew = TMath::Sqrt(mt2New - m * m);
966 }
967 } else {
968 // If pT is to small (probably a leading massive particle) we scale only the energy
969 // This can cause negative masses of the radiated gluon
970 // Let's hope for the best ...
971 jtNew = jt;
972 eNew = TMath::Sqrt(plNew * plNew + mt2);
973
974 }
975 //
976 // Calculate new px, py
977 //
978 Double_t pxNew = jtNew / jt * pxs;
979 Double_t pyNew = jtNew / jt * pys;
980
981// Double_t dpx = pxs - pxNew;
982// Double_t dpy = pys - pyNew;
983// Double_t dpz = pl - plNew;
984// Double_t de = e - eNew;
985// Double_t dmass2 = de * de - dpx * dpx - dpy * dpy - dpz * dpz;
986// printf("New mass (1) %e %e %e %e %e %e %e \n", dmass2, jt, jtNew, pl, plNew, e, eNew);
987// printf("New mass (2) %e %e \n", pxNew, pyNew);
988 //
989 // Rotate back
990 //
991 TVector3 w(pxNew, pyNew, plNew);
992 w.RotateY(thetaq[index]); w.RotateZ(phiq[index]);
993 pxNew = w.X(); pyNew = w.Y(); plNew = w.Z();
994
995 p1[index][0] += pxNew;
996 p1[index][1] += pyNew;
997 p1[index][2] += plNew;
998 p1[index][3] += eNew;
999 //
1000 // Updated 4-momentum vectors
1001 //
1002 pNew[icount][0] = pxNew;
1003 pNew[icount][1] = pyNew;
1004 pNew[icount][2] = plNew;
1005 pNew[icount][3] = eNew;
1006 kNew[icount] = i;
1007 icount++;
1008 } // parton loop
1009 //
1010 // Check if there was phase-space for quenching
1011 //
1012
1013 if (icount == 0) quenched[isys] = kFALSE;
1014 if (!quenched[isys]) break;
1015
1016 for (Int_t j = 0; j < 4; j++)
1017 {
1018 p2[isys][j] = p0[isys][j] - p1[isys][j];
1019 }
1020 p2[isys][4] = p2[isys][3] * p2[isys][3] - p2[isys][0] * p2[isys][0] - p2[isys][1] * p2[isys][1] - p2[isys][2] * p2[isys][2];
1021 if (p2[isys][4] > 0.) {
1022 p2[isys][4] = TMath::Sqrt(p2[isys][4]);
1023 break;
1024 } else {
1025 printf("Warning negative mass squared in system %d %f ! \n", isys, zquench[isys]);
1026 printf("4-Momentum: %10.3e %10.3e %10.3e %10.3e %10.3e \n", p2[isys][0], p2[isys][1], p2[isys][2], p2[isys][3], p2[isys][4]);
1027 if (p2[isys][4] < -0.01) {
1028 printf("Negative mass squared !\n");
1029 // Here we have to put the gluon back to mass shell
1030 // This will lead to a small energy imbalance
1031 p2[isys][4] = 0.;
1032 p2[isys][3] = TMath::Sqrt(p2[isys][0] * p2[isys][0] + p2[isys][1] * p2[isys][1] + p2[isys][2] * p2[isys][2]);
1033 break;
1034 } else {
1035 p2[isys][4] = 0.;
1036 break;
1037 }
1038 }
1039 /*
1040 zHeavy *= 0.98;
1041 printf("zHeavy lowered to %f\n", zHeavy);
1042 if (zHeavy < 0.01) {
1043 printf("No success ! \n");
1044 icount = 0;
1045 quenched[isys] = kFALSE;
1046 break;
1047 }
1048 */
1049 } // iteration on z (while)
1050
1051// Update event record
1052 for (Int_t k = 0; k < icount; k++) {
