]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA8/pythia8140/xmldoc/TotalCrossSections.xml
coverity
[u/mrichter/AliRoot.git] / PYTHIA8 / pythia8140 / xmldoc / TotalCrossSections.xml
CommitLineData
b584e2f5 1<chapter name="Total Cross Sections">
2
3<h2>Total Cross Sections</h2>
4
5The <code>SigmaTotal</code> class returns the total, elastic, diffractive
6and nondiffractive cross sections in hadronic collisions, and also the
7slopes of the <ei>d(sigma)/dt</ei> distributions. The parametrizations
8used are from <ref>Sch94, Sch97</ref> which borrows some of the total cross
9sections from <ref>Don92</ref>.
10
11<p/>
12There are strong indications that the currently implemented diffractive
13cross section parametrizations, which should be in reasonable agreement
14with data at lower energies, overestimate the diffractive rate at larger
15values. If you wish to explore this (or other) aspect, it is possible to
16override the cross section values in two different ways. The first offers
17(almost) complete freedom, but needs to be defined separately for each
18CM energy, while the second introduces a simpler parametrized damping.
19The two cannot be combined. Furthermore the Coulomb term for elastic
20scattering, which by default is off, can be switched on.
21
22<p/>
23The allowed combinations of incoming particles are <ei>p + p</ei>,
24<ei>pbar + p</ei>, <ei>pi+ + p</ei>, <ei>pi- + p</ei>,
25<ei>pi0/rho0 + p</ei>, <ei>phi + p</ei>, <ei>J/psi + p</ei>,
26<ei>rho + rho</ei>, <ei>rho + phi</ei>, <ei>rho + J/psi</ei>,
27<ei>phi + phi</ei>, <ei>phi + J/psi</ei>, <ei>J/psi + J/psi</ei>.
28The strong emphasis on vector mesons is related to the description
29of <ei>gamma + p</ei> and <ei>gamma + gamma</ei> interactions in a
30Vector Dominance Model framework (which will not be available for some
31time to come, so this is a bit of overkill). Nevertheless, the sections
32below, with allowed variations, are mainly intended to make sense for
33<ei>p + p</ei>.
34
35<h3>Set cross sections</h3>
36
37<flag name="SigmaTotal:setOwn" default="off">
38Allow a user to set own cross sections by hand; on/off = true/false.
39</flag>
40
41<p/>
42When <code>SigmaTotal:setOwn = on</code>, the user is expected to set
43values for the corresponding cross sections:
44
45<parm name="SigmaTotal:sigmaTot" default="80." min="0.">
46Total cross section in mb.
47</parm>
48
49<parm name="SigmaTotal:sigmaEl" default="20." min="0.">
50Elastic cross section in mb.
51</parm>
52
53<parm name="SigmaTotal:sigmaXB" default="8." min="0.">
54Single Diffractive cross section <ei>A + B -> X + B</ei> in mb.
55</parm>
56
57<parm name="SigmaTotal:sigmaAX" default="8." min="0.">
58Single Diffractive cross section <ei>A + B -> A + X</ei> in mb.
59</parm>
60
61<parm name="SigmaTotal:sigmaXX" default="4." min="0.">
62Double Diffractive cross section <ei>A + B -> X_1 + X_2</ei> in mb.
63</parm>
64
65<p/>
66Note that the total cross section subtracted by the elastic and various
67diffractive ones gives the inelastic nondiffractive cross section,
68which therefore is not set separately. If this cross section evaluates
69to be negative the internal parametrizations are used instead of the
70ones here. However, since the nondiffractive inelastic cross section
71is what makes up the minimum-bias event class, and plays a major role
72in the description of multiple interactions, it is important that a
73consistent set is used.
74
75<h3>Dampen diffractive cross sections</h3>
76
77<flag name="SigmaDiffractive:dampen" default="no">
78Allow a user to dampen diffractive cross sections; on/off = true/false.
