ALICE interface to Pythia8
[u/mrichter/AliRoot.git] / PYTHIA8 / AliPythia8.cxx
CommitLineData
cc545eb9 1
2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
17/* $Id$ */
18#include <TString.h>
19#include <TVector3.h>
20#include <TMath.h>
21
22#include "AliPythia8.h"
23#include "AliLog.h"
24#include "AliStack.h"
25#include "AliPythiaRndm.h"
26
27
28ClassImp(AliPythia8)
29
30// Particles produced in string fragmentation point directly to either of the two endpoints
31// of the string (depending in the side they were generated from).
32// SetMSTU(16,2); // ????
33// String drawing almost completely minimizes string length.
34// Probability that an additional interaction gives two gluons
35// ... with color connection to nearest neighbours
36// SetPARP(85,0.9);
37// ... as closed gluon loop
38// SetPARP(86,0.95);
39// Lambda_FSR scale.
40// SetPARJ(81, 0.29);
41// Baryon production model
42// SetMSTJ(12,3);
43// String fragmentation
44// SetMSTJ(1,1);
45// sea quarks can be used for baryon formation
46// SetMSTP(88,2);
47// choice of max. virtuality for ISR
48// SetMSTP(68,1);
49// regularisation scheme of ISR
50// SetMSTP(70,2);
51// all resonance decays switched on
52// SetMSTP(41,1);
53AliPythia8* AliPythia8::fgAliPythia8=NULL;
54
55AliPythia8::AliPythia8():
56 TPythia8(),
57 AliPythiaBase(),
58 fProcess(kPyMb),
59 fEcms(0.),
60 fStrucFunc(kCTEQ5L),
61 fEtSeed(0.),
62 fMinEtJet(0.),
63 fRJet(0.),
64 fYScale(0.),
65 fPtScale(0.),
66 fNJetMin(0),
67 fNJetMax(0)
68{
69// Default Constructor
70//
71// Set random number
72 if (!AliPythiaRndm::GetPythiaRandom())
73 AliPythiaRndm::SetPythiaRandom(GetRandom());
74}
75
76AliPythia8::AliPythia8(const AliPythia8& pythia):
77 TPythia8(),
78 AliPythiaBase(),
79 fProcess(kPyMb),
80 fEcms(0.),
81 fStrucFunc(kCTEQ5L),
82 fEtSeed(0.),
83 fMinEtJet(0.),
84 fRJet(0.),
85 fYScale(0.),
86 fPtScale(0.),
87 fNJetMin(0),
88 fNJetMax(0)
89{
90 // Copy Constructor
91 pythia.Copy(*this);
92}
93
94void AliPythia8::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
95{
96// Initialise the process to generate
97 if (!AliPythiaRndm::GetPythiaRandom())
98 AliPythiaRndm::SetPythiaRandom(GetRandom());
99
100 fProcess = process;
101 fEcms = energy;
102 fStrucFunc = strucfunc;
103//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
104 ReadString("111:mayDecay = off");
105 ReadString("310:mayDecay = off");
106 ReadString("3122:mayDecay = off");
107 ReadString("3112:mayDecay = off");
108 ReadString("3212:mayDecay = off");
109 ReadString("3222:mayDecay = off");
110 ReadString("3312:mayDecay = off");
111 ReadString("3322:mayDecay = off");
112 ReadString("3334:mayDecay = off");
113 // Select structure function
114
115 ReadString("PDF:useLHAPDF = on");
116 ReadString(Form("PDF:LHAPDFset = %s", AliStructFuncType::PDFsetName(fStrucFunc).Data()));
117
118 // Particles produced in string fragmentation point directly to either of the two endpoints
119 // of the string (depending in the side they were generated from).
120
121// SetMSTU(16,2); // ????
122
123//
124// Pythia initialisation for selected processes//
125//
126 switch (process)
127 {
128 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
129// Multiple interactions on.
130 ReadString("PartonLevel:MI = on");
131// Double Gaussian matter distribution.
132 ReadString("MultipleInteractions:bProfile = 2");
133 ReadString("MultipleInteractions:coreFraction = 0.5");
134 ReadString("MultipleInteractions:coreRadius = 0.4");
135// pT0.
136 ReadString("MultipleInteractions:pTmin = 2.0");
137// Reference energy for pT0 and energy rescaling pace.
138 ReadString("MultipleInteractions:ecmRef = 1800.");
139 ReadString("MultipleInteractions:ecmPow = 0.25");
140// String drawing almost completely minimizes string length.
