]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RALICE/AliMath.cxx
Record charged and neutral energy component separately.
[u/mrichter/AliRoot.git] / RALICE / AliMath.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
f531a546 16// $Id$
4c039060 17
959fbac5 18///////////////////////////////////////////////////////////////////////////
19// Class AliMath
20// Various mathematical tools which may be very convenient while
21// performing physics analysis.
22//
23// Example : Probability of a Chi-squared value
24// =========
25//
26// AliMath M;
27// Float_t chi2=20; // The chi-squared value
28// Int_t ndf=12; // The number of degrees of freedom
29// Float_t p=M.Prob(chi2,ndf); // The probability that at least a Chi-squared
30// // value of chi2 will be observed, even for a
31// // correct model
32//
33//--- Author: Nick van Eijndhoven 14-nov-1998 UU-SAP Utrecht
f531a546 34//- Modified: NvE $Date$ UU-SAP Utrecht
959fbac5 35///////////////////////////////////////////////////////////////////////////
36
d88f97cc 37#include "AliMath.h"
38
39ClassImp(AliMath) // Class implementation to enable ROOT I/O
40
41AliMath::AliMath()
42{
43// Default constructor
44}
45///////////////////////////////////////////////////////////////////////////
46AliMath::~AliMath()
47{
48// Destructor
49}
50///////////////////////////////////////////////////////////////////////////
29beb80d 51Double_t AliMath::Gamma(Double_t z)
d88f97cc 52{
53// Computation of gamma(z) for all z>0.
54//
55// The algorithm is based on the article by C.Lanczos [1] as denoted in
56// Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
57//
58// [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
59//
60//--- Nve 14-nov-1998 UU-SAP Utrecht
61
62 if (z<=0.)
63 {
64 cout << "*Gamma(z)* Wrong argument z = " << z << endl;
65 return 0;
66 }
67
29beb80d 68 Double_t v=LnGamma(z);
d88f97cc 69 return exp(v);
70}
71///////////////////////////////////////////////////////////////////////////
29beb80d 72Double_t AliMath::Gamma(Double_t a,Double_t x)
d88f97cc 73{
74// Computation of the incomplete gamma function P(a,x)
75//
76// The algorithm is based on the formulas and code as denoted in
77// Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
78//
79//--- Nve 14-nov-1998 UU-SAP Utrecht
80
81 if (a<=0.)
82 {
83 cout << "*Gamma(a,x)* Invalid argument a = " << a << endl;
84 return 0;
85 }
86
87 if (x<=0.)
88 {
89 if (x<0) cout << "*Gamma(a,x)* Invalid argument x = " << x << endl;
90 return 0;
91 }
92
93 if (x<(a+1.))
94 {
95 return GamSer(a,x);
96 }
97 else
98 {
99 return GamCf(a,x);
100 }
101}
102///////////////////////////////////////////////////////////////////////////
29beb80d 103Double_t AliMath::LnGamma(Double_t z)
d88f97cc 104{
105// Computation of ln[gamma(z)] for all z>0.
106//
107// The algorithm is based on the article by C.Lanczos [1] as denoted in
108// Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
109//
110// [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
111//
112// The accuracy of the result is better than 2e-10.
113//
114//--- Nve 14-nov-1998 UU-SAP Utrecht
115
116 if (z<=0.)
117 {
118 cout << "*LnGamma(z)* Wrong argument z = " << z << endl;
119 return 0;
120 }
121
122 // Coefficients for the series expansion
123 Double_t c[7];
124 c[0]= 2.5066282746310005;
125 c[1]= 76.18009172947146;
126 c[2]=-86.50532032941677;
127 c[3]= 24.01409824083091;
128 c[4]= -1.231739572450155;
129 c[5]= 0.1208650973866179e-2;
130 c[6]= -0.5395239384953e-5;
131
132 Double_t x=z;
133 Double_t y=x;
134 Double_t tmp=x+5.5;
135 tmp=(x+0.5)*log(tmp)-tmp;
136 Double_t ser=1.000000000190015;
137 for (Int_t i=1; i<7; i++)
138 {
139 y+=1.;
140 ser+=c[i]/y;
141 }
29beb80d 142 Double_t v=tmp+log(c[0]*ser/x);
d88f97cc 143 return v;
144}
145///////////////////////////////////////////////////////////////////////////
29beb80d 146Double_t AliMath::GamSer(Double_t a,Double_t x)
d88f97cc 147{
148// Computation of the incomplete gamma function P(a,x)
149// via its series representation.