79</flag>
80
81<p/>
82When <code>SigmaDiffractive:dampen = on</code>, the three diffractive
83cross sections are damped so that they never can exceed the respective
84values below. Specifically, if the standard parametrization gives
85the cross section <ei>sigma_old(s)</ei> and a fixed <ei>sigma_max</ei>
86is set, the actual cross section becomes <ei>sigma_new(s)
87= sigma_old(s) * sigma_max / (sigma_old(s) + sigma_max)</ei>.
88This reduces to <ei>sigma_old(s)</ei> at low energies and to
89<ei>sigma_max</ei> at high ones. Note that the asymptotic value
90is approached quite slowly, however.
91
92<parm name="SigmaDiffractive:maxXB" default="15." min="0.">
93The above <ei>sigma_max</ei> for <ei>A + B -> X + B</ei> in mb.
94</parm>
95
96<parm name="SigmaDiffractive:maxAX" default="15." min="0.">
97The above <ei>sigma_max</ei> for <ei>A + B -> X + B</ei> in mb.
98</parm>
99
100<parm name="SigmaDiffractive:maxXX" default="15." min="0.">
101The above <ei>sigma_max</ei> for <ei>A + B -> X + B</ei> in mb.
102</parm>
103
104<p/>
105As above, a reduced diffractive cross section automatically translates
106into an increased nondiffractive one, such that the total (and elastic)
107cross section remains fixed.
108
109
110<h3>Set elastic cross section</h3>
111
112<p/>
113In the above option the <ei>t</ei> slopes are based on the internal
114parametrizations. In addition there is no Coulomb-term contribution
115to the elastic (or total) cross section, which of course becomes
116infinite if this contribution is included. If you have switched on
117<code>SigmaTotal:setOwn</code> you can further switch on a machinery
118to include the Coulomb term, including interference with the conventional
119strong-interaction Pomeron one <ref>Ber87</ref>. Then the elastic cross
120section is no longer taken from <code>SigmaTotal:sigmaEl</code> but
121derived from the parameters below and <code>SigmaTotal:sigmaTot</code>,
122using the optical theorem. The machinery is only intended to be used for
123<ei>p p</ei> and <ei>pbar p</ei> collisions. The description of
124diffractive events, and especially their slopes, remains unchanged.
125
126<flag name="SigmaElastic:setOwn" default="no">
127Allow a user to set parameters for the normalization and shape of the
128elastic cross section the by hand; yes/no = true/false.
129</flag>
130
131<parm name="SigmaElastic:bSlope" default="18." min="0.">
132the slope <ei>b</ei> of the strong-interaction term <ei>exp(bt)</ei>,
133in units of GeV^-2.
134</parm>
135
136<parm name="SigmaElastic:rho" default="0.13" min="-1." max="1.">
137the ratio of the real to the imaginary parts of the nuclear scattering
138amplitude.
139</parm>
140
141<parm name="SigmaElastic:lambda" default="0.71" min="0.1" max="2.">
142the main parameter of the electric form factor
143<ei>G(t) = lambda^2 / (lambda + |t|)^2</ei>, in units of GeV^2.
144</parm>
145
146<parm name="SigmaElastic:tAbsMin" default="5e-5" min="1e-10">
147since the Coulomb contribution is infinite a lower limit on
148<ei>|t|</ei> must be set to regularize the divergence,
149in units of GeV^2.
150</parm>
151
152<parm name="SigmaElastic:phaseConst" default="0.577">
153The Coulomb term is taken to contain a phase factor
154<ei>exp(+- i alpha phi(t))</ei>, with + for <ei>p p</ei> and - for
155<ei>pbar p</ei>, where <ei>phi(t) = - phaseConst - ln(-B t/2)</ei>.
156This constant is model dependent <ref>Cah82</ref>.
157</parm>
158
159</chapter>
160
161<!-- Copyright (C) 2010 Torbjorn Sjostrand -->