141// SetPARP(85,0.9);
142// SetPARP(86,0.95);
143// ISR and FSR activity.
144// Q^2 scale of the hard scattering
145 ReadString("SigmaProcess:factorMultFac = 4.");
146// Lambda_FSR scale.
147// SetPARJ(81, 0.29);
148 break;
149 case kPyOldUEQ2ordered2:
150// Old underlying events with Q2 ordered QCD processes
151// Multiple interactions on.
152 ReadString("PartonLevel:MI = on");
153// Double Gaussian matter distribution.
154 ReadString("MultipleInteractions:bProfile = 2");
155 ReadString("MultipleInteractions:coreFraction = 0.5");
156 ReadString("MultipleInteractions:coreRadius = 0.4");
157// pT0.
158 ReadString("MultipleInteractions:pTmin = 2.0");
159// Reference energy for pT0 and energy rescaling pace.
160 ReadString("MultipleInteractions:ecmRef = 1800.");
161 ReadString("MultipleInteractions:ecmPow = 0.16");
162// String drawing almost completely minimizes string length.
163// SetPARP(85,0.9);
164// SetPARP(86,0.95);
165// ISR and FSR activity.
166 ReadString("SigmaProcess:factorMultFac = 4.");
167// Lambda_FSR scale.
168// SetPARJ(81,0.29);
169 break;
170 case kPyOldPopcorn:
171// Old production mechanism: Old Popcorn
172 ReadString("HardQCD:all = on");
173// SetMSTJ(12,3);
174// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
175// SetMSTP(88,2);
176// (D=1)see can be used to form baryons (BARYON JUNCTION)
177// SetMSTJ(1,1);
178 AtlasTuning();
179 break;
180 case kPyCharm:
181 ReadString("HardQCD:gg2ccbar = on");
182 ReadString("HardQCD:qqbar2ccbar = on");
183// heavy quark masses
184 ReadString("ParticleData:mcRun = 1.2");
185//
186// primordial pT
187 ReadString("Beams:primordialKT = on");
188 ReadString("Beams:primordialKTsoft = 0.");
189 ReadString("Beams:primordialKThard = 1.");
190 ReadString("Beams:halfScaleForKT = 0.");
191 ReadString("Beams:halfMassForKT = 0.");
192 break;
193 case kPyBeauty:
194 ReadString("HardQCD:gg2bbbar = on");
195 ReadString("HardQCD:qqbar2bbbar = on");
196 ReadString("ParticleData:mbRun = 4.75");
197 break;
198 case kPyJpsi:
199// gg->J/Psi g
200 ReadString("Charmonium:gg2QQbar[3S1(1)]g = on");
201 break;
202 case kPyJpsiChi:
203 ReadString("Charmonium:all = on");
204 break;
205 case kPyCharmUnforced:
206// gq->qg
207 ReadString("HardQCD:gq2qg = on");
208// gg->qq
209 ReadString("HardQCD:gg2qq = on");
210// gg->gg
211 ReadString("HardQCD:gg2gg = on");
212 break;
213 case kPyBeautyUnforced:
214// gq->qg
215 ReadString("HardQCD:gq2qg = on");
216// gg->qq
217 ReadString("HardQCD:gg2qq = on");
218// gg->gg
219 ReadString("HardQCD:gg2gg = on");
220 break;
221 case kPyMb:
222// Minimum Bias pp-Collisions
223//
224//
225// select Pythia min. bias model
226// single diffraction AB-->XB
227 ReadString("SoftQCD:minBias = on");
228 ReadString("SoftQCD:singleDiffractive = on");
229 ReadString("SoftQCD:doubleDiffractive = on");
230 AtlasTuning();
231 break;
232 case kPyMbDefault:
233// Minimum Bias pp-Collisions
234//
235//
236// select Pythia min. bias model
237 ReadString("SoftQCD:minBias = on");
238 ReadString("SoftQCD:singleDiffractive = on");
239 ReadString("SoftQCD:doubleDiffractive = on");
240 break;
241 case kPyLhwgMb:
242// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
243// -> Pythia 6.3 or above is needed
244//
245 ReadString("SoftQCD:minBias = on");
246 ReadString("SoftQCD:singleDiffractive = on");
247 ReadString("SoftQCD:doubleDiffractive = on");
248 ReadString(Form("PDF:LHAPDFset = %s", AliStructFuncType::PDFsetName(kCTEQ6ll).Data()));
249
250// SetMSTP(68,1);
251// SetMSTP(70,2);
252// ReadString("PartonLevel:MI = on");
253// Double Gaussian matter distribution.