1053// printf("%6d %6d %10.3e %10.3e %10.3e %10.3e\n", k, kNew[k], pNew[k][0],pNew[k][1], pNew[k][2], pNew[k][3] );
1054 fPyjets->P[0][kNew[k]] = pNew[k][0];
1055 fPyjets->P[1][kNew[k]] = pNew[k][1];
1056 fPyjets->P[2][kNew[k]] = pNew[k][2];
1057 fPyjets->P[3][kNew[k]] = pNew[k][3];
1058 }
1059 //
1060 // Add the gluons
1061 //
1062 Int_t ish = 0;
1063 Int_t iGlu;
1064 if (!quenched[isys]) continue;
1065//
1066// Last parton from shower i
1067 Int_t in = klast[isys];
1068//
1069// Continue if no parton in shower i selected
1070 if (in == -1) continue;
1071//
1072// If this is the second initial parton and it is behind the first move pointer by previous ish
1073 if (isys == 1 && klast[1] > klast[0]) in += ish;
1074//
1075// Starting index
1076
1077// jmin = in - 1;
1078// How many additional gluons will be generated
1079 ish = 1;
1080 if (p2[isys][4] > 0.05) ish = 2;
1081//
1082// Position of gluons
1083 iGlu = numpart;
1084 if (iglu == 0) igMin = iGlu;
1085 igMax = iGlu;
1086 numpart += ish;
1087 (fPyjets->N) += ish;
1088
1089 if (ish == 1) {
1090 fPyjets->P[0][iGlu] = p2[isys][0];
1091 fPyjets->P[1][iGlu] = p2[isys][1];
1092 fPyjets->P[2][iGlu] = p2[isys][2];
1093 fPyjets->P[3][iGlu] = p2[isys][3];
1094 fPyjets->P[4][iGlu] = p2[isys][4];
1095
1096 fPyjets->K[0][iGlu] = 1;
1097 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu] = 1;
1098 fPyjets->K[1][iGlu] = 21;
1099 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1100 fPyjets->K[3][iGlu] = -1;
1101 fPyjets->K[4][iGlu] = -1;
1102
1103 pg[0] += p2[isys][0];
1104 pg[1] += p2[isys][1];
1105 pg[2] += p2[isys][2];
1106 pg[3] += p2[isys][3];
1107 } else {
1108 //
1109 // Split gluon in rest frame.
1110 //
1111 Double_t bx = p2[isys][0] / p2[isys][3];
1112 Double_t by = p2[isys][1] / p2[isys][3];
1113 Double_t bz = p2[isys][2] / p2[isys][3];
1114 Double_t pst = p2[isys][4] / 2.;
1115 //
1116 // Isotropic decay ????
1117 Double_t cost = 2. * gRandom->Rndm() - 1.;
1118 Double_t sint = TMath::Sqrt(1. - cost * cost);
2ab330c9 1119 Double_t phis = 2. * TMath::Pi() * gRandom->Rndm();
39d810c8 1120
1121 Double_t pz1 = pst * cost;
1122 Double_t pz2 = -pst * cost;
1123 Double_t pt1 = pst * sint;
1124 Double_t pt2 = -pst * sint;
2ab330c9 1125 Double_t px1 = pt1 * TMath::Cos(phis);
1126 Double_t py1 = pt1 * TMath::Sin(phis);
1127 Double_t px2 = pt2 * TMath::Cos(phis);
1128 Double_t py2 = pt2 * TMath::Sin(phis);
39d810c8 1129
1130 fPyjets->P[0][iGlu] = px1;
1131 fPyjets->P[1][iGlu] = py1;
1132 fPyjets->P[2][iGlu] = pz1;
1133 fPyjets->P[3][iGlu] = pst;
1134 fPyjets->P[4][iGlu] = 0.;
1135
1136 fPyjets->K[0][iGlu] = 1 ;
1137 fPyjets->K[1][iGlu] = 21;
1138 fPyjets->K[2][iGlu] = fPyjets->K[2][in] + 1000;
1139 fPyjets->K[3][iGlu] = -1;
1140 fPyjets->K[4][iGlu] = -1;
1141
1142 fPyjets->P[0][iGlu+1] = px2;