150//
151// The algorithm is based on the formulas and code as denoted in
152// Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
153//
154//--- Nve 14-nov-1998 UU-SAP Utrecht
155
156 Int_t itmax=100; // Maximum number of iterations
29beb80d 157 Double_t eps=3.e-7; // Relative accuracy
d88f97cc 158
159 if (a<=0.)
160 {
161 cout << "*GamSer(a,x)* Invalid argument a = " << a << endl;
162 return 0;
163 }
164
165 if (x<=0.)
166 {
167 if (x<0) cout << "*GamSer(a,x)* Invalid argument x = " << x << endl;
168 return 0;
169 }
170
29beb80d 171 Double_t gln=LnGamma(a);
172 Double_t ap=a;
173 Double_t sum=1./a;
174 Double_t del=sum;
d88f97cc 175 for (Int_t n=1; n<=itmax; n++)
176 {
177 ap+=1.;
178 del=del*x/ap;
179 sum+=del;
180 if (fabs(del)<fabs(sum*eps)) break;
181 if (n==itmax) cout << "*GamSer(a,x)* a too large or itmax too small" << endl;
182 }
29beb80d 183 Double_t v=sum*exp(-x+a*log(x)-gln);
d88f97cc 184 return v;
185}
186///////////////////////////////////////////////////////////////////////////
29beb80d 187Double_t AliMath::GamCf(Double_t a,Double_t x)
d88f97cc 188{
189// Computation of the incomplete gamma function P(a,x)
190// via its continued fraction representation.
191//
192// The algorithm is based on the formulas and code as denoted in
193// Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
194//
195//--- Nve 14-nov-1998 UU-SAP Utrecht
196
197 Int_t itmax=100; // Maximum number of iterations
29beb80d 198 Double_t eps=3.e-7; // Relative accuracy
199 Double_t fpmin=1.e-30; // Smallest Double_t value allowed here
d88f97cc 200
201 if (a<=0.)
202 {
203 cout << "*GamCf(a,x)* Invalid argument a = " << a << endl;
204 return 0;
205 }
206
207 if (x<=0.)
208 {
209 if (x<0) cout << "*GamCf(a,x)* Invalid argument x = " << x << endl;
210 return 0;
211 }
212
29beb80d 213 Double_t gln=LnGamma(a);
214 Double_t b=x+1.-a;
215 Double_t c=1./fpmin;
216 Double_t d=1./b;
217 Double_t h=d;
218 Double_t an,del;
d88f97cc 219 for (Int_t i=1; i<=itmax; i++)
220 {
29beb80d 221 an=double(-i)*(double(i)-a);
d88f97cc 222 b+=2.;
223 d=an*d+b;
224 if (fabs(d)<fpmin) d=fpmin;
225 c=b+an/c;
226 if (fabs(c)<fpmin) c=fpmin;
227 d=1./d;
228 del=d*c;
229 h=h*del;
230 if (fabs(del-1.)<eps) break;
231 if (i==itmax) cout << "*GamCf(a,x)* a too large or itmax too small" << endl;
232 }
29beb80d 233 Double_t v=exp(-x+a*log(x)-gln)*h;
d88f97cc 234 return (1.-v);
235}
236///////////////////////////////////////////////////////////////////////////
29beb80d 237Double_t AliMath::Erf(Double_t x)
d88f97cc 238{
239// Computation of the error function erf(x).
240//
241//--- NvE 14-nov-1998 UU-SAP Utrecht
242
243 return (1.-Erfc(x));
244}
245///////////////////////////////////////////////////////////////////////////
29beb80d 246Double_t AliMath::Erfc(Double_t x)
d88f97cc 247{
248// Computation of the complementary error function erfc(x).