254 ReadString("MultipleInteractions:bProfile = 2");
255 ReadString("MultipleInteractions:coreFraction = 0.5");
256 ReadString("MultipleInteractions:coreRadius = 0.5");
257 ReadString("MultipleInteractions:expPow = 0.16");
258 ReadString("MultipleInteractions:pTmin = 2.3");
259// SetMSTP(88,1);
260// SetPARP(85,0.9); // Regulates gluon prod. mechanism
261 break;
262 case kPyMbNonDiffr:
263// Minimum Bias pp-Collisions
264//
265//
266// select Pythia min. bias model
267 ReadString("SoftQCD:minBias = on");
268 AtlasTuning();
269 break;
270 case kPyMbMSEL1:
271 ConfigHeavyFlavor();
272// Intrinsic <kT^2>
273 ReadString("Beams:primordialKT = on");
274 ReadString("Beams:primordialKTsoft = 0.");
275 ReadString("Beams:primordialKThard = 1.");
276 ReadString("Beams:halfScaleForKT = 0.");
277 ReadString("Beams:halfMassForKT = 0.");
278// Set Q-quark mass
279 ReadString("ParticleData:mcRun = 1.20");
280 ReadString("ParticleData:mbRun = 4.78");
281// Atlas Tuning
282 AtlasTuning();
283 break;
284 case kPyJets:
285//
286// QCD Jets
287//
288 ReadString("HardQCD:all = on");
289//
290// Pythia Tune A (CDF)
291//
292 ReadString("PartonLevel:MI = on");
293 ReadString("MultipleInteractions:pTmin = 2.0");
294 ReadString("MultipleInteractions:pT0Ref = 2.8");
295 ReadString("MultipleInteractions:ecmRef = 1800.");
296 ReadString("MultipleInteractions:expPow = 0.25");
297 ReadString("MultipleInteractions:bProfile = 2");
298 ReadString("MultipleInteractions:coreFraction = 0.16");
299 ReadString("MultipleInteractions:coreRadius = 0.4");
300 ReadString("SigmaProcess:factorMultFac = 2.5");
301// SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
302// SetPARP(86,0.95); // Regulates gluon prod. mechanism
303 break;
304 case kPyDirectGamma:
305 ReadString("PromptPhoton:all = on");
306 break;
307 case kPyCharmPbPbMNR:
308 case kPyD0PbPbMNR:
309 case kPyDPlusPbPbMNR:
310 case kPyDPlusStrangePbPbMNR:
311 // Tuning of Pythia parameters aimed to get a resonable agreement
312 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
313 // c-cbar single inclusive and double differential distributions.
314 // This parameter settings are meant to work with Pb-Pb collisions
315 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
316 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
317 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
318 ConfigHeavyFlavor();
319 // Intrinsic <kT>
320 ReadString("Beams:primordialKT = on");
321 ReadString("Beams:primordialKTsoft = 0.");
322 ReadString("Beams:primordialKThard = 1.304");
323 ReadString("Beams:halfScaleForKT = 0.");
324 ReadString("Beams:halfMassForKT = 0.");
325 // Set c-quark mass
326 ReadString("ParticleData:mcRun = 1.20");
327 break;
328 case kPyCharmpPbMNR:
329 case kPyD0pPbMNR:
330 case kPyDPluspPbMNR:
331 case kPyDPlusStrangepPbMNR:
332 // Tuning of Pythia parameters aimed to get a resonable agreement
333 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
334 // c-cbar single inclusive and double differential distributions.
335 // This parameter settings are meant to work with p-Pb collisions
336 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
337 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
338 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
339 ConfigHeavyFlavor();
340 // Intrinsic <kT>
341 ReadString("Beams:primordialKT = on");
342 ReadString("Beams:primordialKTsoft = 0.");
343 ReadString("Beams:primordialKThard = 1.16");
344 ReadString("Beams:halfScaleForKT = 0.");
345 ReadString("Beams:halfMassForKT = 0.");
346 // Set c-quark mass
347 ReadString("ParticleData:mcRun = 1.20");
348 break;
349 case kPyCharmppMNR:
350 case kPyD0ppMNR:
351 case kPyDPlusppMNR:
352 case kPyDPlusStrangeppMNR:
353 // Tuning of Pythia parameters aimed to get a resonable agreement
354 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
355 // c-cbar single inclusive and double differential distributions.