1143 fPyjets->P[1][iGlu+1] = py2;
1144 fPyjets->P[2][iGlu+1] = pz2;
1145 fPyjets->P[3][iGlu+1] = pst;
1146 fPyjets->P[4][iGlu+1] = 0.;
1147
1148 fPyjets->K[0][iGlu+1] = 1;
1149 if (iglu == nGluon[isys] - 1) fPyjets->K[0][iGlu+1] = 1;
1150 fPyjets->K[1][iGlu+1] = 21;
1151 fPyjets->K[2][iGlu+1] = fPyjets->K[2][in] + 1000;
1152 fPyjets->K[3][iGlu+1] = -1;
1153 fPyjets->K[4][iGlu+1] = -1;
1154 SetMSTU(1,0);
1155 SetMSTU(2,0);
1156 //
1157 // Boost back
1158 //
1159 Pyrobo(iGlu + 1, iGlu + 2, 0., 0., bx, by, bz);
1160 }
1161/*
1162 for (Int_t ig = iGlu; ig < iGlu+ish; ig++) {
1163 Double_t px, py, pz;
1164 px = fPyjets->P[0][ig];
1165 py = fPyjets->P[1][ig];
1166 pz = fPyjets->P[2][ig];
1167 TVector3 v(px, py, pz);
1168 v.RotateZ(-phiq[isys]);
1169 v.RotateY(-thetaq[isys]);
1170 Double_t pxs = v.X(); Double_t pys = v.Y(); Double_t pzs = v.Z();
1171 Double_t r = AliPythiaRndm::GetPythiaRandom()->Rndm();
1172 Double_t jtKick = 0.3 * TMath::Sqrt(-TMath::Log(r));
1173 if (ish == 2) jtKick = wjtKick[i] * TMath::Sqrt(-TMath::Log(r)) / TMath::Sqrt(2.);
1174 Double_t phiKick = 2. * TMath::Pi() * AliPythiaRndm::GetPythiaRandom()->Rndm();
1175 pxs += jtKick * TMath::Cos(phiKick);
1176 pys += jtKick * TMath::Sin(phiKick);
1177 TVector3 w(pxs, pys, pzs);
1178 w.RotateY(thetaq[isys]);
1179 w.RotateZ(phiq[isys]);
1180 fPyjets->P[0][ig] = w.X();
1181 fPyjets->P[1][ig] = w.Y();
1182 fPyjets->P[2][ig] = w.Z();
1183 fPyjets->P[2][ig] = w.Mag();
1184 }
1185*/
1186 } // kGluon
1187
1188
1189 // Check energy conservation
1190 Double_t pxs = 0.;
1191 Double_t pys = 0.;
1192 Double_t pzs = 0.;
1193 Double_t es = 14000.;
1194
1195 for (Int_t i = 0; i < numpart; i++)
1196 {
1197 kst = fPyjets->K[0][i];
1198 if (kst != 1 && kst != 2) continue;
1199 pxs += fPyjets->P[0][i];
1200 pys += fPyjets->P[1][i];
1201 pzs += fPyjets->P[2][i];
1202 es -= fPyjets->P[3][i];
1203 }
1204 if (TMath::Abs(pxs) > 1.e-2 ||
1205 TMath::Abs(pys) > 1.e-2 ||
1206 TMath::Abs(pzs) > 1.e-1) {
1207 printf("%e %e %e %e\n", pxs, pys, pzs, es);
1208// Fatal("Quench()", "4-Momentum non-conservation");
1209 }
1210
1211 } // end quenching loop (systems)
1212// Clean-up
1213 for (Int_t i = 0; i < numpart; i++)
1214 {
1215 imo = fPyjets->K[2][i];
1216 if (imo > 1000) {
1217 fPyjets->K[2][i] = fPyjets->K[2][i] % 1000;
1218 }
1219 }
1220// this->Pylist(1);
1221} // end quench
1222
1223
1224void AliPythia6::Pyquen(Double_t a, Int_t ibf, Double_t b)
1225{
1226 // Igor Lokthine's quenching routine
1227 // http://lokhtin.web.cern.ch/lokhtin/pyquen/pyquen.txt
1228
1229 pyquen(a, ibf, b);
1230}
1231
1232void AliPythia6::SetPyquenParameters(Double_t t0, Double_t tau0, Int_t nf, Int_t iengl, Int_t iangl)
1233{
1234 // Set the parameters for the PYQUEN package.