249//
250// The algorithm is based on a Chebyshev fit as denoted in
251// Numerical Recipes 2nd ed. on p. 214 (W.H.Press et al.).
252//
253// The fractional error is always less than 1.2e-7.
254//
255//--- Nve 14-nov-1998 UU-SAP Utrecht
256
257 // The parameters of the Chebyshev fit
29beb80d 258 const Double_t a1=-1.26551223, a2=1.00002368,
259 a3= 0.37409196, a4=0.09678418,
260 a5=-0.18628806, a6=0.27886807,
261 a7=-1.13520398, a8=1.48851587,
262 a9=-0.82215223, a10=0.17087277;
d88f97cc 263
29beb80d 264 Double_t v=1.; // The return value
d88f97cc 265
29beb80d 266 Double_t z=fabs(x);
d88f97cc 267
268 if (z <= 0.) return v; // erfc(0)=1
269
29beb80d 270 Double_t t=1./(1.+0.5*z);
d88f97cc 271
272 v=t*exp((-z*z)
273 +a1+t*(a2+t*(a3+t*(a4+t*(a5+t*(a6+t*(a7+t*(a8+t*(a9+t*a10)))))))));
274
275 if (x < 0.) v=2.-v; // erfc(-x)=2-erfc(x)
276
277 return v;
278}
279///////////////////////////////////////////////////////////////////////////
29beb80d 280Double_t AliMath::Prob(Double_t chi2,Int_t ndf)
d88f97cc 281{
282// Computation of the probability for a certain Chi-squared (chi2)
283// and number of degrees of freedom (ndf).
284//
285// Calculations are based on the incomplete gamma function P(a,x),
286// where a=ndf/2 and x=chi2/2.
287//
288// P(a,x) represents the probability that the observed Chi-squared
289// for a correct model should be less than the value chi2.
290//
291// The returned probability corresponds to 1-P(a,x),
292// which denotes the probability that an observed Chi-squared exceeds
293// the value chi2 by chance, even for a correct model.
294//
295//--- NvE 14-nov-1998 UU-SAP Utrecht
296
297 if (ndf <= 0) return 0; // Set CL to zero in case ndf<=0
298
299 if (chi2 <= 0.)
300 {
301 if (chi2 < 0.)
302 {
303 return 0;
304 }
305 else
306 {
307 return 1;
308 }
309 }
310
311// Alternative which is exact
312// This code may be activated in case the gamma function gives problems
313// if (ndf==1)
314// {
29beb80d 315// Double_t v=1.-Erf(sqrt(chi2)/sqrt(2.));
d88f97cc 316// return v;
317// }
318
319// Gaussian approximation for large ndf
320// This code may be activated in case the gamma function shows a problem
29beb80d 321// Double_t q=sqrt(2.*chi2)-sqrt(double(2*ndf-1));
d88f97cc 322// if (n>30 && q>0.)
323// {
29beb80d 324// Double_t v=0.5*(1.-Erf(q/sqrt(2.)));
d88f97cc 325// return v;
326// }
327
328 // Evaluate the incomplete gamma function
29beb80d 329 Double_t a=double(ndf)/2.;
330 Double_t x=chi2/2.;
d88f97cc 331 return (1.-Gamma(a,x));
332}
333///////////////////////////////////////////////////////////////////////////
29beb80d 334Double_t AliMath::BesselI0(Double_t x)
335{
336// Computation of the modified Bessel function I_0(x) for any real x.
337//
338// The algorithm is based on the article by Abramowitz and Stegun [1]
339// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
340//
341// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
342// Applied Mathematics Series vol. 55 (1964), Washington.