356 // This parameter settings are meant to work with pp collisions
357 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
358 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
359 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
360 ConfigHeavyFlavor();
361 // Intrinsic <kT^2>
362 ReadString("Beams:primordialKT = on");
363 ReadString("Beams:primordialKTsoft = 0.");
364 ReadString("Beams:primordialKThard = 1.");
365 ReadString("Beams:halfScaleForKT = 0.");
366 ReadString("Beams:halfMassForKT = 0.");
367 // Set c-quark mass
368 ReadString("ParticleData:mcRun = 1.20");
369 break;
370 case kPyCharmppMNRwmi:
371 // Tuning of Pythia parameters aimed to get a resonable agreement
372 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
373 // c-cbar single inclusive and double differential distributions.
374 // This parameter settings are meant to work with pp collisions
375 // and with kCTEQ5L PDFs.
376 // Added multiple interactions according to ATLAS tune settings.
377 // To get a "reasonable" agreement with MNR results, events have to be
378 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
379 // set to 2.76 GeV.
380 // To get a "perfect" agreement with MNR results, events have to be
381 // generated in four ptHard bins with the following relative
382 // normalizations:
383 // 2.76-3 GeV: 25%
384 // 3-4 GeV: 40%
385 // 4-8 GeV: 29%
386 // >8 GeV: 6%
387 ConfigHeavyFlavor();
388 // Intrinsic <kT^2>
389 ReadString("Beams:primordialKT = on");
390 ReadString("Beams:primordialKTsoft = 0.");
391 ReadString("Beams:primordialKThard = 1.");
392 ReadString("Beams:halfScaleForKT = 0.");
393 ReadString("Beams:halfMassForKT = 0.");
394 // Set c-quark mass
395 ReadString("ParticleData:mcRun = 1.20");
396 AtlasTuning();
397 break;
398 case kPyBeautyPbPbMNR:
399 // Tuning of Pythia parameters aimed to get a resonable agreement
400 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
401 // b-bbar single inclusive and double differential distributions.
402 // This parameter settings are meant to work with Pb-Pb collisions
403 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
404 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
405 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
406 ConfigHeavyFlavor();
407 // QCD scales
408 ReadString("SigmaProcess:factorMultFac = 1.");
409 // Intrinsic <kT>
410 ReadString("Beams:primordialKT = on");
411 ReadString("Beams:primordialKTsoft = 0.");
412 ReadString("Beams:primordialKThard = 2.035");
413 ReadString("Beams:halfScaleForKT = 0.");
414 ReadString("Beams:halfMassForKT = 0.");
415 // Set b-quark mass
416 ReadString("ParticleData:mbRun = 4.75");
417 break;
418 case kPyBeautypPbMNR:
419 // Tuning of Pythia parameters aimed to get a resonable agreement
420 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
421 // b-bbar single inclusive and double differential distributions.
422 // This parameter settings are meant to work with p-Pb collisions
423 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
424 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
425 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
426 ConfigHeavyFlavor();
427 // QCD scales
428 ReadString("SigmaProcess:factorMultFac = 1.");
429 // Intrinsic <kT>
430 ReadString("Beams:primordialKT = on");
431 ReadString("Beams:primordialKTsoft = 0.");
432 ReadString("Beams:primordialKThard = 1.6");
433 ReadString("Beams:halfScaleForKT = 0.");
434 ReadString("Beams:halfMassForKT = 0.");
435 // Set b-quark mass
436 ReadString("ParticleData:mbRun = 4.75");
437 break;
438 case kPyBeautyppMNR:
439 // Tuning of Pythia parameters aimed to get a resonable agreement
440 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
441 // b-bbar single inclusive and double differential distributions.
442 // This parameter settings are meant to work with pp collisions
443 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
444 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
445 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
446 ConfigHeavyFlavor();
447 // QCD scales
448 ReadString("SigmaProcess:factorMultFac = 1.");
449 // Intrinsic <kT>
450 ReadString("Beams:primordialKT = on");
451 ReadString("Beams:primordialKTsoft = 0.");
452 ReadString("Beams:primordialKThard = 1.0");
453 ReadString("Beams:halfScaleForKT = 0.");
454 ReadString("Beams:halfMassForKT = 0.");
455 // Set b-quark mass
456 ReadString("ParticleData:mbRun = 4.75");
457 break;
458 case kPyBeautyppMNRwmi:
459 // Tuning of Pythia parameters aimed to get a resonable agreement
460 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
461 // b-bbar single inclusive and double differential distributions.