1235 // See comments in PyquenCommon.h
1236
1237
1238 PYQPAR.t0 = t0;
1239 PYQPAR.tau0 = tau0;
1240 PYQPAR.nf = nf;
1241 PYQPAR.iengl = iengl;
1242 PYQPAR.iangl = iangl;
1243}
1244
1245void AliPythia6::LoadEvent(AliStack* stack, Int_t flag, Int_t reHadr)
1246{
1247//
1248// Load event into Pythia Common Block
1249//
1250
1251 Int_t npart = stack -> GetNprimary();
1252 Int_t n0 = 0;
1253
1254 if (!flag) {
1255 GetPyjets()->N = npart;
1256 } else {
1257 n0 = GetPyjets()->N;
1258 GetPyjets()->N = n0 + npart;
1259 }
1260
1261
1262 for (Int_t part = 0; part < npart; part++) {
1263 TParticle *mPart = stack->Particle(part);
1264
1265 Int_t kf = mPart->GetPdgCode();
1266 Int_t ks = mPart->GetStatusCode();
1267 Int_t idf = mPart->GetFirstDaughter();
1268 Int_t idl = mPart->GetLastDaughter();
1269
1270 if (reHadr) {
1271 if (ks == 11 || ks == 12) {
1272 ks -= 10;
1273 idf = -1;
1274 idl = -1;
1275 }
1276 }
1277
1278 Float_t px = mPart->Px();
1279 Float_t py = mPart->Py();
1280 Float_t pz = mPart->Pz();
1281 Float_t e = mPart->Energy();
1282 Float_t m = mPart->GetCalcMass();
1283
1284
1285 (GetPyjets())->P[0][part+n0] = px;
1286 (GetPyjets())->P[1][part+n0] = py;
1287 (GetPyjets())->P[2][part+n0] = pz;
1288 (GetPyjets())->P[3][part+n0] = e;
1289 (GetPyjets())->P[4][part+n0] = m;
1290
1291 (GetPyjets())->K[1][part+n0] = kf;
1292 (GetPyjets())->K[0][part+n0] = ks;
1293 (GetPyjets())->K[3][part+n0] = idf + 1;
1294 (GetPyjets())->K[4][part+n0] = idl + 1;
1295 (GetPyjets())->K[2][part+n0] = mPart->GetFirstMother() + 1;
1296 }
1297}
1298
1299
1300void AliPythia6::Pyevnw()
1301{
1302 // New multiple interaction scenario
1303 pyevnw();
1304}
1305
1306void AliPythia6::GetQuenchingParameters(Double_t& xp, Double_t& yp, Double_t z[4])
1307{
1308 // Return event specific quenching parameters
1309 xp = fXJet;
1310 yp = fYJet;
1311 for (Int_t i = 0; i < 4; i++) z[i] = fZQuench[i];
1312
1313}
1314
1315void AliPythia6::ConfigHeavyFlavor()
1316{
1317 //
1318 // Default configuration for Heavy Flavor production
1319 //
1320 // All QCD processes
1321 //
1322 SetMSEL(1);
1323
1324 // No multiple interactions
1325 SetMSTP(81,0);
1326 SetPARP(81, 0.);
1327 SetPARP(82, 0.);
1328 // Initial/final parton shower on (Pythia default)
1329 SetMSTP(61,1);
1330 SetMSTP(71,1);
1331
1332 // 2nd order alpha_s
1333 SetMSTP(2,2);
1334
1335 // QCD scales
1336 SetMSTP(32,2);
1337 SetPARP(34,1.0);
1338}
1339
1340void AliPythia6::AtlasTuning()
1341{
1342 //
1343 // Configuration for the ATLAS tuning
1344 SetMSTP(51,AliStructFuncType::PDFsetIndex(kCTEQ5L));
1345 SetMSTP(81,1); // Multiple Interactions ON
1346 SetMSTP(82,4); // Double Gaussian Model
1347 SetPARP(81,1.9); // Min. pt for multiple interactions (default in 6.2-14)
1348 SetPARP(82,1.8); // [GeV] PT_min at Ref. energy
1349 SetPARP(89,1000.); // [GeV] Ref. energy
1350 SetPARP(90,0.16); // 2*epsilon (exponent in power law)
1351 SetPARP(83,0.5); // Core density in proton matter distribution (def.value)
1352 SetPARP(84,0.5); // Core radius
1353 SetPARP(85,0.33); // Regulates gluon prod. mechanism
1354 SetPARP(86,0.66); // Regulates gluon prod. mechanism
1355 SetPARP(67,1); // Regulates Initial State Radiation
1356}
1357