343//
344//--- NvE 12-mar-2000 UU-SAP Utrecht
345
346 // Parameters of the polynomial approximation
347 const Double_t p1=1.0, p2=3.5156229, p3=3.0899424,
348 p4=1.2067492, p5=0.2659732, p6=3.60768e-2, p7=4.5813e-3;
349
350 const Double_t q1= 0.39894228, q2= 1.328592e-2, q3= 2.25319e-3,
351 q4=-1.57565e-3, q5= 9.16281e-3, q6=-2.057706e-2,
352 q7= 2.635537e-2, q8=-1.647633e-2, q9= 3.92377e-3;
353
354 Double_t ax=fabs(x);
355
356 Double_t y=0,result=0;
357
358 if (ax < 3.75)
359 {
360 y=pow(x/3.75,2);
361 result=p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))));
362 }
363 else
364 {
365 y=3.75/ax;
366 result=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))));
367 }
368
369 return result;
370}
371///////////////////////////////////////////////////////////////////////////
372Double_t AliMath::BesselK0(Double_t x)
373{
374// Computation of the modified Bessel function K_0(x) for positive real x.
375//
376// The algorithm is based on the article by Abramowitz and Stegun [1]
377// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
378//
379// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
380// Applied Mathematics Series vol. 55 (1964), Washington.
381//
382//--- NvE 12-mar-2000 UU-SAP Utrecht
383
384 // Parameters of the polynomial approximation
385 const Double_t p1=-0.57721566, p2=0.42278420, p3=0.23069756,
386 p4= 3.488590e-2, p5=2.62698e-3, p6=1.0750e-4, p7=7.4e-5;
387
388 const Double_t q1= 1.25331414, q2=-7.832358e-2, q3= 2.189568e-2,
389 q4=-1.062446e-2, q5= 5.87872e-3, q6=-2.51540e-3, q7=5.3208e-4;
390
391 if (x <= 0)
392 {
393 cout << " *BesselK0* Invalid argument x = " << x << endl;
394 return 0;
395 }
396
397 Double_t y=0,result=0;
398
399 if (x <= 2)
400 {
401 y=x*x/4.;
402 result=(-log(x/2.)*BesselI0(x))+(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
403 }
404 else
405 {
406 y=2./x;
407 result=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*q7))))));
408 }
409
410 return result;
411}
412///////////////////////////////////////////////////////////////////////////
413Double_t AliMath::BesselI1(Double_t x)
414{
415// Computation of the modified Bessel function I_1(x) for any real x.
416//
417// The algorithm is based on the article by Abramowitz and Stegun [1]
418// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
419//
420// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
421// Applied Mathematics Series vol. 55 (1964), Washington.
422//
423//--- NvE 12-mar-2000 UU-SAP Utrecht
424
425 // Parameters of the polynomial approximation
426 const Double_t p1=0.5, p2=0.87890594, p3=0.51498869,
427 p4=0.15084934, p5=2.658733e-2, p6=3.01532e-3, p7=3.2411e-4;
428
429 const Double_t q1= 0.39894228, q2=-3.988024e-2, q3=-3.62018e-3,
430 q4= 1.63801e-3, q5=-1.031555e-2, q6= 2.282967e-2,
431 q7=-2.895312e-2, q8= 1.787654e-2, q9=-4.20059e-3;
432
433 Double_t ax=fabs(x);
434
435 Double_t y=0,result=0;
436
437 if (ax < 3.75)
438 {
439 y=pow(x/3.75,2);
440 result=x*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
441 }
442 else
443 {
444 y=3.75/ax;
445 result=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))));
446 if (x < 0) result=-result;
447 }
448
449 return result;
450}
451///////////////////////////////////////////////////////////////////////////
452Double_t AliMath::BesselK1(Double_t x)
453{
454// Computation of the modified Bessel function K_1(x) for positive real x.
455//
456// The algorithm is based on the article by Abramowitz and Stegun [1]
457// as denoted in Numerical Recipes 2nd ed. on p. 230 (W.H.Press et al.).
458//
459// [1] M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions,
460// Applied Mathematics Series vol. 55 (1964), Washington.