462 // This parameter settings are meant to work with pp collisions
463 // and with kCTEQ5L PDFs.
464 // Added multiple interactions according to ATLAS tune settings.
465 // To get a "reasonable" agreement with MNR results, events have to be
466 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
467 // set to 2.76 GeV.
468 // To get a "perfect" agreement with MNR results, events have to be
469 // generated in four ptHard bins with the following relative
470 // normalizations:
471 // 2.76-4 GeV: 5%
472 // 4-6 GeV: 31%
473 // 6-8 GeV: 28%
474 // >8 GeV: 36%
475 ConfigHeavyFlavor();
476 // QCD scales
477 ReadString("SigmaProcess:factorMultFac = 1.");
478 // Intrinsic <kT>
479 ReadString("Beams:primordialKT = on");
480 ReadString("Beams:primordialKTsoft = 0.");
481 ReadString("Beams:primordialKThard = 1.0");
482 ReadString("Beams:halfScaleForKT = 0.");
483 ReadString("Beams:halfMassForKT = 0.");
484 // Set b-quark mass
485 ReadString("ParticleData:mbRun = 4.75");
486 AtlasTuning();
487 break;
488 case kPyW:
489 //Inclusive production of W+/-
490 //f fbar -> W+
491 ReadString("WeakSingleBoson:ffbar2W = on");
492 // Initial/final parton shower on (Pythia default)
493 // With parton showers on we are generating "W inclusive process"
494 ReadString("PartonLevel:ISR = on");
495 ReadString("PartonLevel:FSR = on");
496 break;
497 case kPyZ:
498 //Inclusive production of Z
499 //f fbar -> Z/gamma
500 ReadString("WeakSingleBoson:ffbar2gmZ = on");
501 //only Z included, not gamma
502 ReadString("WeakZ0:gmZmode = 2");
503 // Initial/final parton shower on (Pythia default)
504 // With parton showers on we are generating "Z inclusive process"
505 ReadString("PartonLevel:ISR = on");
506 ReadString("PartonLevel:FSR = on");
507 break;
508 }
509//
510// Initialize PYTHIA
511// SetMSTP(41,1); // all resonance decays switched on
512 Initialize(2212, 2212, fEcms);
513}
514
515void AliPythia8::SetNuclei(Int_t /*a1*/, Int_t /*a2*/)
516{
517// Treat protons as inside nuclei with mass numbers a1 and a2
518// The MSTP array in the PYPARS common block is used to enable and
519// select the nuclear structure functions.
520// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
521// =1: internal PYTHIA acording to MSTP(51)
522// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
523// If the following mass number both not equal zero, nuclear corrections of the stf are used.
524// MSTP(192) : Mass number of nucleus side 1
525// MSTP(193) : Mass number of nucleus side 2
526// SetMSTP(52,2);
527// SetMSTP(192, a1);
528// SetMSTP(193, a2);
529}
530
531
532AliPythia8* AliPythia8::Instance()
533{
534// Set random number generator
535 if (fgAliPythia8) {
536 return fgAliPythia8;
537 } else {
538 fgAliPythia8 = new AliPythia8();
539 return fgAliPythia8;
540 }
541}
542
543void AliPythia8::PrintParticles()
544{
545// Print list of particl properties
546 ReadString("Main:showAllParticleData");
547}
548
549void AliPythia8::ResetDecayTable()
550{
551// Set default values for pythia decay switches
552// Int_t i;
553// for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
554// for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
555}
556
557void AliPythia8::SetDecayTable()
558{
559// Set default values for pythia decay switches
560//
561// Int_t i;
562// for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
563// for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
564}
565
566void AliPythia8::Pyclus(Int_t& njet)
567{
568// Call Pythia clustering algorithm
569//
570 Bool_t ok = fClusterJet.analyze(Pythia8()->event, fYScale, fPtScale, fNJetMin, fNJetMax);
571 njet = 0;