1358void AliPythia6::SetPtHardRange(Float_t ptmin, Float_t ptmax)
1359{
1360 // Set the pt hard range
1361 SetCKIN(3, ptmin);
1362 SetCKIN(4, ptmax);
1363}
1364
1365void AliPythia6::SetYHardRange(Float_t ymin, Float_t ymax)
1366{
1367 // Set the y hard range
1368 SetCKIN(7, ymin);
1369 SetCKIN(8, ymax);
1370}
1371
1372
1373void AliPythia6::SetFragmentation(Int_t flag)
1374{
1375 // Switch fragmentation on/off
1376 SetMSTP(111, flag);
1377}
1378
1379void AliPythia6::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
1380{
1381// initial state radiation
1382 SetMSTP(61, flag1);
1383// final state radiation
1384 SetMSTP(71, flag2);
1385}
1386
1387void AliPythia6::SetIntrinsicKt(Float_t kt)
1388{
1389 // Set the inreinsic kt
1390 if (kt > 0.) {
1391 SetMSTP(91,1);
1392 SetPARP(91,kt);
1393 SetPARP(93, 4. * kt);
1394 } else {
1395 SetMSTP(91,0);
1396 }
1397}
1398
1399void AliPythia6::SwitchHFOff()
1400{
1401 // Switch off heavy flavor
1402 // Maximum number of quark flavours used in pdf
1403 SetMSTP(58, 3);
1404 // Maximum number of flavors that can be used in showers
1405 SetMSTJ(45, 3);
1406}
1407
1408void AliPythia6::SetPycellParameters(Float_t etamax, Int_t neta, Int_t nphi,
1409 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
1410{
1411// Set pycell parameters
1412 SetPARU(51, etamax);
1413 SetMSTU(51, neta);
1414 SetMSTU(52, nphi);
1415 SetPARU(58, thresh);
1416 SetPARU(52, etseed);
1417 SetPARU(53, minet);
1418 SetPARU(54, r);
1419 SetMSTU(54, 2);
1420}
1421
1422void AliPythia6::ModifiedSplitting()
1423{
1424 // Modified splitting probability as a model for quenching
1425 SetPARJ(200, 0.8);
1426 SetMSTJ(41, 1); // QCD radiation only
1427 SetMSTJ(42, 2); // angular ordering
1428 SetMSTJ(44, 2); // option to run alpha_s
1429 SetMSTJ(47, 0); // No correction back to hard scattering element
1430 SetMSTJ(50, 0); // No coherence in first branching
1431 SetPARJ(82, 1.); // Cut off for parton showers
1432}
1433
1434void AliPythia6::SwitchHadronisationOff()
1435{
1436 // Switch off hadronisarion
1437 SetMSTJ(1, 0);
1438}
1439
1440void AliPythia6::SwitchHadronisationOn()
1441{
1442 // Switch on hadronisarion
1443 SetMSTJ(1, 1);
1444}
1445
1446
1447void AliPythia6::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
1448{
1449 // Get x1, x2 and Q for this event
1450
1451 q = GetVINT(51);
1452 x1 = GetVINT(41);
1453 x2 = GetVINT(42);
1454}
1455
1456Float_t AliPythia6::GetXSection()
1457{
1458 // Get the total cross-section
1459 return (GetPARI(1));
1460}
1461
1462Float_t AliPythia6::GetPtHard()
1463{
1464 // Get the pT hard for this event
1465 return GetVINT(47);
1466}
1467
1468Int_t AliPythia6::ProcessCode()
1469{
1470 // Get the subprocess code
1471 return GetMSTI(1);
1472}
1473
1474void AliPythia6::PrintStatistics()
1475{
1476 // End of run statistics
1477 Pystat(1);
1478}
1479
1480void AliPythia6::EventListing()
1481{
1482 // End of run statistics
1483 Pylist(2);
1484}
1485
1486AliPythia6& AliPythia6::operator=(const AliPythia6& rhs)
1487{
1488// Assignment operator
1489 rhs.Copy(*this);
1490 return *this;
1491}
1492
1493 void AliPythia6::Copy(TObject&) const
1494{
1495 //
1496 // Copy
1497 //
1498 Fatal("Copy","Not implemented!\n");
1499}