461//
462//--- NvE 12-mar-2000 UU-SAP Utrecht
463
464 // Parameters of the polynomial approximation
465 const Double_t p1= 1., p2= 0.15443144, p3=-0.67278579,
466 p4=-0.18156897, p5=-1.919402e-2, p6=-1.10404e-3, p7=-4.686e-5;
467
468 const Double_t q1= 1.25331414, q2= 0.23498619, q3=-3.655620e-2,
469 q4= 1.504268e-2, q5=-7.80353e-3, q6= 3.25614e-3, q7=-6.8245e-4;
470
471 if (x <= 0)
472 {
473 cout << " *BesselK1* Invalid argument x = " << x << endl;
474 return 0;
475 }
476
477 Double_t y=0,result=0;
478
479 if (x <= 2)
480 {
481 y=x*x/4.;
482 result=(log(x/2.)*BesselI1(x))+(1./x)*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
483 }
484 else
485 {
486 y=2./x;
487 result=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*q7))))));
488 }
489
490 return result;
491}
492///////////////////////////////////////////////////////////////////////////
493Double_t AliMath::BesselK(Int_t n,Double_t x)
494{
495// Computation of the Integer Order Modified Bessel function K_n(x)
496// for n=0,1,2,... and positive real x.
497//
498// The algorithm uses the recurrence relation
499//
500// K_n+1(x) = (2n/x)*K_n(x) + K_n-1(x)
501//
502// as denoted in Numerical Recipes 2nd ed. on p. 232 (W.H.Press et al.).
503//
504//--- NvE 12-mar-2000 UU-SAP Utrecht
505
506 if (x <= 0 || n < 0)
507 {
508 cout << " *BesselK* Invalid argument(s) (n,x) = (" << n << " , " << x << ")" << endl;
509 return 0;
510 }
511
512 if (n==0) return BesselK0(x);
513
514 if (n==1) return BesselK1(x);
515
516 // Perform upward recurrence for all x
517 Double_t tox=2./x;
518 Double_t bkm=BesselK0(x);
519 Double_t bk=BesselK1(x);
520 Double_t bkp=0;
521 for (Int_t j=1; j<n; j++)
522 {
523 bkp=bkm+double(j)*tox*bk;
524 bkm=bk;
525 bk=bkp;
526 }
527
528 return bk;
529}
530///////////////////////////////////////////////////////////////////////////
531Double_t AliMath::BesselI(Int_t n,Double_t x)
532{
533// Computation of the Integer Order Modified Bessel function I_n(x)
534// for n=0,1,2,... and any real x.
535//
536// The algorithm uses the recurrence relation
537//
538// I_n+1(x) = (-2n/x)*I_n(x) + I_n-1(x)
539//
540// as denoted in Numerical Recipes 2nd ed. on p. 232 (W.H.Press et al.).
541//
542//--- NvE 12-mar-2000 UU-SAP Utrecht
543
544 Int_t iacc=40; // Increase to enhance accuracy
545 Double_t bigno=1.e10, bigni=1.e-10;
546
547 if (n < 0)
548 {
549 cout << " *BesselI* Invalid argument (n,x) = (" << n << " , " << x << ")" << endl;
550 return 0;
551 }
552
553 if (n==0) return BesselI0(x);
554
555 if (n==1) return BesselI1(x);
556
557 if (fabs(x) < 1.e-10) return 0;
558
559 Double_t tox=2./fabs(x);
560 Double_t bip=0,bim=0;
561 Double_t bi=1;
562 Double_t result=0;
563 Int_t m=2*((n+int(sqrt(float(iacc*n))))); // Downward recurrence from even m
564 for (Int_t j=m; j<=1; j--)
565 {
566 bim=bip+double(j)*tox*bi;
567 bip=bi;
568 bi=bim;
569 if (fabs(bi) > bigno) // Renormalise to prevent overflows
570 {
571 result*=bigni;
572 bi*=bigni;
573 bip*=bigni;
574 }
575 if (j==n) result=bip;
576 }
577
578 result*=BesselI0(x)/bi; // Normalise with I0(x)
579 if ((x < 0) && (n%2 == 1)) result=-result;
580
581 return result;
582}
583///////////////////////////////////////////////////////////////////////////