572 if (ok) njet = fClusterJet.size();
573}
574
575void AliPythia8::Pycell(Int_t& njet)
576{
577// Call Pythia jet reconstruction algorithm
578//
579 Bool_t ok = fCellJet.analyze(Pythia8()->event, fMinEtJet, fRJet, fEtSeed);
580 njet = 0;
581 if (ok) njet = fCellJet.size();
582}
583
584void AliPythia8::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
585{
586 // Get jet number i
587 Float_t et = fCellJet.eT(i);
588 px = et * TMath::Cos(fCellJet.phiWeighted(i));
589 py = et * TMath::Sin(fCellJet.phiWeighted(i));
590 pz = et * TMath::SinH(fCellJet.etaWeighted(i));
591 e = et * TMath::CosH(fCellJet.etaWeighted(i));
592}
593
594void AliPythia8::GenerateEvent()
595{
596 // Generate one event
597 TPythia8::GenerateEvent();
598}
599
600void AliPythia8::GenerateMIEvent()
601{
602 // New multiple interaction scenario
603 AliWarning("Not implemented. No event will be generated");
604}
605
606void AliPythia8::PrintStatistics()
607{
608 // End of run statistics
609 TPythia8::PrintStatistics();
610}
611
612void AliPythia8::EventListing()
613{
614 // End of run statistics
615 TPythia8::EventListing();
616}
617
618Int_t AliPythia8::ProcessCode()
619{
620 // Returns the subprocess code for the current event
621 return Pythia8()->info.codeSub();
622}
623
624void AliPythia8::ConfigHeavyFlavor()
625{
626 //
627 // Default configuration for Heavy Flavor production
628 //
629 // All QCD processes
630 //
631 ReadString("HardQCD:all = on");
632
633 // No multiple interactions
634 ReadString("PartonLevel:MI = off");
635 ReadString("MultipleInteractions:pTmin = 0.0");
636 ReadString("MultipleInteractions:pT0Ref = 0.0");
637
638 // Initial/final parton shower on (Pythia default)
639 ReadString("PartonLevel:ISR = on");
640 ReadString("PartonLevel:FSR = on");
641
642 // 2nd order alpha_s
643 ReadString("SigmaProcess:alphaSorder = 2");
644
645 // QCD scales
646 ReadString("SigmaProcess:renormScale2 = 2");
647 ReadString("SigmaProcess:renormMultFac = 1.");
648}
649
650void AliPythia8::AtlasTuning()
651{
652 //
653 // Configuration for the ATLAS tuning
654 ReadString(Form("PDF:LHAPDFset = %s", AliStructFuncType::PDFsetName(kCTEQ5L).Data()));
655 ReadString("PartonLevel:MI = on");
656 ReadString("MultipleInteractions:pTmin = 1.9");
657 ReadString("MultipleInteractions:pT0Ref = 1.8");
658 ReadString("MultipleInteractions:ecmRef = 1000.");
659 ReadString("MultipleInteractions:expPow = 0.16");
660 ReadString("MultipleInteractions:bProfile = 2");
661 ReadString("MultipleInteractions:coreFraction = 0.16");
662 ReadString("MultipleInteractions:coreRadius = 0.5");
663// SetPARP(85,0.33); // Regulates gluon prod. mechanism
664// SetPARP(86,0.66); // Regulates gluon prod. mechanism
665 ReadString("SigmaProcess:factorMultFac = 1.");
666}
667
668void AliPythia8::SetPtHardRange(Float_t ptmin, Float_t ptmax)
669{
670 // Set the pt hard range
671 ReadString(Form("PhaseSpace:pTHatMin = %13.3f", ptmin));
672 ReadString(Form("PhaseSpace:pTHatMax = %13.3f", ptmax));
673}
674
675void AliPythia8::SetYHardRange(Float_t /*ymin*/, Float_t /*ymax*/)
676{
677 // Set the y hard range
678 printf("YHardRange not implemented in Pythia8 !!!\n");
679
680}
681
682
683void AliPythia8::SetFragmentation(Int_t flag)
684{
685 // Switch fragmentation on/off
686 if (flag) {
687 ReadString("HadronLevel:Hadronize = on");
688 } else {
689 ReadString("HadronLevel:Hadronize = off");
690 }
691}
692
693void AliPythia8::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
694{
695// initial state radiation
696 if (flag1) {
697 ReadString("PartonLevel:ISR = on");
698 } else {
699 ReadString("PartonLevel:ISR = off");
700 }
701// final state radiation
702 if (flag2) {
703 ReadString("PartonLevel:FSR = on");
704 } else {
705 ReadString("PartonLevel:FSR = off");
706 }
707}
708
709void AliPythia8::SetIntrinsicKt(Float_t kt)
710{
711 ReadString("Beams:primordialKT = on");
712 ReadString("Beams:primordialKTsoft = 0.");
713 ReadString(Form("Beams:primordialKThard = %13.3f", kt));
714 ReadString("Beams:halfScaleForKT = 0.");
715 ReadString("Beams:halfMassForKT = 0.");
716}
717
718void AliPythia8::SwitchHFOff()
719{
720 // Switch off heavy flavor
721 // Maximum number of quark flavours used in pdf
722 ReadString("PDFinProcess:nQuarkIn = 3");
723 // Maximum number of flavors that can be used in showers
724 ReadString("TimeShower:nGluonToQuark = 3");
725 ReadString("SpaceShower:nQuarkIn = 3");
726
727
728}
729
730void AliPythia8::SetPycellParameters(Float_t etaMax, Int_t nEta, Int_t nPhi,
731 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
732{
733// Set pycell parameters
734 fCellJet = Pythia8::CellJet( etaMax, nEta, nPhi, 2, 0, 0., 0., thresh);
735 fEtSeed = etseed;
736 fMinEtJet = minet;
737 fRJet = r;
738}
739
740void AliPythia8::ModifiedSplitting()
741{
742//
743// We have to see how to implement this in Pythia8 !!!
744//
745 // Modified splitting probability as a model for quenching
746// SetPARJ(200, 0.8);
747// SetMSTJ(41, 1); // QCD radiation only
748// SetMSTJ(42, 2); // angular ordering
749// SetMSTJ(44, 2); // option to run alpha_s
750// SetMSTJ(47, 0); // No correction back to hard scattering element
751// SetMSTJ(50, 0); // No coherence in first branching
752// SetPARJ(82, 1.); // Cut off for parton showers
753}
754
755
756void AliPythia8::InitQuenching(Float_t /*cMin*/, Float_t /*cMax*/, Float_t /*k*/, Int_t /*iECMethod*/, Float_t /*zmax*/, Int_t /*ngmax*/)
757{
758 //
759 //
760 AliWarning("Not implemented !");
761}
762
763void AliPythia8::SwitchHadronisationOff()
764{
765 // Switch off hadronisation
766 ReadString("HadronLevel:Hadronize = off");
767}
768
769void AliPythia8::SwitchHadronisationOn()
770{
771 // Switch on hadronisarion
772 ReadString("HadronLevel:Hadronize = on");
773}
774
775
776void AliPythia8::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
777{
778 // Get x1, x2 and Q for this event
779
780 q = Pythia8()->info.QFac();
781 x1 = Pythia8()->info.x1();
782 x2 = Pythia8()->info.x2();
783
784}
785
786Float_t AliPythia8::GetXSection()
787{
788 // Get the total cross-section
789 return Pythia8()->info.sigmaGen();
790}
791
792Float_t AliPythia8::GetPtHard()
793{
794 // Get the pT hard for this event
795 return Pythia8()->info.pTHat();
796}
797
798
799
800
801AliPythia8& AliPythia8::operator=(const AliPythia8& rhs)
802{
803// Assignment operator
804 rhs.Copy(*this);
805 return *this;
806}
807
808 void AliPythia8::Copy(TObject&) const
809{
810 //
811 // Copy
812 //
813 Fatal("Copy","Not implemented!\n");
814}
815
816//
817// To be implemented
818//
819void AliPythia8::SetNumberOfParticles(Int_t /*i*/)
820{
821 AliWarning("Not implemented");
822}
823
824void AliPythia8::EditEventList(Int_t /*i*/)
825{
826 AliWarning("Not implemented");
827}
828
829void AliPythia8::Pyquen(Double_t /*a*/, Int_t /*b*/, Double_t /*c*/)
830{
831 AliWarning("Cannot be used with Pythia8");
832}
833
834void AliPythia8::HadronizeEvent()
835{
836 // Needs access to HadronLevel ?
837 AliWarning("Not yet implemented");
838}
839
840void AliPythia8::GetQuenchingParameters(Double_t& /*xp*/, Double_t& /*yp*/, Double_t* /*z[4]*/)
841{
842 AliWarning("Not yet implemented");
843}
844
845void AliPythia8::LoadEvent(AliStack* /*stack*/, Int_t /*flag*/, Int_t /*reHadr*/)
846{
847 AliWarning("Not yet implemented");
848}